xref: /openbmc/u-boot/drivers/spi/tegra114_spi.c (revision b1e6c4c3)
1 /*
2  * NVIDIA Tegra SPI controller (T114 and later)
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <asm/io.h>
27 #include <asm/gpio.h>
28 #include <asm/arch/clock.h>
29 #include <asm/arch-tegra/clk_rst.h>
30 #include <asm/arch-tegra114/tegra114_spi.h>
31 #include <spi.h>
32 #include <fdtdec.h>
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 /* COMMAND1 */
37 #define SPI_CMD1_GO			(1 << 31)
38 #define SPI_CMD1_M_S			(1 << 30)
39 #define SPI_CMD1_MODE_MASK		0x3
40 #define SPI_CMD1_MODE_SHIFT		28
41 #define SPI_CMD1_CS_SEL_MASK		0x3
42 #define SPI_CMD1_CS_SEL_SHIFT		26
43 #define SPI_CMD1_CS_POL_INACTIVE3	(1 << 25)
44 #define SPI_CMD1_CS_POL_INACTIVE2	(1 << 24)
45 #define SPI_CMD1_CS_POL_INACTIVE1	(1 << 23)
46 #define SPI_CMD1_CS_POL_INACTIVE0	(1 << 22)
47 #define SPI_CMD1_CS_SW_HW		(1 << 21)
48 #define SPI_CMD1_CS_SW_VAL		(1 << 20)
49 #define SPI_CMD1_IDLE_SDA_MASK		0x3
50 #define SPI_CMD1_IDLE_SDA_SHIFT		18
51 #define SPI_CMD1_BIDIR			(1 << 17)
52 #define SPI_CMD1_LSBI_FE		(1 << 16)
53 #define SPI_CMD1_LSBY_FE		(1 << 15)
54 #define SPI_CMD1_BOTH_EN_BIT		(1 << 14)
55 #define SPI_CMD1_BOTH_EN_BYTE		(1 << 13)
56 #define SPI_CMD1_RX_EN			(1 << 12)
57 #define SPI_CMD1_TX_EN			(1 << 11)
58 #define SPI_CMD1_PACKED			(1 << 5)
59 #define SPI_CMD1_BIT_LEN_MASK		0x1F
60 #define SPI_CMD1_BIT_LEN_SHIFT		0
61 
62 /* COMMAND2 */
63 #define SPI_CMD2_TX_CLK_TAP_DELAY	(1 << 6)
64 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK	(0x3F << 6)
65 #define SPI_CMD2_RX_CLK_TAP_DELAY	(1 << 0)
66 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK	(0x3F << 0)
67 
68 /* TRANSFER STATUS */
69 #define SPI_XFER_STS_RDY		(1 << 30)
70 
71 /* FIFO STATUS */
72 #define SPI_FIFO_STS_CS_INACTIVE	(1 << 31)
73 #define SPI_FIFO_STS_FRAME_END		(1 << 30)
74 #define SPI_FIFO_STS_RX_FIFO_FLUSH	(1 << 15)
75 #define SPI_FIFO_STS_TX_FIFO_FLUSH	(1 << 14)
76 #define SPI_FIFO_STS_ERR		(1 << 8)
77 #define SPI_FIFO_STS_TX_FIFO_OVF	(1 << 7)
78 #define SPI_FIFO_STS_TX_FIFO_UNR	(1 << 6)
79 #define SPI_FIFO_STS_RX_FIFO_OVF	(1 << 5)
80 #define SPI_FIFO_STS_RX_FIFO_UNR	(1 << 4)
81 #define SPI_FIFO_STS_TX_FIFO_FULL	(1 << 3)
82 #define SPI_FIFO_STS_TX_FIFO_EMPTY	(1 << 2)
83 #define SPI_FIFO_STS_RX_FIFO_FULL	(1 << 1)
84 #define SPI_FIFO_STS_RX_FIFO_EMPTY	(1 << 0)
85 
86 #define SPI_TIMEOUT		1000
87 #define TEGRA_SPI_MAX_FREQ	52000000
88 
89 struct spi_regs {
90 	u32 command1;	/* 000:SPI_COMMAND1 register */
91 	u32 command2;	/* 004:SPI_COMMAND2 register */
92 	u32 timing1;	/* 008:SPI_CS_TIM1 register */
93 	u32 timing2;	/* 00c:SPI_CS_TIM2 register */
94 	u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
95 	u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
96 	u32 tx_data;	/* 018:SPI_TX_DATA register */
97 	u32 rx_data;	/* 01c:SPI_RX_DATA register */
98 	u32 dma_ctl;	/* 020:SPI_DMA_CTL register */
99 	u32 dma_blk;	/* 024:SPI_DMA_BLK register */
100 	u32 rsvd[56];	/* 028-107 reserved */
101 	u32 tx_fifo;	/* 108:SPI_FIFO1 register */
102 	u32 rsvd2[31];	/* 10c-187 reserved */
103 	u32 rx_fifo;	/* 188:SPI_FIFO2 register */
104 	u32 spare_ctl;	/* 18c:SPI_SPARE_CTRL register */
105 };
106 
107 struct tegra_spi_ctrl {
108 	struct spi_regs *regs;
109 	unsigned int freq;
110 	unsigned int mode;
111 	int periph_id;
112 	int valid;
113 };
114 
115 struct tegra_spi_slave {
116 	struct spi_slave slave;
117 	struct tegra_spi_ctrl *ctrl;
118 };
119 
120 static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA114_SPI_CTRLS];
121 
122 static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
123 {
124 	return container_of(slave, struct tegra_spi_slave, slave);
125 }
126 
127 int tegra114_spi_cs_is_valid(unsigned int bus, unsigned int cs)
128 {
129 	if (bus >= CONFIG_TEGRA114_SPI_CTRLS || cs > 3 || !spi_ctrls[bus].valid)
130 		return 0;
131 	else
132 		return 1;
133 }
134 
135 struct spi_slave *tegra114_spi_setup_slave(unsigned int bus, unsigned int cs,
136 		unsigned int max_hz, unsigned int mode)
137 {
