xref: /openbmc/u-boot/drivers/spi/mxs_spi.c (revision 36c7c925)
1 /*
2  * Freescale i.MX28 SPI driver
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of
10  * the License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20  * MA 02111-1307 USA
21  *
22  * NOTE: This driver only supports the SPI-controller chipselects,
23  *       GPIO driven chipselects are not supported.
24  */
25 
26 #include <common.h>
27 #include <malloc.h>
28 #include <spi.h>
29 #include <asm/errno.h>
30 #include <asm/io.h>
31 #include <asm/arch/clock.h>
32 #include <asm/arch/imx-regs.h>
33 #include <asm/arch/sys_proto.h>
34 #include <asm/arch/dma.h>
35 
36 #define	MXS_SPI_MAX_TIMEOUT	1000000
37 #define	MXS_SPI_PORT_OFFSET	0x2000
38 #define MXS_SSP_CHIPSELECT_MASK		0x00300000
39 #define MXS_SSP_CHIPSELECT_SHIFT	20
40 
41 #define MXSSSP_SMALL_TRANSFER	512
42 
43 struct mxs_spi_slave {
44 	struct spi_slave	slave;
45 	uint32_t		max_khz;
46 	uint32_t		mode;
47 	struct mxs_ssp_regs	*regs;
48 };
49 
50 static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave)
51 {
52 	return container_of(slave, struct mxs_spi_slave, slave);
53 }
54 
55 void spi_init(void)
56 {
57 }
58 
59 int spi_cs_is_valid(unsigned int bus, unsigned int cs)
60 {
61 	/* MXS SPI: 4 ports and 3 chip selects maximum */
62 	if (!mxs_ssp_bus_id_valid(bus) || cs > 2)
63 		return 0;
64 	else
65 		return 1;
66 }
67 
68 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
69 				  unsigned int max_hz, unsigned int mode)
70 {
71 	struct mxs_spi_slave *mxs_slave;
72 	struct mxs_ssp_regs *ssp_regs;
73 	int reg;
74 
75 	if (!spi_cs_is_valid(bus, cs)) {
76 		printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs);
77 		return NULL;
78 	}
79 
80 	mxs_slave = calloc(sizeof(struct mxs_spi_slave), 1);
81 	if (!mxs_slave)
82 		return NULL;
83 
84 	if (mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + bus))
85 		goto err_init;
86 
87 	mxs_slave->slave.bus = bus;
88 	mxs_slave->slave.cs = cs;
89 	mxs_slave->max_khz = max_hz / 1000;
90 	mxs_slave->mode = mode;
91 	mxs_slave->regs = mxs_ssp_regs_by_bus(bus);
92 	ssp_regs = mxs_slave->regs;
93 
94 	reg = readl(&ssp_regs->hw_ssp_ctrl0);
95 	reg &= ~(MXS_SSP_CHIPSELECT_MASK);
96 	reg |= cs << MXS_SSP_CHIPSELECT_SHIFT;
97 
98 	writel(reg, &ssp_regs->hw_ssp_ctrl0);
99 	return &mxs_slave->slave;
100 
101 err_init:
102 	free(mxs_slave);
103 	return NULL;
104 }
105 
106 void spi_free_slave(struct spi_slave *slave)
107 {
108 	struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
109 	free(mxs_slave);
110 }
111 
112 int spi_claim_bus(struct spi_slave *slave)
113 {
114 	struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
115 	struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
116 	uint32_t reg = 0;
117 
118 	mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
119 
120 	writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0);
121 
122 	reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
123 	reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
124 	reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
125 	writel(reg, &ssp_regs->hw_ssp_ctrl1);
126 
127 	writel(0, &ssp_regs->hw_ssp_cmd0);
128 
129 	mxs_set_ssp_busclock(slave->bus, mxs_slave->max_khz);
130 
131 	return 0;
132 }
133 
134 void spi_release_bus(struct spi_slave *slave)
135 {
136 }
137 
138 static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
139 {
140 	writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
141 	writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
142 }
143 
144 static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
145 {
146 	writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
147 	writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
148 }
149 
150 static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave,
151 			char *data, int length, int write, unsigned long flags)
152 {
153 	struct mxs_ssp_regs *ssp_regs = slave->regs;
154 
155 	if (flags & SPI_XFER_BEGIN)
156 		mxs_spi_start_xfer(ssp_regs);
157 
158 	while (length--) {
159 		/* We transfer 1 byte */
160 #if defined(CONFIG_MX23)
161 		writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
162 		writel(1, &ssp_regs->hw_ssp_ctrl0_set);
163 #elif defined(CONFIG_MX28)
164 		writel(1, &ssp_regs->hw_ssp_xfer_size);
165 #endif
166 
167 		if ((flags & SPI_XFER_END) && !length)
168 			mxs_spi_end_xfer(ssp_regs);
169 
170 		if (write)
171 			writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
172 		else
173 			writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
174 
175 		writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
176 
177 		if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
178 			SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
179 			printf("MXS SPI: Timeout waiting for start\n");
180 			return -ETIMEDOUT;
181 		}
182 
183 		if (write)
184 			writel(*data++, &ssp_regs->hw_ssp_data);
185 
186 		writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
187 
188 		if (!write) {
189 			if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
190 				SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
191 				printf("MXS SPI: Timeout waiting for data\n");
192 				return -ETIMEDOUT;
193 			}
194 
195 			*data = readl(&ssp_regs->hw_ssp_data);
196 			data++;
197 		}
198 
199 		if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
