xref: /openbmc/u-boot/drivers/spi/spi-mem.c (revision 872cfa20cd694fdbfa76abddd3cd00b05ad5355b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 
9 #ifndef __UBOOT__
10 #include <linux/dmaengine.h>
11 #include <linux/pm_runtime.h>
12 #include "internals.h"
13 #else
14 #include <spi.h>
15 #include <spi-mem.h>
16 #endif
17 
18 #ifndef __UBOOT__
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 #endif /* __UBOOT__ */
104 
105 static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
106 {
107 	u32 mode = slave->mode;
108 
109 	switch (buswidth) {
110 	case 1:
111 		return 0;
112 
113 	case 2:
114 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
115 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
116 			return 0;
117 
118 		break;
119 
120 	case 4:
121 		if ((tx && (mode & SPI_TX_QUAD)) ||
122 		    (!tx && (mode & SPI_RX_QUAD)))
123 			return 0;
124 
125 		break;
126 
127 	default:
128 		break;
129 	}
130 
131 	return -ENOTSUPP;
132 }
133 
134 bool spi_mem_default_supports_op(struct spi_slave *slave,
135 				 const struct spi_mem_op *op)
136 {
137 	if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
138 		return false;
139 
140 	if (op->addr.nbytes &&
141 	    spi_check_buswidth_req(slave, op->addr.buswidth, true))
142 		return false;
143 
144 	if (op->dummy.nbytes &&
145 	    spi_check_buswidth_req(slave, op->dummy.buswidth, true))
146 		return false;
147 
148 	if (op->data.nbytes &&
149 	    spi_check_buswidth_req(slave, op->data.buswidth,
150 				   op->data.dir == SPI_MEM_DATA_OUT))
151 		return false;
152 
153 	return true;
154 }
155 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
156 
157 /**
158  * spi_mem_supports_op() - Check if a memory device and the controller it is
159  *			   connected to support a specific memory operation
160  * @slave: the SPI device
161  * @op: the memory operation to check
162  *
163  * Some controllers are only supporting Single or Dual IOs, others might only
164  * support specific opcodes, or it can even be that the controller and device
165  * both support Quad IOs but the hardware prevents you from using it because
166  * only 2 IO lines are connected.
167  *
168  * This function checks whether a specific operation is supported.
169  *
170  * Return: true if @op is supported, false otherwise.
171  */
172 bool spi_mem_supports_op(struct spi_slave *slave,
173 			 const struct spi_mem_op *op)
174 {
175 	struct udevice *bus = slave->dev->parent;
176 	struct dm_spi_ops *ops = spi_get_ops(bus);
177 
178 	if (ops->mem_ops && ops->mem_ops->supports_op)
179 		return ops->mem_ops->supports_op(slave, op);
180 
181 	return spi_mem_default_supports_op(slave, op);
182 }
183 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
184 
185 /**
186  * spi_mem_exec_op() - Execute a memory operation
187  * @slave: the SPI device
188  * @op: the memory operation to execute
189  *
190  * Executes a memory operation.
191  *
192  * This function first checks that @op is supported and then tries to execute
193  * it.
194  *
195  * Return: 0 in case of success, a negative error code otherwise.
196  */
197 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
198 {
199 	struct udevice *bus = slave->dev->parent;
200 	struct dm_spi_ops *ops = spi_get_ops(bus);
201 	unsigned int pos = 0;
202 	const u8 *tx_buf = NULL;
203 	u8 *rx_buf = NULL;
204 	u8 *op_buf;
205 	int op_len;
206 	u32 flag;
207 	int ret;
208 	int i;
209 
210 	if (!spi_mem_supports_op(slave, op))
211 		return -ENOTSUPP;
212 
213 	ret = spi_claim_bus(slave);
214 	if (ret < 0)
215 		return ret;
216 
217 	if (ops->mem_ops) {
218 #ifndef __UBOOT__
219 		/*
220 		 * Flush the message queue before executing our SPI memory
221 		 * operation to prevent preemption of regular SPI transfers.
