1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2016 4 * 5 * Michael Kurz, <michi.kurz@gmail.com> 6 * 7 * STM32 QSPI driver 8 */ 9 10 #include <common.h> 11 #include <clk.h> 12 #include <dm.h> 13 #include <errno.h> 14 #include <malloc.h> 15 #include <reset.h> 16 #include <spi.h> 17 #include <spi_flash.h> 18 #include <asm/io.h> 19 #include <asm/arch/stm32.h> 20 #include <linux/ioport.h> 21 22 struct stm32_qspi_regs { 23 u32 cr; /* 0x00 */ 24 u32 dcr; /* 0x04 */ 25 u32 sr; /* 0x08 */ 26 u32 fcr; /* 0x0C */ 27 u32 dlr; /* 0x10 */ 28 u32 ccr; /* 0x14 */ 29 u32 ar; /* 0x18 */ 30 u32 abr; /* 0x1C */ 31 u32 dr; /* 0x20 */ 32 u32 psmkr; /* 0x24 */ 33 u32 psmar; /* 0x28 */ 34 u32 pir; /* 0x2C */ 35 u32 lptr; /* 0x30 */ 36 }; 37 38 /* 39 * QUADSPI control register 40 */ 41 #define STM32_QSPI_CR_EN BIT(0) 42 #define STM32_QSPI_CR_ABORT BIT(1) 43 #define STM32_QSPI_CR_DMAEN BIT(2) 44 #define STM32_QSPI_CR_TCEN BIT(3) 45 #define STM32_QSPI_CR_SSHIFT BIT(4) 46 #define STM32_QSPI_CR_DFM BIT(6) 47 #define STM32_QSPI_CR_FSEL BIT(7) 48 #define STM32_QSPI_CR_FTHRES_MASK GENMASK(4, 0) 49 #define STM32_QSPI_CR_FTHRES_SHIFT (8) 50 #define STM32_QSPI_CR_TEIE BIT(16) 51 #define STM32_QSPI_CR_TCIE BIT(17) 52 #define STM32_QSPI_CR_FTIE BIT(18) 53 #define STM32_QSPI_CR_SMIE BIT(19) 54 #define STM32_QSPI_CR_TOIE BIT(20) 55 #define STM32_QSPI_CR_APMS BIT(22) 56 #define STM32_QSPI_CR_PMM BIT(23) 57 #define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0) 58 #define STM32_QSPI_CR_PRESCALER_SHIFT (24) 59 60 /* 61 * QUADSPI device configuration register 62 */ 63 #define STM32_QSPI_DCR_CKMODE BIT(0) 64 #define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0) 65 #define STM32_QSPI_DCR_CSHT_SHIFT (8) 66 #define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0) 67 #define STM32_QSPI_DCR_FSIZE_SHIFT (16) 68 69 /* 70 * QUADSPI status register 71 */ 72 #define STM32_QSPI_SR_TEF BIT(0) 73 #define STM32_QSPI_SR_TCF BIT(1) 74 #define STM32_QSPI_SR_FTF BIT(2) 75 #define STM32_QSPI_SR_SMF BIT(3) 76 #define STM32_QSPI_SR_TOF BIT(4) 77 #define STM32_QSPI_SR_BUSY BIT(5) 78 #define STM32_QSPI_SR_FLEVEL_MASK GENMASK(5, 0) 79 #define STM32_QSPI_SR_FLEVEL_SHIFT (8) 80 81 /* 82 * QUADSPI flag clear register 83 */ 84 #define STM32_QSPI_FCR_CTEF BIT(0) 85 #define STM32_QSPI_FCR_CTCF BIT(1) 86 #define STM32_QSPI_FCR_CSMF BIT(3) 87 #define STM32_QSPI_FCR_CTOF BIT(4) 88 89 /* 90 * QUADSPI communication configuration register 91 */ 92 #define STM32_QSPI_CCR_DDRM BIT(31) 93 #define STM32_QSPI_CCR_DHHC BIT(30) 94 #define STM32_QSPI_CCR_SIOO BIT(28) 95 #define STM32_QSPI_CCR_FMODE_SHIFT (26) 96 #define STM32_QSPI_CCR_DMODE_SHIFT (24) 97 #define STM32_QSPI_CCR_DCYC_SHIFT (18) 98 #define STM32_QSPI_CCR_DCYC_MASK GENMASK(4, 0) 99 #define STM32_QSPI_CCR_ABSIZE_SHIFT (16) 100 #define STM32_QSPI_CCR_ABMODE_SHIFT (14) 101 #define STM32_QSPI_CCR_ADSIZE_SHIFT (12) 102 #define STM32_QSPI_CCR_ADMODE_SHIFT (10) 103 #define STM32_QSPI_CCR_IMODE_SHIFT (8) 104 #define