xref: /openbmc/u-boot/drivers/spi/tegra114_spi.c (revision 9c7dea602edd9027848d312e9b3b69f06c15f163)
1 /*
2  * NVIDIA Tegra SPI controller (T114 and later)
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <dm.h>
26 #include <asm/io.h>
27 #include <asm/arch/clock.h>
28 #include <asm/arch-tegra/clk_rst.h>
29 #include <spi.h>
30 #include <fdtdec.h>
31 #include "tegra_spi.h"
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 /* COMMAND1 */
36 #define SPI_CMD1_GO			(1 << 31)
37 #define SPI_CMD1_M_S			(1 << 30)
38 #define SPI_CMD1_MODE_MASK		0x3
39 #define SPI_CMD1_MODE_SHIFT		28
40 #define SPI_CMD1_CS_SEL_MASK		0x3
41 #define SPI_CMD1_CS_SEL_SHIFT		26
42 #define SPI_CMD1_CS_POL_INACTIVE3	(1 << 25)
43 #define SPI_CMD1_CS_POL_INACTIVE2	(1 << 24)
44 #define SPI_CMD1_CS_POL_INACTIVE1	(1 << 23)
45 #define SPI_CMD1_CS_POL_INACTIVE0	(1 << 22)
46 #define SPI_CMD1_CS_SW_HW		(1 << 21)
47 #define SPI_CMD1_CS_SW_VAL		(1 << 20)
48 #define SPI_CMD1_IDLE_SDA_MASK		0x3
49 #define SPI_CMD1_IDLE_SDA_SHIFT		18
50 #define SPI_CMD1_BIDIR			(1 << 17)
51 #define SPI_CMD1_LSBI_FE		(1 << 16)
52 #define SPI_CMD1_LSBY_FE		(1 << 15)
53 #define SPI_CMD1_BOTH_EN_BIT		(1 << 14)
54 #define SPI_CMD1_BOTH_EN_BYTE		(1 << 13)
55 #define SPI_CMD1_RX_EN			(1 << 12)
56 #define SPI_CMD1_TX_EN			(1 << 11)
57 #define SPI_CMD1_PACKED			(1 << 5)
58 #define SPI_CMD1_BIT_LEN_MASK		0x1F
59 #define SPI_CMD1_BIT_LEN_SHIFT		0
60 
61 /* COMMAND2 */
62 #define SPI_CMD2_TX_CLK_TAP_DELAY	(1 << 6)
63 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK	(0x3F << 6)
64 #define SPI_CMD2_RX_CLK_TAP_DELAY	(1 << 0)
65 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK	(0x3F << 0)
66 
67 /* TRANSFER STATUS */
68 #define SPI_XFER_STS_RDY		(1 << 30)
69 
70 /* FIFO STATUS */
71 #define SPI_FIFO_STS_CS_INACTIVE	(1 << 31)
72 #define SPI_FIFO_STS_FRAME_END		(1 << 30)
73 #define SPI_FIFO_STS_RX_FIFO_FLUSH	(1 << 15)
74 #define SPI_FIFO_STS_TX_FIFO_FLUSH	(1 << 14)
75 #define SPI_FIFO_STS_ERR		(1 << 8)
76 #define SPI_FIFO_STS_TX_FIFO_OVF	(1 << 7)
77 #define SPI_FIFO_STS_TX_FIFO_UNR	(1 << 6)
78 #define SPI_FIFO_STS_RX_FIFO_OVF	(1 << 5)
79 #define SPI_FIFO_STS_RX_FIFO_UNR	(1 << 4)
80 #define SPI_FIFO_STS_TX_FIFO_FULL	(1 << 3)
81 #define SPI_FIFO_STS_TX_FIFO_EMPTY	(1 << 2)
82 #define SPI_FIFO_STS_RX_FIFO_FULL	(1 << 1)
83 #define SPI_FIFO_STS_RX_FIFO_EMPTY	(1 << 0)
84 
85 #define SPI_TIMEOUT		1000
86 #define TEGRA_SPI_MAX_FREQ	52000000
87 
88 struct spi_regs {
89 	u32 command1;	/* 000:SPI_COMMAND1 register */
90 	u32 command2;	/* 004:SPI_COMMAND2 register */
91 	u32 timing1;	/* 008:SPI_CS_TIM1 register */
92 	u32 timing2;	/* 00c:SPI_CS_TIM2 register */
93 	u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
94 	u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
95 	u32 tx_data;	/* 018:SPI_TX_DATA register */
96 	u32 rx_data;	/* 01c:SPI_RX_DATA register */
97 	u32 dma_ctl;	/* 020:SPI_DMA_CTL register */
98 	u32 dma_blk;	/* 024:SPI_DMA_BLK register */
99 	u32 rsvd[56];	/* 028-107 reserved */
100 	u32 tx_fifo;	/* 108:SPI_FIFO1 register */
101 	u32 rsvd2[31];	/* 10c-187 reserved */
102 	u32 rx_fifo;	/* 188:SPI_FIFO2 register */
103 	u32 spare_ctl;	/* 18c:SPI_SPARE_CTRL register */
104 };
105 
106 struct tegra114_spi_priv {
107 	struct spi_regs *regs;
108 	unsigned int freq;
109 	unsigned int mode;
110 	int periph_id;
111 	int valid;
112 	int last_transaction_us;
113 };
114 
115 static int tegra114_spi_ofdata_to_platdata(struct udevice *bus)
116 {
117 	struct tegra_spi_platdata *plat = bus->platdata;
118 	const void *blob = gd->fdt_blob;
119 	int node = bus->of_offset;
120 
121 	plat->base = fdtdec_get_addr(blob, node, "reg");
122 	plat->periph_id = clock_decode_periph_id(blob, node);
123 
124 	if (plat->periph_id == PERIPH_ID_NONE) {
125 		debug("%s: could not decode periph id %d\n", __func__,
126 		      plat->periph_id);
127 		return -FDT_ERR_NOTFOUND;
128 	}
129 
130 	/* Use 500KHz as a suitable default */
131 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
132 					500000);
133 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
134 					"spi-deactivate-delay", 0);
135 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
136 	      __func__, plat->base, plat->periph_id, plat->frequency,
137 	      plat->deactivate_delay_us);
138 
139 	return 0;
140 }
141 
142 static int tegra114_spi_probe(struct udevice *bus)
143 {
144 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
145 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
146 
147 	priv->regs = (struct spi_regs *)plat->base;
148 
149 	priv->last_transaction_us = timer_get_us();
