1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Exceet Electronics GmbH 4 * Copyright (C) 2018 Bootlin 5 * 6 * Author: Boris Brezillon <boris.brezillon@bootlin.com> 7 */ 8 9 #ifndef __UBOOT__ 10 #include <linux/dmaengine.h> 11 #include <linux/pm_runtime.h> 12 #include "internals.h" 13 #else 14 #include <spi.h> 15 #include <spi-mem.h> 16 #endif 17 18 #ifndef __UBOOT__ 19 /** 20 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a 21 * memory operation 22 * @ctlr: the SPI controller requesting this dma_map() 23 * @op: the memory operation containing the buffer to map 24 * @sgt: a pointer to a non-initialized sg_table that will be filled by this 25 * function 26 * 27 * Some controllers might want to do DMA on the data buffer embedded in @op. 28 * This helper prepares everything for you and provides a ready-to-use 29 * sg_table. This function is not intended to be called from spi drivers. 30 * Only SPI controller drivers should use it. 31 * Note that the caller must ensure the memory region pointed by 32 * op->data.buf.{in,out} is DMA-able before calling this function. 33 * 34 * Return: 0 in case of success, a negative error code otherwise. 35 */ 36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 37 const struct spi_mem_op *op, 38 struct sg_table *sgt) 39 { 40 struct device *dmadev; 41 42 if (!op->data.nbytes) 43 return -EINVAL; 44 45 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 46 dmadev = ctlr->dma_tx->device->dev; 47 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 48 dmadev = ctlr->dma_rx->device->dev; 49 else 50 dmadev = ctlr->dev.parent; 51 52 if (!dmadev) 53 return -EINVAL; 54 55 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, 56 op->data.dir == SPI_MEM_DATA_IN ? 57 DMA_FROM_DEVICE : DMA_TO_DEVICE); 58 } 59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); 60 61 /** 62 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a 63 * memory operation 64 * @ctlr: the SPI controller requesting this dma_unmap() 65 * @op: the memory operation containing the buffer to unmap 66 * @sgt: a pointer to an sg_table previously initialized by 67 * spi_controller_dma_map_mem_op_data() 68 * 69 * Some controllers might want to do DMA on the data buffer embedded in @op. 70 * This helper prepares things so that the CPU can access the 71 * op->data.buf.{in,out} buffer again. 72 * 73 * This function is not intended to be called from SPI drivers. Only SPI 74 * controller drivers should use it. 75 * 76 * This function should be called after the DMA operation has finished and is 77 * only valid if the previous spi_controller_dma_map_mem_op_data() call 78 * returned 0. 79 * 80 * Return: 0 in case of success, a negative error code otherwise. 81 */ 82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 83 const struct spi_mem_op *op, 84 struct sg_table *sgt) 85 { 86 struct device *dmadev; 87 88 if (!op->data.nbytes) 89 return; 90 91 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) 92 dmadev = ctlr->dma_tx->device->dev; 93 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) 94 dmadev = ctlr->dma_rx->device->dev; 95 else 96 dmadev = ctlr->dev.parent; 97 98 spi_unmap_buf(ctlr, dmadev, sgt, 99 op->data.dir == SPI_MEM_DATA_IN ? 