xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision e94ffee335f23d86cad0f8816b049bb4100d5be3)
1 /*
2  * Copyright 2013-2015 Freescale Semiconductor, Inc.
3  *
4  * Freescale Quad Serial Peripheral Interface (QSPI) driver
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include <dm.h>
15 #include <errno.h>
16 #include <watchdog.h>
17 #include "fsl_qspi.h"
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 #define RX_BUFFER_SIZE		0x80
22 #ifdef CONFIG_MX6SX
23 #define TX_BUFFER_SIZE		0x200
24 #else
25 #define TX_BUFFER_SIZE		0x40
26 #endif
27 
28 #define OFFSET_BITS_MASK	GENMASK(23, 0)
29 
30 #define FLASH_STATUS_WEL	0x02
31 
32 /* SEQID */
33 #define SEQID_WREN		1
34 #define SEQID_FAST_READ		2
35 #define SEQID_RDSR		3
36 #define SEQID_SE		4
37 #define SEQID_CHIP_ERASE	5
38 #define SEQID_PP		6
39 #define SEQID_RDID		7
40 #define SEQID_BE_4K		8
41 #ifdef CONFIG_SPI_FLASH_BAR
42 #define SEQID_BRRD		9
43 #define SEQID_BRWR		10
44 #define SEQID_RDEAR		11
45 #define SEQID_WREAR		12
46 #endif
47 #define SEQID_WRAR		13
48 #define SEQID_RDAR		14
49 
50 /* QSPI CMD */
51 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
52 #define QSPI_CMD_RDSR		0x05	/* Read status register */
53 #define QSPI_CMD_WREN		0x06	/* Write enable */
54 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
55 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
56 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
57 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
58 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
59 
60 /* Used for Micron, winbond and Macronix flashes */
61 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
62 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
63 
64 /* Used for Spansion flashes only. */
65 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
66 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
67 
68 /* Used for Spansion S25FS-S family flash only. */
69 #define QSPI_CMD_RDAR		0x65	/* Read any device register */
70 #define QSPI_CMD_WRAR		0x71	/* Write any device register */
71 
72 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
73 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
74 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
75 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
76 
77 /* fsl_qspi_platdata flags */
78 #define QSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)
79 
80 /* default SCK frequency, unit: HZ */
81 #define FSL_QSPI_DEFAULT_SCK_FREQ	50000000
82 
83 /* QSPI max chipselect signals number */
84 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
85 
86 #ifdef CONFIG_DM_SPI
87 /**
88  * struct fsl_qspi_platdata - platform data for Freescale QSPI
89  *
90  * @flags: Flags for QSPI QSPI_FLAG_...
91  * @speed_hz: Default SCK frequency
92  * @reg_base: Base address of QSPI registers
93  * @amba_base: Base address of QSPI memory mapping
94  * @amba_total_size: size of QSPI memory mapping
95  * @flash_num: Number of active slave devices
96  * @num_chipselect: Number of QSPI chipselect signals
97  */
98 struct fsl_qspi_platdata {
99 	u32 flags;
100 	u32 speed_hz;
101 	fdt_addr_t reg_base;
102 	fdt_addr_t amba_base;
103 	fdt_size_t amba_total_size;
104 	u32 flash_num;
105 	u32 num_chipselect;
106 };
107 #endif
108 
109 /**
110  * struct fsl_qspi_priv - private data for Freescale QSPI
111  *
112  * @flags: Flags for QSPI QSPI_FLAG_...