STM32_QSPI_CCR_INSTRUCTION_MASK GENMASK(7, 0) 105 106 enum STM32_QSPI_CCR_IMODE { 107 STM32_QSPI_CCR_IMODE_NONE = 0, 108 STM32_QSPI_CCR_IMODE_ONE_LINE = 1, 109 STM32_QSPI_CCR_IMODE_TWO_LINE = 2, 110 STM32_QSPI_CCR_IMODE_FOUR_LINE = 3, 111 }; 112 113 enum STM32_QSPI_CCR_ADMODE { 114 STM32_QSPI_CCR_ADMODE_NONE = 0, 115 STM32_QSPI_CCR_ADMODE_ONE_LINE = 1, 116 STM32_QSPI_CCR_ADMODE_TWO_LINE = 2, 117 STM32_QSPI_CCR_ADMODE_FOUR_LINE = 3, 118 }; 119 120 enum STM32_QSPI_CCR_ADSIZE { 121 STM32_QSPI_CCR_ADSIZE_8BIT = 0, 122 STM32_QSPI_CCR_ADSIZE_16BIT = 1, 123 STM32_QSPI_CCR_ADSIZE_24BIT = 2, 124 STM32_QSPI_CCR_ADSIZE_32BIT = 3, 125 }; 126 127 enum STM32_QSPI_CCR_ABMODE { 128 STM32_QSPI_CCR_ABMODE_NONE = 0, 129 STM32_QSPI_CCR_ABMODE_ONE_LINE = 1, 130 STM32_QSPI_CCR_ABMODE_TWO_LINE = 2, 131 STM32_QSPI_CCR_ABMODE_FOUR_LINE = 3, 132 }; 133 134 enum STM32_QSPI_CCR_ABSIZE { 135 STM32_QSPI_CCR_ABSIZE_8BIT = 0, 136 STM32_QSPI_CCR_ABSIZE_16BIT = 1, 137 STM32_QSPI_CCR_ABSIZE_24BIT = 2, 138 STM32_QSPI_CCR_ABSIZE_32BIT = 3, 139 }; 140 141 enum STM32_QSPI_CCR_DMODE { 142 STM32_QSPI_CCR_DMODE_NONE = 0, 143 STM32_QSPI_CCR_DMODE_ONE_LINE = 1, 144 STM32_QSPI_CCR_DMODE_TWO_LINE = 2, 145 STM32_QSPI_CCR_DMODE_FOUR_LINE = 3, 146 }; 147 148 enum STM32_QSPI_CCR_FMODE { 149 STM32_QSPI_CCR_IND_WRITE = 0, 150 STM32_QSPI_CCR_IND_READ = 1, 151 STM32_QSPI_CCR_AUTO_POLL = 2, 152 STM32_QSPI_CCR_MEM_MAP = 3, 153 }; 154 155 /* default SCK frequency, unit: HZ */ 156 #define STM32_QSPI_DEFAULT_SCK_FREQ 108000000 157 158 #define STM32_MAX_NORCHIP 2 159 160 struct stm32_qspi_platdata { 161 u32 base; 162 u32 memory_map; 163 u32 max_hz; 164 }; 165 166 struct stm32_qspi_priv { 167 struct stm32_qspi_regs *regs; 168 ulong clock_rate; 169 u32 max_hz; 170 u32 mode; 171 172 u32 command; 173 u32 address; 174 u32 dummycycles; 175 #define CMD_HAS_ADR BIT(24) 176 #define CMD_HAS_DUMMY BIT(25) 177 #define CMD_HAS_DATA BIT(26) 178 }; 179 180 static void _stm32_qspi_disable(struct stm32_qspi_priv *priv) 181 { 182 clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN); 183 } 184 185 static void _stm32_qspi_enable(struct stm32_qspi_priv *priv) 186 { 187 setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN); 188 } 189 190 static void _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv) 191 { 192 while (readl(&priv->regs->sr) & STM32_QSPI_SR_BUSY) 193 ; 194 } 195 196 static void _stm32_qspi_wait_for_complete(struct stm32_qspi_priv *priv) 197 { 198 while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_TCF)) 199 ; 200 } 201 202 static void _stm32_qspi_wait_for_ftf(struct stm32_qspi_priv *priv) 203 { 204 while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_FTF)) 205 ; 206 } 207 208 static void _stm32_qspi_set_flash_size(struct stm32_qspi_priv *priv, u32 size) 209 { 210 u32 fsize = fls(size) - 1; 211 212 clrsetbits_le32(&priv->regs->dcr, 213 STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT, 214 fsize << STM32_QSPI_DCR_FSIZE_SHIFT); 215 } 216 217 static void _stm32_qspi_set_cs(struct