xref: /openbmc/u-boot/drivers/spi/spi-mem.c (revision 0f347a0096ad0c1e56d1b18b7eb60731d40d49c2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 
9 #ifndef __UBOOT__
10 #include <linux/dmaengine.h>
11 #include <linux/pm_runtime.h>
12 #include "internals.h"
13 #else
14 #include <spi.h>
15 #include <spi-mem.h>
16 #endif
17 
18 #ifndef __UBOOT__
19 /**
20  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
21  *					  memory operation
22  * @ctlr: the SPI controller requesting this dma_map()
23  * @op: the memory operation containing the buffer to map
24  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
25  *	 function
26  *
27  * Some controllers might want to do DMA on the data buffer embedded in @op.
28  * This helper prepares everything for you and provides a ready-to-use
29  * sg_table. This function is not intended to be called from spi drivers.
30  * Only SPI controller drivers should use it.
31  * Note that the caller must ensure the memory region pointed by
32  * op->data.buf.{in,out} is DMA-able before calling this function.
33  *
34  * Return: 0 in case of success, a negative error code otherwise.
35  */
36 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
37 				       const struct spi_mem_op *op,
38 				       struct sg_table *sgt)
39 {
40 	struct device *dmadev;
41 
42 	if (!op->data.nbytes)
43 		return -EINVAL;
44 
45 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
46 		dmadev = ctlr->dma_tx->device->dev;
47 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
48 		dmadev = ctlr->dma_rx->device->dev;
49 	else
50 		dmadev = ctlr->dev.parent;
51 
52 	if (!dmadev)
53 		return -EINVAL;
54 
55 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
56 			   op->data.dir == SPI_MEM_DATA_IN ?
57 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
58 }
59 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
60 
61 /**
62  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
63  *					    memory operation
64  * @ctlr: the SPI controller requesting this dma_unmap()
65  * @op: the memory operation containing the buffer to unmap
66  * @sgt: a pointer to an sg_table previously initialized by
67  *	 spi_controller_dma_map_mem_op_data()
68  *
69  * Some controllers might want to do DMA on the data buffer embedded in @op.
70  * This helper prepares things so that the CPU can access the
71  * op->data.buf.{in,out} buffer again.
72  *
73  * This function is not intended to be called from SPI drivers. Only SPI
74  * controller drivers should use it.
75  *
76  * This function should be called after the DMA operation has finished and is
77  * only valid if the previous spi_controller_dma_map_mem_op_data() call
78  * returned 0.
79  *
80  * Return: 0 in case of success, a negative error code otherwise.
81  */
82 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
83 					  const struct spi_mem_op *op,
84 					  struct sg_table *sgt)
85 {
86 	struct device *dmadev;
87 
88 	if (!op->data.nbytes)
89 		return;
90 
91 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
92 		dmadev = ctlr->dma_tx->device->dev;
93 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
94 		dmadev = ctlr->dma_rx->device->dev;
95 	else
96 		dmadev = ctlr->dev.parent;
97 
98 	spi_unmap_buf(ctlr, dmadev, sgt,
99 		      op->data.dir == SPI_MEM_DATA_IN ?