222 		 */
223 		spi_flush_queue(ctlr);
224 
225 		if (ctlr->auto_runtime_pm) {
226 			ret = pm_runtime_get_sync(ctlr->dev.parent);
227 			if (ret < 0) {
228 				dev_err(&ctlr->dev,
229 					"Failed to power device: %d\n",
230 					ret);
231 				return ret;
232 			}
233 		}
234 
235 		mutex_lock(&ctlr->bus_lock_mutex);
236 		mutex_lock(&ctlr->io_mutex);
237 #endif
238 		ret = ops->mem_ops->exec_op(slave, op);
239 
240 #ifndef __UBOOT__
241 		mutex_unlock(&ctlr->io_mutex);
242 		mutex_unlock(&ctlr->bus_lock_mutex);
243 
244 		if (ctlr->auto_runtime_pm)
245 			pm_runtime_put(ctlr->dev.parent);
246 #endif
247 
248 		/*
249 		 * Some controllers only optimize specific paths (typically the
250 		 * read path) and expect the core to use the regular SPI
251 		 * interface in other cases.
252 		 */
253 		if (!ret || ret != -ENOTSUPP) {
254 			spi_release_bus(slave);
255 			return ret;
256 		}
257 	}
258 
259 #ifndef __UBOOT__
260 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
261 		     op->dummy.nbytes;
262 
263 	/*
264 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
265 	 * we're guaranteed that this buffer is DMA-able, as required by the
266 	 * SPI layer.
267 	 */
268 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
269 	if (!tmpbuf)
270 		return -ENOMEM;
271 
272 	spi_message_init(&msg);
273 
274 	tmpbuf[0] = op->cmd.opcode;
275 	xfers[xferpos].tx_buf = tmpbuf;
276 	xfers[xferpos].len = sizeof(op->cmd.opcode);
277 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
278 	spi_message_add_tail(&xfers[xferpos], &msg);
279 	xferpos++;
280 	totalxferlen++;
281 
282 	if (op->addr.nbytes) {
283 		int i;
284 
285 		for (i = 0; i < op->addr.nbytes; i++)
286 			tmpbuf[i + 1] = op->addr.val >>
287 					(8 * (op->addr.nbytes - i - 1));
288 
289 		xfers[xferpos].tx_buf = tmpbuf + 1;
290 		xfers[xferpos].len = op->addr.nbytes;
291 		xfers[xferpos].tx_nbits = op->addr.buswidth;
292 		spi_message_add_tail(&xfers[xferpos], &msg);
293 		xferpos++;
294 		totalxferlen += op->addr.nbytes;
295 	}
296 
297 	if (op->dummy.nbytes) {
298 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
299 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
300 		xfers[xferpos].len = op->dummy.nbytes;
301 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
302 		spi_message_add_tail(&xfers[xferpos], &msg);
303 		xferpos++;
304 		totalxferlen += op->dummy.nbytes;
305 	}
306 
307 	if (op->data.nbytes) {
308 		if (op->data.dir == SPI_MEM_DATA_IN) {
309 			xfers[xferpos].rx_buf = op->data.buf.in;
310 			xfers[xferpos].rx_nbits = op->data.buswidth;
311 		} else {
312 			xfers[xferpos].tx_buf = op->data.buf.out;
313 			xfers[xferpos].tx_nbits = op->data.buswidth;
314 		}
315 
316 		xfers[xferpos].len = op->data.nbytes;
317 		spi_message_add_tail(&xfers[xferpos], &msg);
318 		xferpos++;
319 		totalxferlen += op->data.nbytes;
320 	}
321 
322 	ret = spi_sync(slave, &msg);
323 
324 	kfree(tmpbuf);
325 
326 	if (ret)
327 		return ret;
328 
329 	if (msg.actual_length != totalxferlen)
330 		return -EIO;
331 #else
332 
333 	if (op->data.nbytes) {
334 		if (op->data.dir == SPI_MEM_DATA_IN)
335 			rx_buf = op->data.buf.in;
336 		else
337 			tx_buf = op->data.buf.out;
338 	}
339 
340 	op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
341 	op_buf = calloc(1, op_len);
342 
343 	op_buf[pos++] = op->cmd.opcode;
344 
345 	if (op->addr.nbytes) {
346 		for (i = 0; i < op->addr.nbytes; i++)
347 			op_buf[pos + i] = op->addr.val >>
348 				(8 * (op->addr.nbytes - i - 1));
349 
350 		pos += op->addr.nbytes;
351 	}
352 
353 	if (op->dummy.nbytes)
354 		memset(op_buf + pos, 0xff, op->dummy.nbytes);
355 
356 	/* 1st transfer: opcode + address + dummy cycles */
357 	flag = SPI_XFER_BEGIN;
358 	/* Make sure to set END bit if no tx or rx data messages follow */
359 	if (!tx_buf && !rx_buf)
360 		flag |= SPI_XFER_END;
361 
362 	ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
363 	if (ret)
364 		return ret;
365 
366 	/* 2nd transfer: rx or tx data path */
367 	if (tx_buf || rx_buf) {
368 		ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
369 			       rx_buf, SPI_XFER_END);
370 		if (ret)
371 			return ret;
372 	}
373 
374 	spi_release_bus(slave);
375 
376 	for (i = 0; i < pos; i++)
377 		debug("%02x ", op_buf[i]);
378 	debug("| [%dB %s] ",
379 	      tx_buf || rx_buf ? op->data.nbytes : 0,
380 	      tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
381 	for (i = 0; i < op->data.nbytes; i++)
382 		debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
383 	debug("[ret %d]\n", ret);
384 
385 	free(op_buf);
386 
387 	if (ret < 0)
388 		return ret;
389 #endif /* __UBOOT__ */
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
394 
395 /**
396  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
397  *				 match controller limitations
398  * @slave: the SPI device
399  * @op: the operation to adjust
400  *
401  * Some controllers have FIFO limitations and must split a data transfer
402  * operation into multiple ones, others require a specific alignment for
403  * optimized accesses. This function allows SPI mem drivers to split a single
404  * operation into multiple sub-operations when required.