stm32_qspi_priv *priv, unsigned int cs) 218 { 219 clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL, 220 cs ? STM32_QSPI_CR_FSEL : 0); 221 } 222 223 static unsigned int _stm32_qspi_gen_ccr(struct stm32_qspi_priv *priv, u8 fmode) 224 { 225 unsigned int ccr_reg = 0; 226 u8 imode, admode, dmode; 227 u32 mode = priv->mode; 228 u32 cmd = (priv->command & STM32_QSPI_CCR_INSTRUCTION_MASK); 229 230 imode = STM32_QSPI_CCR_IMODE_ONE_LINE; 231 admode = STM32_QSPI_CCR_ADMODE_ONE_LINE; 232 dmode = STM32_QSPI_CCR_DMODE_ONE_LINE; 233 234 if ((priv->command & CMD_HAS_ADR) && (priv->command & CMD_HAS_DATA)) { 235 if (fmode == STM32_QSPI_CCR_IND_WRITE) { 236 if (mode & SPI_TX_QUAD) 237 dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE; 238 else if (mode & SPI_TX_DUAL) 239 dmode = STM32_QSPI_CCR_DMODE_TWO_LINE; 240 } else if ((fmode == STM32_QSPI_CCR_MEM_MAP) || 241 (fmode == STM32_QSPI_CCR_IND_READ)) { 242 if (mode & SPI_RX_QUAD) 243 dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE; 244 else if (mode & SPI_RX_DUAL) 245 dmode = STM32_QSPI_CCR_DMODE_TWO_LINE; 246 } 247 } 248 249 if (priv->command & CMD_HAS_DATA) 250 ccr_reg |= (dmode << STM32_QSPI_CCR_DMODE_SHIFT); 251 252 if (priv->command & CMD_HAS_DUMMY) 253 ccr_reg |= ((priv->dummycycles & STM32_QSPI_CCR_DCYC_MASK) 254 << STM32_QSPI_CCR_DCYC_SHIFT); 255 256 if (priv->command & CMD_HAS_ADR) { 257 ccr_reg |= (STM32_QSPI_CCR_ADSIZE_24BIT 258 << STM32_QSPI_CCR_ADSIZE_SHIFT); 259 ccr_reg |= (admode << STM32_QSPI_CCR_ADMODE_SHIFT); 260 } 261 262 ccr_reg |= (fmode << STM32_QSPI_CCR_FMODE_SHIFT); 263 ccr_reg |= (imode << STM32_QSPI_CCR_IMODE_SHIFT); 264 ccr_reg |= cmd; 265 266 return ccr_reg; 267 } 268 269 static void _stm32_qspi_enable_mmap(struct stm32_qspi_priv *priv, 270 struct spi_flash *flash) 271 { 272 unsigned int ccr_reg; 273 274 priv->command = flash->read_cmd | CMD_HAS_ADR | CMD_HAS_DATA 275 | CMD_HAS_DUMMY; 276 priv->dummycycles = flash->dummy_byte * 8; 277 278 ccr_reg = _stm32_qspi_gen_ccr(priv, STM32_QSPI_CCR_MEM_MAP); 279 280 _stm32_qspi_wait_for_not_busy(priv); 281 282 writel(ccr_reg, &priv->regs->ccr); 283 284 priv->dummycycles = 0; 285 } 286 287 static void _stm32_qspi_disable_mmap(struct stm32_qspi_priv *priv) 288 { 289 setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT); 290 } 291 292 static void _stm32_qspi_set_xfer_length(struct stm32_qspi_priv *priv, 293 u32 length) 294 { 295 writel(length - 1, &priv->regs->dlr); 296 } 297 298 static void _stm32_qspi_start_xfer(struct stm32_qspi_priv *priv, u32 cr_reg) 299 { 300 writel(cr_reg, &priv->regs->ccr); 301 302 if (priv->command & CMD_HAS_ADR) 303 writel(priv->address, &priv->regs->ar); 304 } 305 306 static int _stm32_qspi_xfer(struct stm32_qspi_priv *priv, 307 struct spi_flash *flash, unsigned int bitlen, 308 const u8 *dout, u8 *din, unsigned long flags) 309 { 310 unsigned int words = bitlen / 8; 311 u32 ccr_reg; 312 int i; 313 314 if (flags & SPI_XFER_MMAP) { 315 _stm32_qspi_enable_mmap(priv, flash); 316 