100 DMA_FROM_DEVICE : DMA_TO_DEVICE); 101 } 102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); 103 #endif /* __UBOOT__ */ 104 105 static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx) 106 { 107 u32 mode = slave->mode; 108 109 switch (buswidth) { 110 case 1: 111 return 0; 112 113 case 2: 114 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) || 115 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD)))) 116 return 0; 117 118 break; 119 120 case 4: 121 if ((tx && (mode & SPI_TX_QUAD)) || 122 (!tx && (mode & SPI_RX_QUAD))) 123 return 0; 124 125 break; 126 127 default: 128 break; 129 } 130 131 return -ENOTSUPP; 132 } 133 134 bool spi_mem_default_supports_op(struct spi_slave *slave, 135 const struct spi_mem_op *op) 136 { 137 if (spi_check_buswidth_req(slave, op->cmd.buswidth, true)) 138 return false; 139 140 if (op->addr.nbytes && 141 spi_check_buswidth_req(slave, op->addr.buswidth, true)) 142 return false; 143 144 if (op->dummy.nbytes && 145 spi_check_buswidth_req(slave, op->dummy.buswidth, true)) 146 return false; 147 148 if (op->data.nbytes && 149 spi_check_buswidth_req(slave, op->data.buswidth, 150 op->data.dir == SPI_MEM_DATA_OUT)) 151 return false; 152 153 return true; 154 } 155 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); 156 157 /** 158 * spi_mem_supports_op() - Check if a memory device and the controller it is 159 * connected to support a specific memory operation 160 * @slave: the SPI device 161 * @op: the memory operation to check 162 * 163 * Some controllers are only supporting Single or Dual IOs, others might only 164 * support specific opcodes, or it can even be that the controller and device 165 * both support Quad IOs but the hardware prevents you from using it because 166 * only 2 IO lines are connected. 167 * 168 * This function checks whether a specific operation is supported. 169 * 170 * Return: true if @op is supported, false otherwise. 171 */ 172 bool spi_mem_supports_op(struct spi_slave *slave, 173 const struct spi_mem_op *op) 174 { 175 struct udevice *bus = slave->dev->parent; 176 struct dm_spi_ops *ops = spi_get_ops(bus); 177 178 if (ops->mem_ops && ops->mem_ops->supports_op) 179 return ops->mem_ops->supports_op(slave, op); 180 181 return spi_mem_default_supports_op(slave, op); 182 } 183 EXPORT_SYMBOL_GPL(spi_mem_supports_op); 184 185 /** 186 * spi_mem_exec_op() - Execute a memory operation 187 * @slave: the SPI device 188 * @op: the memory operation to execute 189 * 190 * Executes a memory operation. 191 * 192 * This function first checks that @op is supported and then tries to execute 193 * it. 194 * 195 * Return: 0 in case of success, a negative error code otherwise. 196 */ 197 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) 198 { 199 struct udevice *bus = slave->dev->parent; 200 struct dm_spi_ops *ops = spi_get_ops(bus); 201 unsigned int pos = 0; 202 const u8 *tx_buf = NULL; 203 u8 *rx_buf = NULL; 204 u8 *op_buf; 205 int op_len; 206 u32 flag; 207 int ret; 208 int i; 209 210 if (!spi_mem_supports_op(slave, op)) 211 return -ENOTSUPP; 212 213 ret = spi_claim_bus(slave); 214 if (ret < 0) 215 return ret; 216 217 if (ops->mem_ops) { 218 #ifndef __UBOOT__ 219 /* 220 * Flush the message queue before executing our SPI memory 221 * operation to prevent preemption of regular SPI transfers. 222 */ 223 spi_flush_queue(ctlr); 224 225 if (ctlr->auto_runtime_pm) { 226 ret = pm_runtime_get_sync(ctlr->dev.parent); 227 if (ret < 0) { 228 dev_err(&ctlr->dev, 229 "Failed to power device: %d\n", 230 ret); 231 return ret; 232 } 233 } 234 235 mutex_lock(&ctlr->bus_lock_mutex); 236 mutex_lock(&ctlr->io_mutex); 237 #endif 238 ret = ops->mem_ops->exec_op(slave, op); 239 240 #ifndef __UBOOT__ 241 mutex_unlock(&ctlr->io_mutex); 242 mutex_unlock(&ctlr->bus_lock_mutex); 243 244 if (ctlr->auto_runtime_pm) 245 pm_runtime_put(ctlr->dev.parent); 246 #endif 247 248 /* 249 * Some controllers only optimize specific paths (typically the 250 * read path) and expect the core to use the regular SPI 251 * interface in other cases. 