150 	priv->freq = plat->frequency;
151 	priv->periph_id = plat->periph_id;
152 
153 	return 0;
154 }
155 
156 static int tegra114_spi_claim_bus(struct udevice *dev)
157 {
158 	struct udevice *bus = dev->parent;
159 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
160 	struct spi_regs *regs = priv->regs;
161 
162 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
163 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, priv->freq);
164 
165 	/* Clear stale status here */
166 	setbits_le32(&regs->fifo_status,
167 		     SPI_FIFO_STS_ERR		|
168 		     SPI_FIFO_STS_TX_FIFO_OVF	|
169 		     SPI_FIFO_STS_TX_FIFO_UNR	|
170 		     SPI_FIFO_STS_RX_FIFO_OVF	|
171 		     SPI_FIFO_STS_RX_FIFO_UNR	|
172 		     SPI_FIFO_STS_TX_FIFO_FULL	|
173 		     SPI_FIFO_STS_TX_FIFO_EMPTY	|
174 		     SPI_FIFO_STS_RX_FIFO_FULL	|
175 		     SPI_FIFO_STS_RX_FIFO_EMPTY);
176 	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
177 
178 	/* Set master mode and sw controlled CS */
179 	setbits_le32(&regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
180 		     (priv->mode << SPI_CMD1_MODE_SHIFT));
181 	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
182 
183 	return 0;
184 }
185 
186 /**
187  * Activate the CS by driving it LOW
188  *
189  * @param slave	Pointer to spi_slave to which controller has to
190  *		communicate with
191  */
192 static void spi_cs_activate(struct udevice *dev)
193 {
194 	struct udevice *bus = dev->parent;
195 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
196 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
197 
198 	/* If it's too soon to do another transaction, wait */
199 	if (pdata->deactivate_delay_us &&
200 	    priv->last_transaction_us) {
201 		ulong delay_us;		/* The delay completed so far */
202 		delay_us = timer_get_us() - priv->last_transaction_us;
203 		if (delay_us < pdata->deactivate_delay_us)
204 			udelay(pdata->deactivate_delay_us - delay_us);
205 	}
206 
207 	clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
208 }
209 
210 /**
211  * Deactivate the CS by driving it HIGH
212  *
213  * @param slave	Pointer to spi_slave to which controller has to
214  *		communicate with
215  */
216 static void spi_cs_deactivate(struct udevice *dev)
217 {
218 	struct udevice *bus = dev->parent;
219 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
220 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
221 
222 	setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
223 
224 	/* Remember time of this transaction so we can honour the bus delay */
225 	if (pdata->deactivate_delay_us)
226 		priv->last_transaction_us = timer_get_us();
227 
228 	debug("Deactivate CS, bus '%s'\n", bus->name);
229 }
230 
231 static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen,
232 			     const void *data_out, void *data_in,
233 			     unsigned long flags)
234 {
235 	struct udevice *bus = dev->parent;
236 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
237 	struct spi_regs *regs = priv->regs;
238 	u32 reg, tmpdout, tmpdin = 0;
239 	const u8 *dout = data_out;
240 	u8 *din = data_in;
241 	int num_bytes;
242 	int ret;
243 
244 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
245 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
246 	if (bitlen % 8)
247 		return -1;
248 	num_bytes = bitlen / 8;
249 
250 	ret = 0;
251 
252 	/* clear all error status bits */
253 	reg = readl(&regs->fifo_status);
254 	writel(reg, &regs->fifo_status);
255 
256 	clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
257 			SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
258 			(spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT));
259 
260 	/* set xfer size to 1 block (32 bits) */
261 	writel(0, &regs->dma_blk);
262 
263 	if (flags & SPI_XFER_BEGIN)
264 		spi_cs_activate(dev);
265 
266 	/* handle data in 32-bit chunks */
267 	while (num_bytes > 0) {
268 		int bytes;
269 		int tm, i;
270 
271 		tmpdout = 0;
272 		bytes = (num_bytes > 4) ?  4 : num_bytes;
273 
274 		if (dout != NULL) {
275 			for (i = 0; i < bytes; ++i)
276 				tmpdout = (tmpdout << 8) | dout[i];
277 			dout += bytes;
278 		}
279 
280 		num_bytes -= bytes;
281 
282 		/* clear ready bit */
283 		setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
284 
285 		clrsetbits_le32(&regs->command1,
286 				SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
287 				(bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
288 		writel(tmpdout, &regs->tx_fifo);
289 		setbits_le32(&regs->command1, SPI_CMD1_GO);
290 
291 		/*
292 		 * Wait for SPI transmit FIFO to empty, or to time out.