return 0; 317 } else if (flags & SPI_XFER_MMAP_END) { 318 _stm32_qspi_disable_mmap(priv); 319 return 0; 320 } 321 322 if (bitlen == 0) 323 return -1; 324 325 if (bitlen % 8) { 326 debug("spi_xfer: Non byte aligned SPI transfer\n"); 327 return -1; 328 } 329 330 if (dout && din) { 331 debug("spi_xfer: QSPI cannot have data in and data out set\n"); 332 return -1; 333 } 334 335 if (!dout && (flags & SPI_XFER_BEGIN)) { 336 debug("spi_xfer: QSPI transfer must begin with command\n"); 337 return -1; 338 } 339 340 if (dout) { 341 if (flags & SPI_XFER_BEGIN) { 342 /* data is command */ 343 priv->command = dout[0] | CMD_HAS_DATA; 344 if (words >= 4) { 345 /* address is here too */ 346 priv->address = (dout[1] << 16) | 347 (dout[2] << 8) | dout[3]; 348 priv->command |= CMD_HAS_ADR; 349 } 350 351 if (words > 4) { 352 /* rest is dummy bytes */ 353 priv->dummycycles = (words - 4) * 8; 354 priv->command |= CMD_HAS_DUMMY; 355 } 356 357 if (flags & SPI_XFER_END) { 358 /* command without data */ 359 priv->command &= ~(CMD_HAS_DATA); 360 } 361 } 362 363 if (flags & SPI_XFER_END) { 364 ccr_reg = _stm32_qspi_gen_ccr(priv, 365 STM32_QSPI_CCR_IND_WRITE); 366 367 _stm32_qspi_wait_for_not_busy(priv); 368 369 if (priv->command & CMD_HAS_DATA) 370 _stm32_qspi_set_xfer_length(priv, words); 371 372 _stm32_qspi_start_xfer(priv, ccr_reg); 373 374 debug("%s: write: ccr:0x%08x adr:0x%08x\n", 375 __func__, priv->regs->ccr, priv->regs->ar); 376 377 if (priv->command & CMD_HAS_DATA) { 378 _stm32_qspi_wait_for_ftf(priv); 379 380 debug("%s: words:%d data:", __func__, words); 381 382 i = 0; 383 while (words > i) { 384 writeb(dout[i], &priv->regs->dr); 385 debug("%02x ", dout[i]); 386 i++; 387 } 388 debug("\n"); 389 390 _stm32_qspi_wait_for_complete(priv); 391 } else { 392 _stm32_qspi_wait_for_not_busy(priv); 393 } 394 } 395 } else if (din) { 396 ccr_reg = _stm32_qspi_gen_ccr(priv, STM32_QSPI_CCR_IND_READ); 397 398 _stm32_qspi_wait_for_not_busy(priv); 399 400 _stm32_qspi_set_xfer_length(priv, words); 401 402 _stm32_qspi_start_xfer(priv, ccr_reg); 403 404 debug("%s: read: ccr:0x%08x adr:0x%08x len:%d\n", __func__, 405 priv->regs->ccr, priv->regs->ar, priv->regs->dlr); 406 407 debug("%s: data:", __func__); 408 409 i = 0; 410 while (words > i) { 411 din[i] = readb(&priv->regs->dr); 412 debug("%02x ", din[i]); 413 i++; 414 } 415 debug("\n"); 416 } 417 418 return 0; 419 } 420 421 static int stm32_qspi_ofdata_to_platdata(struct udevice *bus) 422 { 423 struct resource res_regs, res_mem; 424 struct stm32_qspi_platdata *plat = bus->platdata; 425 int ret; 426 427 ret = dev_read_resource_byname(bus, "qspi", &res_regs); 428 if (ret) { 429 debug("Error: can't get regs base addresses(ret = %d)!\n", ret); 430 return -ENOMEM; 431 } 432 ret = dev_read_resource_byname(bus, "qspi_mm", &res_mem); 433 if (ret) { 434 debug("Error: can't get mmap base address(ret = %d)!