xref: /openbmc/u-boot/drivers/spi/mxs_spi.c (revision 713cb680)
1 /*
2  * Freescale i.MX28 SPI driver
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of
10  * the License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20  * MA 02111-1307 USA
21  *
22  * NOTE: This driver only supports the SPI-controller chipselects,
23  *       GPIO driven chipselects are not supported.
24  */
25 
26 #include <common.h>
27 #include <malloc.h>
28 #include <spi.h>
29 #include <asm/errno.h>
30 #include <asm/io.h>
31 #include <asm/arch/clock.h>
32 #include <asm/arch/imx-regs.h>
33 #include <asm/arch/sys_proto.h>
34 #include <asm/imx-common/dma.h>
35 
36 #define	MXS_SPI_MAX_TIMEOUT	1000000
37 #define	MXS_SPI_PORT_OFFSET	0x2000
38 #define MXS_SSP_CHIPSELECT_MASK		0x00300000
39 #define MXS_SSP_CHIPSELECT_SHIFT	20
40 
41 #define MXSSSP_SMALL_TRANSFER	512
42 
43 struct mxs_spi_slave {
44 	struct spi_slave	slave;
45 	uint32_t		max_khz;
46 	uint32_t		mode;
47 	struct mxs_ssp_regs	*regs;
48 };
49 
50 static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave)
51 {
52 	return container_of(slave, struct mxs_spi_slave, slave);
53 }
54 
55 void spi_init(void)
56 {
57 }
58 
59 int spi_cs_is_valid(unsigned int bus, unsigned int cs)
60 {
61 	/* MXS SPI: 4 ports and 3 chip selects maximum */
62 	if (!mxs_ssp_bus_id_valid(bus) || cs > 2)
63 		return 0;
64 	else
65 		return 1;
66 }
67 
68 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
69 				  unsigned int max_hz, unsigned int mode)
70 {
71 	struct mxs_spi_slave *mxs_slave;
72 	struct mxs_ssp_regs *ssp_regs;
73 	int reg;
74 
75 	if (!spi_cs_is_valid(bus, cs)) {
76 		printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs);
77 		return NULL;
78 	}
79 
80 	mxs_slave = spi_alloc_slave(struct mxs_spi_slave, bus, cs);
81 	if (!mxs_slave)
82 		return NULL;
83 
84 	if (mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + bus))
85 		goto err_init;
86 
87 	mxs_slave->max_khz = max_hz / 1000;
88 	mxs_slave->mode = mode;
89 	mxs_slave->regs = mxs_ssp_regs_by_bus(bus);
90 	ssp_regs = mxs_slave->regs;
91 
92 	reg = readl(&ssp_regs->hw_ssp_ctrl0);
93 	reg &= ~(MXS_SSP_CHIPSELECT_MASK);
94 	reg |= cs << MXS_SSP_CHIPSELECT_SHIFT;
95 
96 	writel(reg, &ssp_regs->hw_ssp_ctrl0);
97 	return &mxs_slave->slave;
98 
99 err_init:
100 	free(mxs_slave);
101 	return NULL;
102 }
103 
104 void spi_free_slave(struct spi_slave *slave)
105 {
106 	struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
107 	free(mxs_slave);
108 }
109 
110 int spi_claim_bus(struct spi_slave *slave)
111 {
112 	struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
113 	struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
114 	uint32_t reg = 0;
115 
116 	mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
117 
118 	writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0);
119 
120 	reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
121 	reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
122 	reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
123 	writel(reg, &ssp_regs->hw_ssp_ctrl1);
124 
125 	writel(0, &ssp_regs->hw_ssp_cmd0);
126 
127 	mxs_set_ssp_busclock(slave->bus, mxs_slave->max_khz);
128 
129 	return 0;
130 }
131 
132 void spi_release_bus(struct spi_slave *slave)
133 {
134 }
135 
136 static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
137 {
138 	writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
139 	writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
140 }
141 
142 static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
143 {
144 	writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
145 	writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
146 }
147 
148 static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave,
149 			char *data, int length, int write, unsigned long flags)
150 {
151 	struct mxs_ssp_regs *ssp_regs = slave->regs;
152 
153 	if (flags & SPI_XFER_BEGIN)
154 		mxs_spi_start_xfer(ssp_regs);
155 
156 	while (length--) {
157 		/* We transfer 1 byte */
158 #if defined(CONFIG_MX23)
159 		writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
160 		writel(1, &ssp_regs->hw_ssp_ctrl0_set);
161 #elif defined(CONFIG_MX28)
162 		writel(1, &ssp_regs->hw_ssp_xfer_size);
163 #endif
164 
165 		if ((flags & SPI_XFER_END) && !length)
166 			mxs_spi_end_xfer(ssp_regs);
167 
168 		if (write)
169 			writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
170 		else
171 			writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
172 
173 		writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
174 
175 		if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
176 			SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
177 			printf("MXS SPI: Timeout waiting for start\n");
178 			return -ETIMEDOUT;
179 		}
180 
181 		if (write)
182 			writel(*data++, &ssp_regs->hw_ssp_data);
183 
184 		writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
185 
186 		if (!write) {
187 			if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
188 				SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
189 				printf("MXS SPI: Timeout waiting for data\n");
190 				return -ETIMEDOUT;
191 			}
192 
193 			*data = readl(&ssp_regs->hw_ssp_data);
194 			data++;
195 		}
196 
197 		if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
198 			SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