252 */ 253 if (!ret || ret != -ENOTSUPP) { 254 spi_release_bus(slave); 255 return ret; 256 } 257 } 258 259 #ifndef __UBOOT__ 260 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes + 261 op->dummy.nbytes; 262 263 /* 264 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so 265 * we're guaranteed that this buffer is DMA-able, as required by the 266 * SPI layer. 267 */ 268 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); 269 if (!tmpbuf) 270 return -ENOMEM; 271 272 spi_message_init(&msg); 273 274 tmpbuf[0] = op->cmd.opcode; 275 xfers[xferpos].tx_buf = tmpbuf; 276 xfers[xferpos].len = sizeof(op->cmd.opcode); 277 xfers[xferpos].tx_nbits = op->cmd.buswidth; 278 spi_message_add_tail(&xfers[xferpos], &msg); 279 xferpos++; 280 totalxferlen++; 281 282 if (op->addr.nbytes) { 283 int i; 284 285 for (i = 0; i < op->addr.nbytes; i++) 286 tmpbuf[i + 1] = op->addr.val >> 287 (8 * (op->addr.nbytes - i - 1)); 288 289 xfers[xferpos].tx_buf = tmpbuf + 1; 290 xfers[xferpos].len = op->addr.nbytes; 291 xfers[xferpos].tx_nbits = op->addr.buswidth; 292 spi_message_add_tail(&xfers[xferpos], &msg); 293 xferpos++; 294 totalxferlen += op->addr.nbytes; 295 } 296 297 if (op->dummy.nbytes) { 298 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); 299 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; 300 xfers[xferpos].len = op->dummy.nbytes; 301 xfers[xferpos].tx_nbits = op->dummy.buswidth; 302 spi_message_add_tail(&xfers[xferpos], &msg); 303 xferpos++; 304 totalxferlen += op->dummy.nbytes; 305 } 306 307 if (op->data.nbytes) { 308 if (op->data.dir == SPI_MEM_DATA_IN) { 309 xfers[xferpos].rx_buf = op->data.buf.in; 310 xfers[xferpos].rx_nbits = op->data.buswidth; 311 } else { 312 xfers[xferpos].tx_buf = op->data.buf.out; 313 xfers[xferpos].tx_nbits = op->data.buswidth; 314 } 315 316 xfers[xferpos].len = op->data.nbytes; 317 spi_message_add_tail(&xfers[xferpos], &msg); 318 xferpos++; 319 totalxferlen += op->data.nbytes; 320 } 321 322 ret = spi_sync(slave, &msg); 323 324 kfree(tmpbuf); 325 326 if (ret) 327 return ret; 328 329 if (msg.actual_length != totalxferlen) 330 return -EIO; 331 #else 332 333 if (op->data.nbytes) { 334 if (op->data.dir == SPI_MEM_DATA_IN) 335 rx_buf = op->data.buf.in; 336 else 337 tx_buf = op->data.buf.out; 338 } 339 340 op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes; 341 op_buf = calloc(1, op_len); 342 343 op_buf[pos++] = op->cmd.opcode; 344 345 if (op->addr.nbytes) { 346 for (i = 0; i < op->addr.nbytes; i++) 347 op_buf[pos + i] = op->addr.val >> 348 (8 * (op->addr.nbytes - i - 1)); 349 350 pos += op->addr.nbytes; 351 } 352 353 if (op->dummy.nbytes) 354 memset(op_buf + pos, 0xff, op->dummy.nbytes); 355 356 /* 1st transfer: opcode + address + dummy cycles */ 357 flag = SPI_XFER_BEGIN; 358 /* Make sure to set END bit if no tx or rx data messages follow */ 359 if (!tx_buf && !rx_buf) 360 flag |= SPI_XFER_END; 361 362 ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag); 363 if (ret) 364 return ret; 365 366 /* 2nd transfer: rx or tx data path */ 367 if (tx_buf || rx_buf) { 368 ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf, 369 rx_buf, SPI_XFER_END); 370 if (ret) 371 return ret; 372 } 373 374 spi_release_bus(slave); 375 376 for (i = 0; i < pos; i++) 377 debug("%02x ", op_buf[i]); 378 debug("| [%dB %s] ", 379 tx_buf || rx_buf ? op->data.nbytes : 0, 380 tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-"); 381 for (i = 0; i < op->data.nbytes; i++) 382 debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]); 383 debug("[ret %d]\n", ret); 384 385 free(op_buf); 386 387 if (ret < 0) 388 return ret; 389 #endif /* __UBOOT__ */ 390 391 return 0; 392 } 393 EXPORT_SYMBOL_GPL(spi_mem_exec_op); 394 395 /** 396 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to 397 * match controller limitations 398 * @slave: the SPI device 399 * @op: the operation to adjust 400 * 401 * Some controllers have FIFO limitations and must split a data transfer 402 * operation into multiple ones, others require a specific alignment for 403 * optimized accesses. This function allows SPI mem drivers to split a single 404 * operation into multiple sub-operations when required. 