\n", ret); 435 return -ENOMEM; 436 } 437 438 plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency", 439 STM32_QSPI_DEFAULT_SCK_FREQ); 440 441 plat->base = res_regs.start; 442 plat->memory_map = res_mem.start; 443 444 debug("%s: regs=<0x%x> mapped=<0x%x>, max-frequency=%d\n", 445 __func__, 446 plat->base, 447 plat->memory_map, 448 plat->max_hz 449 ); 450 451 return 0; 452 } 453 454 static int stm32_qspi_probe(struct udevice *bus) 455 { 456 struct stm32_qspi_platdata *plat = dev_get_platdata(bus); 457 struct stm32_qspi_priv *priv = dev_get_priv(bus); 458 struct dm_spi_bus *dm_spi_bus; 459 struct clk clk; 460 struct reset_ctl reset_ctl; 461 int ret; 462 463 dm_spi_bus = bus->uclass_priv; 464 465 dm_spi_bus->max_hz = plat->max_hz; 466 467 priv->regs = (struct stm32_qspi_regs *)(uintptr_t)plat->base; 468 469 priv->max_hz = plat->max_hz; 470 471 ret = clk_get_by_index(bus, 0, &clk); 472 if (ret < 0) 473 return ret; 474 475 ret = clk_enable(&clk); 476 477 if (ret) { 478 dev_err(bus, "failed to enable clock\n"); 479 return ret; 480 } 481 482 priv->clock_rate = clk_get_rate(&clk); 483 if (priv->clock_rate < 0) { 484 clk_disable(&clk); 485 return priv->clock_rate; 486 } 487 488 ret = reset_get_by_index(bus, 0, &reset_ctl); 489 if (ret) { 490 if (ret != -ENOENT) { 491 dev_err(bus, "failed to get reset\n"); 492 clk_disable(&clk); 493 return ret; 494 } 495 } else { 496 /* Reset QSPI controller */ 497 reset_assert(&reset_ctl); 498 udelay(2); 499 reset_deassert(&reset_ctl); 500 } 501 502 setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT); 503 504 return 0; 505 } 506 507 static int stm32_qspi_remove(struct udevice *bus) 508 { 509 return 0; 510 } 511 512 static int stm32_qspi_claim_bus(struct udevice *dev) 513 { 514 struct stm32_qspi_priv *priv; 515 struct udevice *bus; 516 struct spi_flash *flash; 517 struct dm_spi_slave_platdata *slave_plat; 518 519 bus = dev->parent; 520 priv = dev_get_priv(bus); 521 flash = dev_get_uclass_priv(dev); 522 slave_plat = dev_get_parent_platdata(dev); 523 524 if (slave_plat->cs >= STM32_MAX_NORCHIP) 525 return -ENODEV; 526 527 _stm32_qspi_set_cs(priv, slave_plat->cs); 528 529 _stm32_qspi_set_flash_size(priv, flash->size); 530 531 _stm32_qspi_enable(priv); 532 533 return 0; 534 } 535 536 static int stm32_qspi_release_bus(struct udevice *dev) 537 { 538 struct stm32_qspi_priv *priv; 539 struct udevice *bus; 540 541 bus = dev->parent; 542 priv = dev_get_priv(bus); 543 544 _stm32_qspi_disable(priv); 545 546 return 0; 547 } 548 549 static int stm32_qspi_xfer(struct udevice *dev, unsigned int bitlen, 550 const void *dout, void *din, unsigned long flags) 551 { 552 struct stm32_qspi_priv *priv; 553 struct udevice *bus; 554 struct spi_flash *flash; 555 556 bus = dev->parent; 557 priv = dev_get_priv(bus); 558 flash = dev_get_uclass_priv(dev); 559 560 return _stm32_qspi_xfer(priv, flash, bitlen, (const u8 *)dout, 561 (u8 *)din, flags); 562 } 563 564 static int stm32_qspi_set_speed(struct udevice *bus, uint speed) 565 { 566 struct stm32_qspi_platdata *plat = bus->platdata; 567 struct stm32_qspi_priv *priv = dev_get_priv(bus); 568 u32 