405  *
406  * Return: a negative error code if the controller can't properly adjust @op,
407  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
408  *	   can't be handled in a single step.
409  */
410 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
411 {
412 	struct udevice *bus = slave->dev->parent;
413 	struct dm_spi_ops *ops = spi_get_ops(bus);
414 
415 	if (ops->mem_ops && ops->mem_ops->adjust_op_size)
416 		return ops->mem_ops->adjust_op_size(slave, op);
417 
418 	if (!ops->mem_ops || !ops->mem_ops->exec_op) {
419 		unsigned int len;
420 
421 		len = sizeof(op->cmd.opcode) + op->addr.nbytes +
422 			op->dummy.nbytes;
423 		if (slave->max_write_size && len > slave->max_write_size)
424 			return -EINVAL;
425 
426 		if (op->data.dir == SPI_MEM_DATA_IN && slave->max_read_size)
427 			op->data.nbytes = min(op->data.nbytes,
428 					      slave->max_read_size);
429 		else if (slave->max_write_size)
430 			op->data.nbytes = min(op->data.nbytes,
431 					      slave->max_write_size - len);
432 
433 		if (!op->data.nbytes)
434 			return -EINVAL;
435 	}
436 
437 	return 0;
438 }
439 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
440 
441 #ifndef __UBOOT__
442 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
443 {
444 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
445 }
446 
447 static int spi_mem_probe(struct spi_device *spi)
448 {
449 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
450 	struct spi_mem *mem;
451 
452 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
453 	if (!mem)
454 		return -ENOMEM;
455 
456 	mem->spi = spi;
457 	spi_set_drvdata(spi, mem);
458 
459 	return memdrv->probe(mem);
460 }
461 
462 static int spi_mem_remove(struct spi_device *spi)
463 {
464 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
465 	struct spi_mem *mem = spi_get_drvdata(spi);
466 
467 	if (memdrv->remove)
468 		return memdrv->remove(mem);
469 
470 	return 0;
471 }
472 
473 static void spi_mem_shutdown(struct spi_device *spi)
474 {
475 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
476 	struct spi_mem *mem = spi_get_drvdata(spi);
477 
478 	if (memdrv->shutdown)
479 		memdrv->shutdown(mem);
480 }
481 
482 /**
483  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
484  * @memdrv: the SPI memory driver to register
485  * @owner: the owner of this driver
486  *
487  * Registers a SPI memory driver.
488  *
489  * Return: 0 in case of success, a negative error core otherwise.
490  */
491 
492 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
493 				       struct module *owner)
494 {
495 	memdrv->spidrv.probe = spi_mem_probe;
496 	memdrv->spidrv.remove = spi_mem_remove;
497 	memdrv->spidrv.shutdown = spi_mem_shutdown;
498 
499 	return __spi_register_driver(owner, &memdrv->spidrv);
500 }
501 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
502 
503 /**
504  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
505  * @memdrv: the SPI memory driver to unregister
506  *
507  * Unregisters a SPI memory driver.
508  */
509 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
510 {
511 	spi_unregister_driver(&memdrv->spidrv);
512 }
513 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
514 #endif /* __UBOOT__ */
515