405 * 406 * Return: a negative error code if the controller can't properly adjust @op, 407 * 0 otherwise. Note that @op->data.nbytes will be updated if @op 408 * can't be handled in a single step. 409 */ 410 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) 411 { 412 struct udevice *bus = slave->dev->parent; 413 struct dm_spi_ops *ops = spi_get_ops(bus); 414 415 if (ops->mem_ops && ops->mem_ops->adjust_op_size) 416 return ops->mem_ops->adjust_op_size(slave, op); 417 418 if (!ops->mem_ops || !ops->mem_ops->exec_op) { 419 unsigned int len; 420 421 len = sizeof(op->cmd.opcode) + op->addr.nbytes + 422 op->dummy.nbytes; 423 if (slave->max_write_size && len > slave->max_write_size) 424 return -EINVAL; 425 426 if (op->data.dir == SPI_MEM_DATA_IN && slave->max_read_size) 427 op->data.nbytes = min(op->data.nbytes, 428 slave->max_read_size); 429 else if (slave->max_write_size) 430 op->data.nbytes = min(op->data.nbytes, 431 slave->max_write_size - len); 432 433 if (!op->data.nbytes) 434 return -EINVAL; 435 } 436 437 return 0; 438 } 439 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); 440 441 #ifndef __UBOOT__ 442 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) 443 { 444 return container_of(drv, struct spi_mem_driver, spidrv.driver); 445 } 446 447 static int spi_mem_probe(struct spi_device *spi) 448 { 449 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 450 struct spi_mem *mem; 451 452 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); 453 if (!mem) 454 return -ENOMEM; 455 456 mem->spi = spi; 457 spi_set_drvdata(spi, mem); 458 459 return memdrv->probe(mem); 460 } 461 462 static int spi_mem_remove(struct spi_device *spi) 463 { 464 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 465 struct spi_mem *mem = spi_get_drvdata(spi); 466 467 if (memdrv->remove) 468 return memdrv->remove(mem); 469 470 return 0; 471 } 472 473 static void spi_mem_shutdown(struct spi_device *spi) 474 { 475 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); 476 struct spi_mem *mem = spi_get_drvdata(spi); 477 478 if (memdrv->shutdown) 479 memdrv->shutdown(mem); 480 } 481 482 /** 483 * spi_mem_driver_register_with_owner() - Register a SPI memory driver 484 * @memdrv: the SPI memory driver to register 485 * @owner: the owner of this driver 486 * 487 * Registers a SPI memory driver. 488 * 489 * Return: 0 in case of success, a negative error core otherwise. 490 */ 491 492 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, 493 struct module *owner) 494 { 495 memdrv->spidrv.probe = spi_mem_probe; 496 memdrv->spidrv.remove = spi_mem_remove; 497 memdrv->spidrv.shutdown = spi_mem_shutdown; 498 499 return __spi_register_driver(owner, &memdrv->spidrv); 500 } 501 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); 502 503 /** 504 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver 505 * @memdrv: the SPI memory driver to unregister 506 * 507 * Unregisters a SPI memory driver. 508 */ 509 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) 510 { 511 spi_unregister_driver(&memdrv->spidrv); 512 } 513 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); 514 #endif /* __UBOOT__ */ 515