qspi_clk = priv->clock_rate; 569 u32 prescaler = 255; 570 u32 csht; 571 572 if (speed > plat->max_hz) 573 speed = plat->max_hz; 574 575 if (speed > 0) { 576 prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1; 577 if (prescaler > 255) 578 prescaler = 255; 579 else if (prescaler < 0) 580 prescaler = 0; 581 } 582 583 csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000); 584 csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK; 585 586 _stm32_qspi_wait_for_not_busy(priv); 587 588 clrsetbits_le32(&priv->regs->cr, 589 STM32_QSPI_CR_PRESCALER_MASK << 590 STM32_QSPI_CR_PRESCALER_SHIFT, 591 prescaler << STM32_QSPI_CR_PRESCALER_SHIFT); 592 593 clrsetbits_le32(&priv->regs->dcr, 594 STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT, 595 csht << STM32_QSPI_DCR_CSHT_SHIFT); 596 597 debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, 598 (qspi_clk / (prescaler + 1))); 599 600 return 0; 601 } 602 603 static int stm32_qspi_set_mode(struct udevice *bus, uint mode) 604 { 605 struct stm32_qspi_priv *priv = dev_get_priv(bus); 606 607 _stm32_qspi_wait_for_not_busy(priv); 608 609 if ((mode & SPI_CPHA) && (mode & SPI_CPOL)) 610 setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE); 611 else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL)) 612 clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE); 613 else 614 return -ENODEV; 615 616 if (mode & SPI_CS_HIGH) 617 return -ENODEV; 618 619 if (mode & SPI_RX_QUAD) 620 priv->mode |= SPI_RX_QUAD; 621 else if (mode & SPI_RX_DUAL) 622 priv->mode |= SPI_RX_DUAL; 623 else 624 priv->mode &= ~(SPI_RX_QUAD | SPI_RX_DUAL); 625 626 if (mode & SPI_TX_QUAD) 627 priv->mode |= SPI_TX_QUAD; 628 else if (mode & SPI_TX_DUAL) 629 priv->mode |= SPI_TX_DUAL; 630 else 631 priv->mode &= ~(SPI_TX_QUAD | SPI_TX_DUAL); 632 633 debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode); 634 635 if (mode & SPI_RX_QUAD) 636 debug("quad, tx: "); 637 else if (mode & SPI_RX_DUAL) 638 debug("dual, tx: "); 639 else 640 debug("single, tx: "); 641 642 if (mode & SPI_TX_QUAD) 643 debug("quad\n"); 644 else if (mode & SPI_TX_DUAL) 645 debug("dual\n"); 646 else 647 debug("single\n"); 648 649 return 0; 650 } 651 652 static const struct dm_spi_ops stm32_qspi_ops = { 653 .claim_bus = stm32_qspi_claim_bus, 654 .release_bus = stm32_qspi_release_bus, 655 .xfer = stm32_qspi_xfer, 656 .set_speed = stm32_qspi_set_speed, 657 .set_mode = stm32_qspi_set_mode, 658 }; 659 660 static const struct udevice_id stm32_qspi_ids[] = { 661 { .compatible = "st,stm32-qspi" }, 662 { .compatible = "st,stm32f469-qspi" }, 663 { } 664 }; 665 666 U_BOOT_DRIVER(stm32_qspi) = { 667 .name = "stm32_qspi", 668 .id = UCLASS_SPI, 669 .of_match = stm32_qspi_ids, 670 .ops = &stm32_qspi_ops, 671 .ofdata_to_platdata = stm32_qspi_ofdata_to_platdata, 672 .platdata_auto_alloc_size = sizeof(struct stm32_qspi_platdata), 673 .priv_auto_alloc_size = sizeof(struct stm32_qspi_priv), 674 .probe = stm32_qspi_probe, 675 .remove = stm32_qspi_remove, 676 }; 677