199 			printf("MXS SPI: Timeout waiting for finish\n");
200 			return -ETIMEDOUT;
201 		}
202 	}
203 
204 	return 0;
205 }
206 
207 static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave,
208 			char *data, int length, int write, unsigned long flags)
209 {
210 	const int xfer_max_sz = 0xff00;
211 	const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
212 	struct mxs_ssp_regs *ssp_regs = slave->regs;
213 	struct mxs_dma_desc *dp;
214 	uint32_t ctrl0;
215 	uint32_t cache_data_count;
216 	const uint32_t dstart = (uint32_t)data;
217 	int dmach;
218 	int tl;
219 	int ret = 0;
220 
221 #if defined(CONFIG_MX23)
222 	const int mxs_spi_pio_words = 1;
223 #elif defined(CONFIG_MX28)
224 	const int mxs_spi_pio_words = 4;
225 #endif
226 
227 	ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
228 
229 	memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
230 
231 	ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
232 	ctrl0 |= SSP_CTRL0_DATA_XFER;
233 
234 	if (flags & SPI_XFER_BEGIN)
235 		ctrl0 |= SSP_CTRL0_LOCK_CS;
236 	if (!write)
237 		ctrl0 |= SSP_CTRL0_READ;
238 
239 	if (length % ARCH_DMA_MINALIGN)
240 		cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
241 	else
242 		cache_data_count = length;
243 
244 	/* Flush data to DRAM so DMA can pick them up */
245 	if (write)
246 		flush_dcache_range(dstart, dstart + cache_data_count);
247 
248 	/* Invalidate the area, so no writeback into the RAM races with DMA */
249 	invalidate_dcache_range(dstart, dstart + cache_data_count);
250 
251 	dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus;
252 
253 	dp = desc;
254 	while (length) {
255 		dp->address = (dma_addr_t)dp;
256 		dp->cmd.address = (dma_addr_t)data;
257 
258 		/*
259 		 * This is correct, even though it does indeed look insane.
260 		 * I hereby have to, wholeheartedly, thank Freescale Inc.,
261 		 * for always inventing insane hardware and keeping me busy
262 		 * and employed ;-)
263 		 */
264 		if (write)
265 			dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
266 		else
267 			dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
268 
269 		/*
270 		 * The DMA controller can transfer large chunks (64kB) at
271 		 * time by setting the transfer length to 0. Setting tl to
272 		 * 0x10000 will overflow below and make .data contain 0.
273 		 * Otherwise, 0xff00 is the transfer maximum.
274 		 */
275 		if (length >= 0x10000)
276 			tl = 0x10000;
277 		else
278 			tl = min(length, xfer_max_sz);
279 
280 		dp->cmd.data |=
281 			((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
282 			(mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
283 			MXS_DMA_DESC_HALT_ON_TERMINATE |
284 			MXS_DMA_DESC_TERMINATE_FLUSH;
285 
286 		data += tl;
287 		length -= tl;
288 
289 		if (!length) {
290 			dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
291 
292 			if (flags & SPI_XFER_END) {
293 				ctrl0 &= ~SSP_CTRL0_LOCK_CS;
294 				ctrl0 |= SSP_CTRL0_IGNORE_CRC;
295 			}
296 		}
297 
298 		/*
299 		 * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
300 		 * case of MX28, write only CTRL0 in case of MX23 due
301 		 * to the difference in register layout. It is utterly
302 		 * essential that the XFER_SIZE register is written on
303 		 * a per-descriptor basis with the same size as is the
304 		 * descriptor!
305 		 */
306 		dp->cmd.pio_words[0] = ctrl0;
307 #ifdef CONFIG_MX28
308 		dp->cmd.pio_words[1] = 0;
309 		dp->cmd.pio_words[2] = 0;
310 		dp->cmd.pio_words[3] = tl;
311 #endif
312 
313 		mxs_dma_desc_append(dmach, dp);
314 
315 		dp++;
316 	}
317 
318 	if (mxs_dma_go(dmach))
319 		ret = -EINVAL;
320 
321 	/* The data arrived into DRAM, invalidate cache over them */
322 	if (!write)
323 		invalidate_dcache_range(dstart, dstart + cache_data_count);
324 
325 	return ret;
326 }
327 
328 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
329 		const void *dout, void *din, unsigned long flags)
330 {
331 	struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
332 	struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
333 	int len = bitlen / 8;
334 	char dummy;
335 	int write = 0;
336 	char *data = NULL;
337 	int dma = 1;
338 
339 	if (bitlen == 0) {
340 		if (flags & SPI_XFER_END) {
341 			din = (void *)&dummy;
342 			len = 1;
343 		} else
344 			return 0;
345 	}
346 
347 	/* Half-duplex only */
348 	if (din && dout)
349 		return -EINVAL;
350 	/* No data */
351 	if (!din && !dout)
352 		return 0;
353 
354 	if (dout) {
355 		data = (char *)dout;
356 		write = 1;
357 	} else if (din) {
358 		data = (char *)din;
359 		write = 0;
360 	}
361 
362 	/*
363 	 * Check for alignment, if the buffer is aligned, do DMA transfer,
364 	 * PIO otherwise. This is a temporary workaround until proper bounce
365 	 * buffer is in place.
366 	 */
367 	if (dma) {
368 		if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
369 			dma = 0;
370 		if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
371 			dma = 0;
372 	}
373 
374 	if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
375 		writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
376 		return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags);
377 	} else {
378 		writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
379 		return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags);
380 	}
381 }
382