100 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101 }
102 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103 #endif /* __UBOOT__ */
104 
105 static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
106 {
107 	u32 mode = slave->mode;
108 
109 	switch (buswidth) {
110 	case 1:
111 		return 0;
112 
113 	case 2:
114 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
115 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
116 			return 0;
117 
118 		break;
119 
120 	case 4:
121 		if ((tx && (mode & SPI_TX_QUAD)) ||
122 		    (!tx && (mode & SPI_RX_QUAD)))
123 			return 0;
124 
125 		break;
126 
127 	default:
128 		break;
129 	}
130 
131 	return -ENOTSUPP;
132 }
133 
134 bool spi_mem_default_supports_op(struct spi_slave *slave,
135 				 const struct spi_mem_op *op)
136 {
137 	if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
138 		return false;
139 
140 	if (op->addr.nbytes &&
141 	    spi_check_buswidth_req(slave, op->addr.buswidth, true))
142 		return false;
143 
144 	if (op->dummy.nbytes &&
145 	    spi_check_buswidth_req(slave, op->dummy.buswidth, true))
146 		return false;
147 
148 	if (op->data.nbytes &&
149 	    spi_check_buswidth_req(slave, op->data.buswidth,
150 				   op->data.dir == SPI_MEM_DATA_OUT))
151 		return false;
152 
153 	return true;
154 }
155 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
156 
157 /**
158  * spi_mem_supports_op() - Check if a memory device and the controller it is
159  *			   connected to support a specific memory operation
160  * @slave: the SPI device
161  * @op: the memory operation to check
162  *
163  * Some controllers are only supporting Single or Dual IOs, others might only
164  * support specific opcodes, or it can even be that the controller and device
165  * both support Quad IOs but the hardware prevents you from using it because
166  * only 2 IO lines are connected.
167  *
168  * This function checks whether a specific operation is supported.
169  *
170  * Return: true if @op is supported, false otherwise.
171  */
172 bool spi_mem_supports_op(struct spi_slave *slave,
173 			 const struct spi_mem_op *op)
174 {
175 	struct udevice *bus = slave->dev->parent;
176 	struct dm_spi_ops *ops = spi_get_ops(bus);
177 
178 	if (ops->mem_ops && ops->mem_ops->supports_op)
179 		return ops->mem_ops->supports_op(slave, op);
180 
181 	return spi_mem_default_supports_op(slave, op);
182 }
183 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
184 
185 /**
186  * spi_mem_exec_op() - Execute a memory operation
187  * @slave: the SPI device
188  * @op: the memory operation to execute
189  *
190  * Executes a memory operation.
191  *
192  * This function first checks that @op is supported and then tries to execute
193  * it.
194  *
195  * Return: 0 in case of success, a negative error code otherwise.
196  */
197 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
198 {
199 	struct udevice *bus = slave->dev->parent;
200 	struct dm_spi_ops *ops = spi_get_ops(bus);
201 	unsigned int pos = 0;
202 	const u8 *tx_buf = NULL;
203 	u8 *rx_buf = NULL;
204 	u8 *op_buf;
205 	int op_len;
206 	u32 flag;
207 	int ret;
208 	int i;
209 
210 	if (!spi_mem_supports_op(slave, op))
211 		return -ENOTSUPP;
212 
213 	if (ops->mem_ops) {
214 #ifndef __UBOOT__
215 		/*
216 		 * Flush the message queue before executing our SPI memory
217 		 * operation to prevent preemption of regular SPI transfers.
218 		 */
219 		spi_flush_queue(ctlr);
220 
221 		if (ctlr->auto_runtime_pm) {
222 			ret = pm_runtime_get_sync(ctlr->dev.parent);
223 			if (ret < 0) {
224 				dev_err(&ctlr->dev,
225 					"Failed to power device: %d\n",
226 					ret);
227 				return ret;
228 			}
229 		}
230 
231 		mutex_lock(&ctlr->bus_lock_mutex);
232 		mutex_lock(&ctlr->io_mutex);
233 #endif
234 		ret = ops->mem_ops->exec_op(slave, op);
235 #ifndef __UBOOT__
236 		mutex_unlock(&ctlr->io_mutex);
237 		mutex_unlock(&ctlr->bus_lock_mutex);
238 
239 		if (ctlr->auto_runtime_pm)
240 			pm_runtime_put(ctlr->dev.parent);
241 #endif
242 
243 		/*
244 		 * Some controllers only optimize specific paths (typically the
245 		 * read path) and expect the core to use the regular SPI
246 		 * interface in other cases.