138 	struct tegra_spi_slave *spi;
139 
140 	debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__,
141 		bus, cs, max_hz, mode);
142 
143 	if (!spi_cs_is_valid(bus, cs)) {
144 		printf("SPI error: unsupported bus %d / chip select %d\n",
145 		       bus, cs);
146 		return NULL;
147 	}
148 
149 	if (max_hz > TEGRA_SPI_MAX_FREQ) {
150 		printf("SPI error: unsupported frequency %d Hz. Max frequency"
151 			" is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
152 		return NULL;
153 	}
154 
155 	spi = malloc(sizeof(struct tegra_spi_slave));
156 	if (!spi) {
157 		printf("SPI error: malloc of SPI structure failed\n");
158 		return NULL;
159 	}
160 	spi->slave.bus = bus;
161 	spi->slave.cs = cs;
162 	spi->ctrl = &spi_ctrls[bus];
163 	if (!spi->ctrl) {
164 		printf("SPI error: could not find controller for bus %d\n",
165 		       bus);
166 		return NULL;
167 	}
168 
169 	if (max_hz < spi->ctrl->freq) {
170 		debug("%s: limiting frequency from %u to %u\n", __func__,
171 		      spi->ctrl->freq, max_hz);
172 		spi->ctrl->freq = max_hz;
173 	}
174 	spi->ctrl->mode = mode;
175 
176 	return &spi->slave;
177 }
178 
179 void tegra114_spi_free_slave(struct spi_slave *slave)
180 {
181 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
182 
183 	free(spi);
184 }
185 
186 int tegra114_spi_init(int *node_list, int count)
187 {
188 	struct tegra_spi_ctrl *ctrl;
189 	int i;
190 	int node = 0;
191 	int found = 0;
192 
193 	for (i = 0; i < count; i++) {
194 		ctrl = &spi_ctrls[i];
195 		node = node_list[i];
196 
197 		ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob,
198 								 node, "reg");
199 		if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) {
200 			debug("%s: no spi register found\n", __func__);
201 			continue;
202 		}
203 		ctrl->freq = fdtdec_get_int(gd->fdt_blob, node,
204 					    "spi-max-frequency", 0);
205 		if (!ctrl->freq) {
206 			debug("%s: no spi max frequency found\n", __func__);
207 			continue;
208 		}
209 
210 		ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
211 		if (ctrl->periph_id == PERIPH_ID_NONE) {
212 			debug("%s: could not decode periph id\n", __func__);
213 			continue;
214 		}
215 		ctrl->valid = 1;
216 		found = 1;
217 
218 		debug("%s: found controller at %p, freq = %u, periph_id = %d\n",
219 		      __func__, ctrl->regs, ctrl->freq, ctrl->periph_id);
220 	}
221 
222 	return !found;
223 }
224 
225 int tegra114_spi_claim_bus(struct spi_slave *slave)
226 {
227 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
228 	struct spi_regs *regs = spi->ctrl->regs;
229 
230 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
231 	clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH,
232 			       spi->ctrl->freq);
233 
234 	/* Clear stale status here */
235 	setbits_le32(&regs->fifo_status,
236 		     SPI_FIFO_STS_ERR		|
237 		     SPI_FIFO_STS_TX_FIFO_OVF	|
238 		     SPI_FIFO_STS_TX_FIFO_UNR	|
239 		     SPI_FIFO_STS_RX_FIFO_OVF	|
240 		     SPI_FIFO_STS_RX_FIFO_UNR	|
241 		     SPI_FIFO_STS_TX_FIFO_FULL	|
242 		     SPI_FIFO_STS_TX_FIFO_EMPTY	|
243 		     SPI_FIFO_STS_RX_FIFO_FULL	|
244 		     SPI_FIFO_STS_RX_FIFO_EMPTY);
245 	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
246 
247 	/* Set master mode and sw controlled CS */
248 	setbits_le32(&regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
249 		     (spi->ctrl->mode << SPI_CMD1_MODE_SHIFT));
250 	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
251 
252 	return 0;
253 }
254 
255 void tegra114_spi_cs_activate(struct spi_slave *slave)
256 {
257 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
258 	struct spi_regs *regs = spi->ctrl->regs;
259 
260 	clrbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
261 }
262 
263 void tegra114_spi_cs_deactivate(struct spi_slave *slave)
264 {
265 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
266 	struct spi_regs *regs = spi->ctrl->regs;
267 
268 	setbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
269 }
270 
271 int tegra114_spi_xfer(struct spi_slave *slave, unsigned int bitlen,
