1 /* 2 * NVIDIA Tegra SPI controller (T114 and later) 3 * 4 * Copyright (c) 2010-2013 NVIDIA Corporation 5 * 6 * SPDX-License-Identifier: GPL-2.0 7 */ 8 9 #include <common.h> 10 #include <dm.h> 11 #include <asm/io.h> 12 #include <asm/arch/clock.h> 13 #include <asm/arch-tegra/clk_rst.h> 14 #include <spi.h> 15 #include <fdtdec.h> 16 #include "tegra_spi.h" 17 18 DECLARE_GLOBAL_DATA_PTR; 19 20 /* COMMAND1 */ 21 #define SPI_CMD1_GO BIT(31) 22 #define SPI_CMD1_M_S BIT(30) 23 #define SPI_CMD1_MODE_MASK GENMASK(1, 0) 24 #define SPI_CMD1_MODE_SHIFT 28 25 #define SPI_CMD1_CS_SEL_MASK GENMASK(1, 0) 26 #define SPI_CMD1_CS_SEL_SHIFT 26 27 #define SPI_CMD1_CS_POL_INACTIVE3 BIT(25) 28 #define SPI_CMD1_CS_POL_INACTIVE2 BIT(24) 29 #define SPI_CMD1_CS_POL_INACTIVE1 BIT(23) 30 #define SPI_CMD1_CS_POL_INACTIVE0 BIT(22) 31 #define SPI_CMD1_CS_SW_HW BIT(21) 32 #define SPI_CMD1_CS_SW_VAL BIT(20) 33 #define SPI_CMD1_IDLE_SDA_MASK GENMASK(1, 0) 34 #define SPI_CMD1_IDLE_SDA_SHIFT 18 35 #define SPI_CMD1_BIDIR BIT(17) 36 #define SPI_CMD1_LSBI_FE BIT(16) 37 #define SPI_CMD1_LSBY_FE BIT(15) 38 #define SPI_CMD1_BOTH_EN_BIT BIT(14) 39 #define SPI_CMD1_BOTH_EN_BYTE BIT(13) 40 #define SPI_CMD1_RX_EN BIT(12) 41 #define SPI_CMD1_TX_EN BIT(11) 42 #define SPI_CMD1_PACKED BIT(5) 43 #define SPI_CMD1_BIT_LEN_MASK GENMASK(4, 0) 44 #define SPI_CMD1_BIT_LEN_SHIFT 0 45 46 /* COMMAND2 */ 47 #define SPI_CMD2_TX_CLK_TAP_DELAY BIT(6) 48 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK GENMASK(11, 6) 49 #define SPI_CMD2_RX_CLK_TAP_DELAY BIT(0) 50 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK GENMASK(5, 0) 51 52 /* TRANSFER STATUS */ 53 #define SPI_XFER_STS_RDY BIT(30) 54 55 /* FIFO STATUS */ 56 #define SPI_FIFO_STS_CS_INACTIVE BIT(31) 57 #define SPI_FIFO_STS_FRAME_END BIT(30) 58 #define SPI_FIFO_STS_RX_FIFO_FLUSH BIT(15) 59 #define SPI_FIFO_STS_TX_FIFO_FLUSH BIT(14) 60 #define SPI_FIFO_STS_ERR BIT(8) 61 #define SPI_FIFO_STS_TX_FIFO_OVF BIT(7) 62 #define SPI_FIFO_STS_TX_FIFO_UNR BIT(6) 63 #define SPI_FIFO_STS_RX_FIFO_OVF BIT(5) 64 #define SPI_FIFO_STS_RX_FIFO_UNR BIT(4) 65 #define SPI_FIFO_STS_TX_FIFO_FULL BIT(3) 66 #define SPI_FIFO_STS_TX_FIFO_EMPTY BIT(2) 67 #define SPI_FIFO_STS_RX_FIFO_FULL BIT(1) 68 #define SPI_FIFO_STS_RX_FIFO_EMPTY BIT(0) 69 70 #define SPI_TIMEOUT 1000 71 #define TEGRA_SPI_MAX_FREQ 52000000 72 73 struct spi_regs { 74 u32 command1; /* 000:SPI_COMMAND1 register */ 75 u32 command2; /* 004:SPI_COMMAND2 register */ 76 u32 timing1; /* 008:SPI_CS_TIM1 register */ 77 u32 timing2; /* 00c:SPI_CS_TIM2 register */ 78 u32 xfer_status;/* 010:SPI_TRANS_STATUS register */ 79 u32 fifo_status;/* 014:SPI_FIFO_STATUS register */ 80 u32 tx_data; /* 018:SPI_TX_DATA register */ 81 u32 rx_data; /* 01c:SPI_RX_DATA register */ 82 u32 dma_ctl; /* 020:SPI_DMA_CTL register */ 83 u32 dma_blk; /* 024:SPI_DMA_BLK register */ 84 u32 rsvd[56]; /* 028-107 reserved */ 85 u32 tx_fifo; /* 108:SPI_FIFO1 register */ 86 u32 rsvd2[31]; /* 10c-187 reserved */ 87 u32 rx_fifo; /* 188:SPI_FIFO2 register */ 88 u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */ 89 }; 90 91 struct tegra114_spi_priv { 92 struct spi_regs *regs; 93 unsigned int freq; 94 unsigned int mode; 95 int periph_id; 96 int valid; 97 int last_transaction_us; 98 }; 99 100 static int tegra114_spi_ofdata_to_platdata(struct udevice *bus) 101 { 102 struct tegra_spi_platdata *plat = bus->platdata; 103 const void *blob = gd->fdt_blob; 104 int node = bus->of_offset; 105 106 plat->base = dev_get_addr(bus); 107 plat->periph_id = clock_decode_periph_id(blob, node); 108 109 if (plat->periph_id == PERIPH_ID_NONE) { 110 debug("%s: could not decode periph id %d\n", __func__, 111 plat->periph_id); 112 return -FDT_ERR_NOTFOUND; 113 } 114 115 /* Use 500KHz as a suitable default */ 116 plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency", 117 500000); 118 plat->deactivate_delay_us = fdtdec_get_int(blob, node, 119 "spi-deactivate-delay", 0); 120 debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n", 121 __func__, plat->base, plat->periph_id, plat->frequency, 122 plat->deactivate_delay_us); 123 124 return 0; 125 } 126 127 static int tegra114_spi_probe(struct udevice *bus) 128 { 129 struct tegra_spi_platdata *plat = dev_get_platdata(bus); 130 struct tegra114_spi_priv *priv = dev_get_priv(bus); 131 struct spi_regs *regs; 132 ulong rate; 133 134 priv->regs = (struct spi_regs *)plat->base; 135 regs = priv->regs; 136 137 priv->last_transaction_us = timer_get_us(); 138 priv->freq = plat->frequency; 139 priv->periph_id = plat->periph_id; 140 141 /* 142 * Change SPI clock to correct frequency, PLLP_OUT0 source, falling 143 * back to the oscillator if that is too fast. 144 */ 145 rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, 146 priv->freq); 147 if (rate > priv->freq + 100000) { 148 rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_OSC, 149 priv->freq); 150 if (rate != priv->freq) { 151 printf("Warning: SPI '%s' requested clock %u, actual clock %lu\n", 152 bus->name, priv->freq, rate); 153 } 154 } 155 156 /* Clear stale status here */ 157 setbits_le32(®s->fifo_status, 158 SPI_FIFO_STS_ERR | 159 SPI_FIFO_STS_TX_FIFO_OVF | 160 SPI_FIFO_STS_TX_FIFO_UNR | 161 SPI_FIFO_STS_RX_FIFO_OVF | 162 SPI_FIFO_STS_RX_FIFO_UNR | 163 SPI_FIFO_STS_TX_FIFO_FULL | 164 SPI_FIFO_STS_TX_FIFO_EMPTY | 165 SPI_FIFO_STS_RX_FIFO_FULL | 166 SPI_FIFO_STS_RX_FIFO_EMPTY); 167 debug("%s: FIFO STATUS = %08x\n", __func__, readl(®s->fifo_status)); 168 169 setbits_le32(&priv->regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW | 170 (priv->mode << SPI_CMD1_MODE_SHIFT) | SPI_CMD1_CS_SW_VAL); 171 debug("%s: COMMAND1 = %08x\n", __func__, readl(®s->command1)); 172 173 return 0; 174 } 175 176 /** 177 * Activate the CS by driving it LOW 178 * 179 * @param slave Pointer to spi_slave to which controller has to 180 * communicate with 181 */ 182 static void spi_cs_activate(struct udevice *dev) 183 { 184 struct udevice *bus = dev->parent; 185 struct tegra_spi_platdata *pdata = dev_get_platdata(bus); 186 struct tegra114_spi_priv *priv = dev_get_priv(bus); 187 188 /* If it's too soon to do another transaction, wait */ 189 if (pdata->deactivate_delay_us && 190 priv->last_transaction_us) { 191 ulong delay_us; /* The delay completed so far */ 192 delay_us = timer_get_us() - priv->last_transaction_us; 193 if (delay_us < pdata->deactivate_delay_us) 194 udelay(pdata->deactivate_delay_us - delay_us); 195 } 196 197 clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL); 198 } 199 200 /** 201 * Deactivate the CS by driving it HIGH 202 * 203 * @param slave Pointer to spi_slave to which controller has to 204 * communicate with 205 */ 206 static void spi_cs_deactivate(struct udevice *dev) 207 { 208 struct udevice *bus = dev->parent; 209 struct tegra_spi_platdata *pdata = dev_get_platdata(bus); 210 struct tegra114_spi_priv *priv = dev_get_priv(bus); 211 212 setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL); 213 214 /* Remember time of this transaction so we can honour the bus delay */ 215 if (pdata->deactivate_delay_us) 216 priv->last_transaction_us = timer_get_us(); 217 218 debug("Deactivate CS, bus '%s'\n", bus->name); 219 } 220 221 static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen, 222 const void *data_out, void *data_in, 223 unsigned long flags) 224 { 225 struct udevice *bus = dev->parent; 226 struct tegra114_spi_priv *priv = dev_get_priv(bus); 227 struct spi_regs *regs = priv->regs; 228 u32 reg, tmpdout, tmpdin = 0; 229 const u8 *dout = data_out; 230 u8 *din = data_in; 231 int num_bytes; 232 int ret; 233 234 debug("%s: slave %u:%u dout %p din %p bitlen %u\n", 235 __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen); 236 if (bitlen % 8) 237 return -1; 238 num_bytes = bitlen / 8; 239 240 ret = 0; 241 242 if (flags & SPI_XFER_BEGIN) 243 spi_cs_activate(dev); 244 245 /* clear all error status bits */ 246 reg = readl(®s->fifo_status); 247 writel(reg, ®s->fifo_status); 248 249 clrsetbits_le32(®s->command1, SPI_CMD1_CS_SW_VAL, 250 SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE | 251 (spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT)); 252 253 /* set xfer size to 1 block (32 bits) */ 254 writel(0, ®s->dma_blk); 255 256 /* handle data in 32-bit chunks */ 257 while (num_bytes > 0) { 258 int bytes; 259 int tm, i; 260 261 tmpdout = 0; 262 bytes = (num_bytes > 4) ? 4 : num_bytes; 263 264 if (dout != NULL) { 265 for (i = 0; i < bytes; ++i) 266 tmpdout = (tmpdout << 8) | dout[i]; 267 dout += bytes; 268 } 269 270 num_bytes -= bytes; 271 272 /* clear ready bit */ 273 setbits_le32(®s->xfer_status, SPI_XFER_STS_RDY); 274 275 clrsetbits_le32(®s->command1, 276 SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT, 277 (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT); 278 writel(tmpdout, ®s->tx_fifo); 279 setbits_le32(®s->command1, SPI_CMD1_GO); 280 281 /* 282 * Wait for SPI transmit FIFO to empty, or to time out. 283 * The RX FIFO status will be read and cleared last 284 */ 285 for (tm = 0; tm < SPI_TIMEOUT; ++tm) { 286 u32 fifo_status, xfer_status; 287 288 xfer_status = readl(®s->xfer_status); 289 if (!