247 		 */
248 		if (!ret || ret != -ENOTSUPP)
249 			return ret;
250 	}
251 
252 #ifndef __UBOOT__
253 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
254 		     op->dummy.nbytes;
255 
256 	/*
257 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
258 	 * we're guaranteed that this buffer is DMA-able, as required by the
259 	 * SPI layer.
260 	 */
261 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
262 	if (!tmpbuf)
263 		return -ENOMEM;
264 
265 	spi_message_init(&msg);
266 
267 	tmpbuf[0] = op->cmd.opcode;
268 	xfers[xferpos].tx_buf = tmpbuf;
269 	xfers[xferpos].len = sizeof(op->cmd.opcode);
270 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
271 	spi_message_add_tail(&xfers[xferpos], &msg);
272 	xferpos++;
273 	totalxferlen++;
274 
275 	if (op->addr.nbytes) {
276 		int i;
277 
278 		for (i = 0; i < op->addr.nbytes; i++)
279 			tmpbuf[i + 1] = op->addr.val >>
280 					(8 * (op->addr.nbytes - i - 1));
281 
282 		xfers[xferpos].tx_buf = tmpbuf + 1;
283 		xfers[xferpos].len = op->addr.nbytes;
284 		xfers[xferpos].tx_nbits = op->addr.buswidth;
285 		spi_message_add_tail(&xfers[xferpos], &msg);
286 		xferpos++;
287 		totalxferlen += op->addr.nbytes;
288 	}
289 
290 	if (op->dummy.nbytes) {
291 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
292 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
293 		xfers[xferpos].len = op->dummy.nbytes;
294 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
295 		spi_message_add_tail(&xfers[xferpos], &msg);
296 		xferpos++;
297 		totalxferlen += op->dummy.nbytes;
298 	}
299 
300 	if (op->data.nbytes) {
301 		if (op->data.dir == SPI_MEM_DATA_IN) {
302 			xfers[xferpos].rx_buf = op->data.buf.in;
303 			xfers[xferpos].rx_nbits = op->data.buswidth;
304 		} else {
305 			xfers[xferpos].tx_buf = op->data.buf.out;
306 			xfers[xferpos].tx_nbits = op->data.buswidth;
307 		}
308 
309 		xfers[xferpos].len = op->data.nbytes;
310 		spi_message_add_tail(&xfers[xferpos], &msg);
311 		xferpos++;
312 		totalxferlen += op->data.nbytes;
313 	}
314 
315 	ret = spi_sync(slave, &msg);
316 
317 	kfree(tmpbuf);
318 
319 	if (ret)
320 		return ret;
321 
322 	if (msg.actual_length != totalxferlen)
323 		return -EIO;
324 #else
325 
326 	/* U-Boot does not support parallel SPI data lanes */
327 	if ((op->cmd.buswidth != 1) ||
328 	    (op->addr.nbytes && op->addr.buswidth != 1) ||
329 	    (op->dummy.nbytes && op->dummy.buswidth != 1) ||
330 	    (op->data.nbytes && op->data.buswidth != 1)) {
331 		printf("Dual/Quad raw SPI transfers not supported\n");
332 		return -ENOTSUPP;
333 	}
334 
335 	if (op->data.nbytes) {
336 		if (op->data.dir == SPI_MEM_DATA_IN)
337 			rx_buf = op->data.buf.in;
338 		else
339 			tx_buf = op->data.buf.out;
340 	}
341 
342 	op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
343 	op_buf = calloc(1, op_len);
344 
345 	ret = spi_claim_bus(slave);
346 	if (ret < 0)
347 		return ret;
348 
349 	op_buf[pos++] = op->cmd.opcode;
350 
351 	if (op->addr.nbytes) {
352 		for (i = 0; i < op->addr.nbytes; i++)
353 			op_buf[pos + i] = op->addr.val >>
354 				(8 * (op->addr.nbytes - i - 1));
355 
356 		pos += op->addr.nbytes;
357 	}
358 
359 	if (op->dummy.nbytes)
360 		memset(op_buf + pos, 0xff, op->dummy.nbytes);
361 
362 	/* 1st transfer: opcode + address + dummy cycles */
363 	flag = SPI_XFER_BEGIN;
364 	/* Make sure to set END bit if no tx or rx data messages follow */
365 	if (!tx_buf && !rx_buf)
366 		flag |= SPI_XFER_END;
367 
368 	ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
369 	if (ret)
370 		return ret;
371 
372 	/* 2nd transfer: rx or tx data path */
373 	if (tx_buf || rx_buf) {
374 		ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