272 		const void *data_out, void *data_in, unsigned long flags)
273 {
274 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
275 	struct spi_regs *regs = spi->ctrl->regs;
276 	u32 reg, tmpdout, tmpdin = 0;
277 	const u8 *dout = data_out;
278 	u8 *din = data_in;
279 	int num_bytes;
280 	int ret;
281 
282 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
283 	      __func__, slave->bus, slave->cs, dout, din, bitlen);
284 	if (bitlen % 8)
285 		return -1;
286 	num_bytes = bitlen / 8;
287 
288 	ret = 0;
289 
290 	/* clear all error status bits */
291 	reg = readl(&regs->fifo_status);
292 	writel(reg, &regs->fifo_status);
293 
294 	/* clear ready bit */
295 	setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
296 
297 	clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
298 			SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
299 			(slave->cs << SPI_CMD1_CS_SEL_SHIFT));
300 
301 	/* set xfer size to 1 block (32 bits) */
302 	writel(0, &regs->dma_blk);
303 
304 	if (flags & SPI_XFER_BEGIN)
305 		spi_cs_activate(slave);
306 
307 	/* handle data in 32-bit chunks */
308 	while (num_bytes > 0) {
309 		int bytes;
310 		int is_read = 0;
311 		int tm, i;
312 
313 		tmpdout = 0;
314 		bytes = (num_bytes > 4) ?  4 : num_bytes;
315 
316 		if (dout != NULL) {
317 			for (i = 0; i < bytes; ++i)
318 				tmpdout = (tmpdout << 8) | dout[i];
319 			dout += bytes;
320 		}
321 
322 		num_bytes -= bytes;
323 
324 		clrsetbits_le32(&regs->command1,
325 				SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
326 				(bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
327 		writel(tmpdout, &regs->tx_fifo);
328 		setbits_le32(&regs->command1, SPI_CMD1_GO);
329 
330 		/*
331 		 * Wait for SPI transmit FIFO to empty, or to time out.
332 		 * The RX FIFO status will be read and cleared last
333 		 */
334 		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
335 			u32 fifo_status, xfer_status;
336 
337 			fifo_status = readl(&regs->fifo_status);
338 
339 			/* We can exit when we've had both RX and TX activity */
340 			if (is_read &&
341 			    (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY))
342 				break;
343 
344 			xfer_status = readl(&regs->xfer_status);
345 			if (!(xfer_status & SPI_XFER_STS_RDY))
346 				continue;
347 
348 			if (fifo_status & SPI_FIFO_STS_ERR) {
349 				debug("%s: got a fifo error: ", __func__);
350 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
351 					debug("tx FIFO overflow ");
352 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
353 					debug("tx FIFO underrun ");
354 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
355 					debug("rx FIFO overflow ");
356 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
357 					debug("rx FIFO underrun ");
358 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
359 					debug("tx FIFO full ");
360 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
361 					debug("tx FIFO empty ");
362 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
363 					debug("rx FIFO full ");
364 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
365 					debug("rx FIFO empty ");
366 				debug("\n");
367 				break;
368 			}
369 
370 			if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
371 				tmpdin = readl(&regs->rx_fifo);
372 				is_read = 1;
373 
374 				/* swap bytes read in */
375 				if (din != NULL) {
376 					for (i = bytes - 1; i >= 0; --i) {
377 						din[i] = tmpdin & 0xff;
378 						tmpdin >>= 8;
379 					}
380 					din += bytes;
381 				}
382 			}
383 		}
384 
385 		if (tm >= SPI_TIMEOUT)
386 			ret = tm;
387 
388 		/* clear ACK RDY, etc. bits */
389 		writel(readl(&regs->fifo_status), &regs->fifo_status);
390 	}
391 
392 	if (flags & SPI_XFER_END)
393 		spi_cs_deactivate(slave);
394 
395 	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
396 	      __func__, tmpdin, readl(&regs->fifo_status));
397 
398 	if (ret) {
399 		printf("%s: timeout during SPI transfer, tm %d\n",
400 		       __func__, ret);
401 		return -1;
402 	}
403 
404 	return 0;
405 }
406