293 		 * The RX FIFO status will be read and cleared last
294 		 */
295 		for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
296 			u32 fifo_status, xfer_status;
297 
298 			xfer_status = readl(&regs->xfer_status);
299 			if (!(xfer_status & SPI_XFER_STS_RDY))
300 				continue;
301 
302 			fifo_status = readl(&regs->fifo_status);
303 			if (fifo_status & SPI_FIFO_STS_ERR) {
304 				debug("%s: got a fifo error: ", __func__);
305 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
306 					debug("tx FIFO overflow ");
307 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
308 					debug("tx FIFO underrun ");
309 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
310 					debug("rx FIFO overflow ");
311 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
312 					debug("rx FIFO underrun ");
313 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
314 					debug("tx FIFO full ");
315 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
316 					debug("tx FIFO empty ");
317 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
318 					debug("rx FIFO full ");
319 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
320 					debug("rx FIFO empty ");
321 				debug("\n");
322 				break;
323 			}
324 
325 			if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
326 				tmpdin = readl(&regs->rx_fifo);
327 
328 				/* swap bytes read in */
329 				if (din != NULL) {
330 					for (i = bytes - 1; i >= 0; --i) {
331 						din[i] = tmpdin & 0xff;
332 						tmpdin >>= 8;
333 					}
334 					din += bytes;
335 				}
336 
337 				/* We can exit when we've had both RX and TX */
338 				break;
339 			}
340 		}
341 
342 		if (tm >= SPI_TIMEOUT)
343 			ret = tm;
344 
345 		/* clear ACK RDY, etc. bits */
346 		writel(readl(&regs->fifo_status), &regs->fifo_status);
347 	}
348 
349 	if (flags & SPI_XFER_END)
350 		spi_cs_deactivate(dev);
351 
352 	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
353 	      __func__, tmpdin, readl(&regs->fifo_status));
354 
355 	if (ret) {
356 		printf("%s: timeout during SPI transfer, tm %d\n",
357 		       __func__, ret);
358 		return -1;
359 	}
360 
361 	return ret;
362 }
363 
364 static int tegra114_spi_set_speed(struct udevice *bus, uint speed)
365 {
366 	struct tegra_spi_platdata *plat = bus->platdata;
367 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
368 
369 	if (speed > plat->frequency)
370 		speed = plat->frequency;
371 	priv->freq = speed;
372 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
373 
374 	return 0;
375 }
376 
377 static int tegra114_spi_set_mode(struct udevice *bus, uint mode)
378 {
379 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
380 
381 	priv->mode = mode;
382 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
383 
384 	return 0;
385 }
386 
387 static const struct dm_spi_ops tegra114_spi_ops = {
388 	.claim_bus	= tegra114_spi_claim_bus,
389 	.xfer		= tegra114_spi_xfer,
390 	.set_speed	= tegra114_spi_set_speed,
391 	.set_mode	= tegra114_spi_set_mode,
392 	/*
393 	 * cs_info is not needed, since we require all chip selects to be
394 	 * in the device tree explicitly
395 	 */
396 };
397 
398 static const struct udevice_id tegra114_spi_ids[] = {
399 	{ .compatible = "nvidia,tegra114-spi" },
400 	{ }
401 };
402 
403 U_BOOT_DRIVER(tegra114_spi) = {
404 	.name	= "tegra114_spi",
405 	.id	= UCLASS_SPI,
406 	.of_match = tegra114_spi_ids,
407 	.ops	= &tegra114_spi_ops,
408 	.ofdata_to_platdata = tegra114_spi_ofdata_to_platdata,
409 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
410 	.priv_auto_alloc_size = sizeof(struct tegra114_spi_priv),
411 	.probe	= tegra114_spi_probe,
412 };
413