200 			SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
201 			printf("MXS SPI: Timeout waiting for finish\n");
202 			return -ETIMEDOUT;
203 		}
204 	}
205 
206 	return 0;
207 }
208 
209 static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave,
210 			char *data, int length, int write, unsigned long flags)
211 {
212 	const int xfer_max_sz = 0xff00;
213 	const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
214 	struct mxs_ssp_regs *ssp_regs = slave->regs;
215 	struct mxs_dma_desc *dp;
216 	uint32_t ctrl0;
217 	uint32_t cache_data_count;
218 	const uint32_t dstart = (uint32_t)data;
219 	int dmach;
220 	int tl;
221 	int ret = 0;
222 
223 #if defined(CONFIG_MX23)
224 	const int mxs_spi_pio_words = 1;
225 #elif defined(CONFIG_MX28)
226 	const int mxs_spi_pio_words = 4;
227 #endif
228 
229 	ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
230 
231 	memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
232 
233 	ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
234 	ctrl0 |= SSP_CTRL0_DATA_XFER;
235 
236 	if (flags & SPI_XFER_BEGIN)
237 		ctrl0 |= SSP_CTRL0_LOCK_CS;
238 	if (!write)
239 		ctrl0 |= SSP_CTRL0_READ;
240 
241 	if (length % ARCH_DMA_MINALIGN)
242 		cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
243 	else
244 		cache_data_count = length;
245 
246 	/* Flush data to DRAM so DMA can pick them up */
247 	if (write)
248 		flush_dcache_range(dstart, dstart + cache_data_count);
249 
250 	/* Invalidate the area, so no writeback into the RAM races with DMA */
251 	invalidate_dcache_range(dstart, dstart + cache_data_count);
252 
253 	dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus;
254 
255 	dp = desc;
256 	while (length) {
257 		dp->address = (dma_addr_t)dp;
258 		dp->cmd.address = (dma_addr_t)data;
259 
260 		/*
261 		 * This is correct, even though it does indeed look insane.
262 		 * I hereby have to, wholeheartedly, thank Freescale Inc.,
263 		 * for always inventing insane hardware and keeping me busy
264 		 * and employed ;-)
265 		 */
266 		if (write)
267 			dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
268 		else
269 			dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
270 
271 		/*
272 		 * The DMA controller can transfer large chunks (64kB) at
273 		 * time by setting the transfer length to 0. Setting tl to
274 		 * 0x10000 will overflow below and make .data contain 0.
275 		 * Otherwise, 0xff00 is the transfer maximum.
276 		 */
277 		if (length >= 0x10000)
278 			tl = 0x10000;
279 		else
280 			tl = min(length, xfer_max_sz);
281 
282 		dp->cmd.data |=
283 			((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
284 			(mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
285 			MXS_DMA_DESC_HALT_ON_TERMINATE |
286 			MXS_DMA_DESC_TERMINATE_FLUSH;
287 
288 		data += tl;
289 		length -= tl;
290 
291 		if (!length) {
292 			dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
293 
294 			if (flags & SPI_XFER_END) {
295 				ctrl0 &= ~SSP_CTRL0_LOCK_CS;
296 				ctrl0 |= SSP_CTRL0_IGNORE_CRC;
297 			}
298 		}
299 
300 		/*
301 		 * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
302 		 * case of MX28, write only CTRL0 in case of MX23 due
303 		 * to the difference in register layout. It is utterly
304 		 * essential that the XFER_SIZE register is written on
305 		 * a per-descriptor basis with the same size as is the
306 		 * descriptor!
307 		 */
308 		dp->cmd.pio_words[0] = ctrl0;
309 #ifdef CONFIG_MX28
310 		dp->cmd.pio_words[1] = 0;
311 		dp->cmd.pio_words[2] = 0;
312 		dp->cmd.pio_words[3] = tl;
313 #endif
314 
315 		mxs_dma_desc_append(dmach, dp);
316 
317 		dp++;
318 	}
319 
320 	if (mxs_dma_go(dmach))
321 		ret = -EINVAL;
322 
323 	/* The data arrived into DRAM, invalidate cache over them */
324 	if (!write)
325 		invalidate_dcache_range(dstart, dstart + cache_data_count);
326 
327 	return ret;
328 }
329 
330 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
331 		const void *dout, void *din, unsigned long flags)
332 {
333 	struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
334 	struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
335 	int len = bitlen / 8;
336 	char dummy;
337 	int write = 0;
338 	char *data = NULL;
339 	int dma = 1;
340 
341 	if (bitlen == 0) {
342 		if (flags & SPI_XFER_END) {
343 			din = (void *)&dummy;
344 			len = 1;
345 		} else
346 			return 0;
347 	}
348 
349 	/* Half-duplex only */
350 	if (din && dout)
351 		return -EINVAL;
352 	/* No data */
353 	if (!din && !dout)
354 		return 0;
355 
356 	if (dout) {
357 		data = (char *)dout;
358 		write = 1;
359 	} else if (din) {
360 		data = (char *)din;
361 		write = 0;
362 	}
363 
364 	/*
365 	 * Check for alignment, if the buffer is aligned, do DMA transfer,
366 	 * PIO otherwise. This is a temporary workaround until proper bounce
367 	 * buffer is in place.
368 	 */
369 	if (dma) {
370 		if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
371 			dma = 0;
372 		if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
373 			dma = 0;
374 	}
375 
376 	if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
377 		writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
378 		return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags);
379 	} else {
380 		writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
381 		return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags);
382 	}
383 }
384