375 			       rx_buf, SPI_XFER_END);
376 		if (ret)
377 			return ret;
378 	}
379 
380 	spi_release_bus(slave);
381 
382 	for (i = 0; i < pos; i++)
383 		debug("%02x ", op_buf[i]);
384 	debug("| [%dB %s] ",
385 	      tx_buf || rx_buf ? op->data.nbytes : 0,
386 	      tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
387 	for (i = 0; i < op->data.nbytes; i++)
388 		debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
389 	debug("[ret %d]\n", ret);
390 
391 	free(op_buf);
392 
393 	if (ret < 0)
394 		return ret;
395 #endif /* __UBOOT__ */
396 
397 	return 0;
398 }
399 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
400 
401 /**
402  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
403  *				 match controller limitations
404  * @slave: the SPI device
405  * @op: the operation to adjust
406  *
407  * Some controllers have FIFO limitations and must split a data transfer
408  * operation into multiple ones, others require a specific alignment for
409  * optimized accesses. This function allows SPI mem drivers to split a single
410  * operation into multiple sub-operations when required.
411  *
412  * Return: a negative error code if the controller can't properly adjust @op,
413  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
414  *	   can't be handled in a single step.
415  */
416 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
417 {
418 	struct udevice *bus = slave->dev->parent;
419 	struct dm_spi_ops *ops = spi_get_ops(bus);
420 
421 	if (ops->mem_ops && ops->mem_ops->adjust_op_size)
422 		return ops->mem_ops->adjust_op_size(slave, op);
423 
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
427 
428 #ifndef __UBOOT__
429 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
430 {
431 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
432 }
433 
434 static int spi_mem_probe(struct spi_device *spi)
435 {
436 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
437 	struct spi_mem *mem;
438 
439 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
440 	if (!mem)
441 		return -ENOMEM;
442 
443 	mem->spi = spi;
444 	spi_set_drvdata(spi, mem);
445 
446 	return memdrv->probe(mem);
447 }
448 
449 static int spi_mem_remove(struct spi_device *spi)
450 {
451 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
452 	struct spi_mem *mem = spi_get_drvdata(spi);
453 
454 	if (memdrv->remove)
455 		return memdrv->remove(mem);
456 
457 	return 0;
458 }
459 
460 static void spi_mem_shutdown(struct spi_device *spi)
461 {
462 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
463 	struct spi_mem *mem = spi_get_drvdata(spi);
464 
465 	if (memdrv->shutdown)
466 		memdrv->shutdown(mem);
467 }
468 
469 /**
470  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
471  * @memdrv: the SPI memory driver to register
472  * @owner: the owner of this driver
473  *
474  * Registers a SPI memory driver.
475  *
476  * Return: 0 in case of success, a negative error core otherwise.
477  */
478 
479 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
480 				       struct module *owner)
481 {
482 	memdrv->spidrv.probe = spi_mem_probe;
483 	memdrv->spidrv.remove = spi_mem_remove;
484 	memdrv->spidrv.shutdown = spi_mem_shutdown;
485 
486 	return __spi_register_driver(owner, &memdrv->spidrv);
487 }
488 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
489 
490 /**
491  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
492  * @memdrv: the SPI memory driver to unregister
493  *
494  * Unregisters a SPI memory driver.
495  */
496 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
497 {
498 	spi_unregister_driver(&memdrv->spidrv);
499 }
500 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
501 #endif /* __UBOOT__ */
502