(xfer_status & SPI_XFER_STS_RDY)) 290 continue; 291 292 fifo_status = readl(®s->fifo_status); 293 if (fifo_status & SPI_FIFO_STS_ERR) { 294 debug("%s: got a fifo error: ", __func__); 295 if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF) 296 debug("tx FIFO overflow "); 297 if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR) 298 debug("tx FIFO underrun "); 299 if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF) 300 debug("rx FIFO overflow "); 301 if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR) 302 debug("rx FIFO underrun "); 303 if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL) 304 debug("tx FIFO full "); 305 if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY) 306 debug("tx FIFO empty "); 307 if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL) 308 debug("rx FIFO full "); 309 if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY) 310 debug("rx FIFO empty "); 311 debug("\n"); 312 break; 313 } 314 315 if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) { 316 tmpdin = readl(®s->rx_fifo); 317 318 /* swap bytes read in */ 319 if (din != NULL) { 320 for (i = bytes - 1; i >= 0; --i) { 321 din[i] = tmpdin & 0xff; 322 tmpdin >>= 8; 323 } 324 din += bytes; 325 } 326 327 /* We can exit when we've had both RX and TX */ 328 break; 329 } 330 } 331 332 if (tm >= SPI_TIMEOUT) 333 ret = tm; 334 335 /* clear ACK RDY, etc. bits */ 336 writel(readl(®s->fifo_status), ®s->fifo_status); 337 } 338 339 if (flags & SPI_XFER_END) 340 spi_cs_deactivate(dev); 341 342 debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n", 343 __func__, tmpdin, readl(®s->fifo_status)); 344 345 if (ret) { 346 printf("%s: timeout during SPI transfer, tm %d\n", 347 __func__, ret); 348 return -1; 349 } 350 351 return ret; 352 } 353 354 static int tegra114_spi_set_speed(struct udevice *bus, uint speed) 355 { 356 struct tegra_spi_platdata *plat = bus->platdata; 357 struct tegra114_spi_priv *priv = dev_get_priv(bus); 358 359 if (speed > plat->frequency) 360 speed = plat->frequency; 361 priv->freq = speed; 362 debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq); 363 364 return 0; 365 } 366 367 static int tegra114_spi_set_mode(struct udevice *bus, uint mode) 368 { 369 struct tegra114_spi_priv *priv = dev_get_priv(bus); 370 371 priv->mode = mode; 372 debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode); 373 374 return 0; 375 } 376 377 static const struct dm_spi_ops tegra114_spi_ops = { 378 .xfer = tegra114_spi_xfer, 379 .set_speed = tegra114_spi_set_speed, 380 .set_mode = tegra114_spi_set_mode, 381 /* 382 * cs_info is not needed, since we require all chip selects to be 383 * in the device tree explicitly 384 */ 385 }; 386 387 static const struct udevice_id tegra114_spi_ids[] = { 388 { .compatible = "nvidia,tegra114-spi" }, 389 { } 390 }; 391 392 U_BOOT_DRIVER(tegra114_spi) = { 393 .name = "tegra114_spi", 394 .id = UCLASS_SPI, 395 .of_match = tegra114_spi_ids, 396 .ops = &tegra114_spi_ops, 397 .ofdata_to_platdata = tegra114_spi_ofdata_to_platdata, 398 .platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata), 399 .priv_auto_alloc_size = sizeof(struct tegra114_spi_priv), 400 .probe = tegra114_spi_probe, 401 }; 402