113  * @bus_clk: QSPI input clk frequency
114  * @speed_hz: Default SCK frequency
115  * @cur_seqid: current LUT table sequence id
116  * @sf_addr: flash access offset
117  * @amba_base: Base address of QSPI memory mapping of every CS
118  * @amba_total_size: size of QSPI memory mapping
119  * @cur_amba_base: Base address of QSPI memory mapping of current CS
120  * @flash_num: Number of active slave devices
121  * @num_chipselect: Number of QSPI chipselect signals
122  * @regs: Point to QSPI register structure for I/O access
123  */
124 struct fsl_qspi_priv {
125 	u32 flags;
126 	u32 bus_clk;
127 	u32 speed_hz;
128 	u32 cur_seqid;
129 	u32 sf_addr;
130 	u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
131 	u32 amba_total_size;
132 	u32 cur_amba_base;
133 	u32 flash_num;
134 	u32 num_chipselect;
135 	struct fsl_qspi_regs *regs;
136 };
137 
138 #ifndef CONFIG_DM_SPI
139 struct fsl_qspi {
140 	struct spi_slave slave;
141 	struct fsl_qspi_priv priv;
142 };
143 #endif
144 
145 static u32 qspi_read32(u32 flags, u32 *addr)
146 {
147 	return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
148 		in_be32(addr) : in_le32(addr);
149 }
150 
151 static void qspi_write32(u32 flags, u32 *addr, u32 val)
152 {
153 	flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
154 		out_be32(addr, val) : out_le32(addr, val);
155 }
156 
157 /* QSPI support swapping the flash read/write data
158  * in hardware for LS102xA, but not for VF610 */
159 static inline u32 qspi_endian_xchg(u32 data)
160 {
161 #ifdef CONFIG_VF610
162 	return swab32(data);
163 #else
164 	return data;
165 #endif
166 }
167 
168 static void qspi_set_lut(struct fsl_qspi_priv *priv)
169 {
170 	struct fsl_qspi_regs *regs = priv->regs;
171 	u32 lut_base;
172 
173 	/* Unlock the LUT */
174 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
175 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
176 
177 	/* Write Enable */
178 	lut_base = SEQID_WREN * 4;
179 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
180 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
181 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
182 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
183 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
184 
185 	/* Fast Read */
186 	lut_base = SEQID_FAST_READ * 4;
187 #ifdef CONFIG_SPI_FLASH_BAR
188 	qspi_write32(priv->flags, &regs->lut[lut_base],
189 		     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
190 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
191 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
192 #else
193 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
194 		qspi_write32(priv->flags, &regs->lut[lut_base],
195 			     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
196 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
197 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
198 	else
199 		qspi_write32(priv->flags, &regs->lut[lut_base],
200 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
201 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
202 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
203 			     INSTR1(LUT_ADDR));
204 #endif
205 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
206 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
207 		     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
208 		     INSTR1(LUT_READ));
209 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
210 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
211 
212 	/* Read Status */
213 	lut_base = SEQID_RDSR * 4;
214 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
215 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
216 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
217 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
218 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
219 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
220 
221 	/* Erase a sector */
222 	lut_base = SEQID_SE * 4;
223 #ifdef CONFIG_SPI_FLASH_BAR
224 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
225 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
226 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
227 #else
228 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
229 		qspi_write32(priv->flags, &regs->lut[lut_base],
230 			     OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
231 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
232 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
233 	else
234 		qspi_write32(priv->flags, &regs->lut[lut_base],
235 			     OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
236 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
237 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
238 #endif
239 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
240 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
241 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
242 
243 	/* Erase the whole chip */
244 	lut_base = SEQID_CHIP_ERASE * 4;
245 	qspi_write32(priv->flags, &regs->lut[lut_base],
246 		     OPRND0(QSPI_CMD_CHIP_ERASE) |
247 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
248 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
249 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
250 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
251 
252 	/* Page Program */
253 	lut_base = SEQID_PP * 4;
254 #ifdef CONFIG_SPI_FLASH_BAR
255 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
256 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
257 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
258 #else
259 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
260 		qspi_write32(priv->flags, &regs->lut[lut_base],
261 			     OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
262 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
263 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
264 	else
265 		qspi_write32(priv->flags, &regs->lut[lut_base],
266 			     OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
267 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
268 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
269 #endif
270 #ifdef CONFIG_MX6SX
271 	/*
272 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
273 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
274 	 */
275 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
276 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
277 #else
278 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
279 		     OPRND0(TX_BUFFER_SIZE) |
280 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
281 #endif
282 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
283 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
284 
285 	/* READ ID */
286 	lut_base = SEQID_RDID * 4;
287 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
288 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
289 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
290 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
291 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
292 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
293 
294 	/* SUB SECTOR 4K ERASE */
295 	lut_base = SEQID_BE_4K * 4;
296 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
297 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
298 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
299 
300 #ifdef CONFIG_SPI_FLASH_BAR
301 	/*
302 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
303 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
304 	 * initialization.
305 	 */
306 	lut_base = SEQID_BRRD * 4;
307 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
308 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
309 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
310 
311 	lut_base = SEQID_BRWR * 4;
312 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
313 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
314 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
315 
316 	lut_base = SEQID_RDEAR * 4;
317 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
318 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
319 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
320 
321 	lut_base = SEQID_WREAR * 4;
322 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
323 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
324 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
325 #endif
326 
327 	/*
328 	 * Read any device register.
329 	 * Used for Spansion S25FS-S family flash only.
330 	 */
331 	lut_base = SEQID_RDAR * 4;
332 	qspi_write32(priv->flags, &regs->lut[lut_base],
333 		     OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
334 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
335 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
336 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
337 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
338 		     OPRND1(1) | PAD1(LUT_PAD1) |
339 		     INSTR1(LUT_READ));
340 
341 	/*
342 	 * Write any device register.
343 	 * Used for Spansion S25FS-S family flash only.
344 	 */
345 	lut_base = SEQID_WRAR * 4;
346 	qspi_write32(priv->flags, &regs->lut[lut_base],
347 		     OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
348 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
349 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
350 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
351 		     OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
352 
353 	/* Lock the LUT */
354 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
355 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
356 }
357 
358 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
359 /*
360  * If we have changed the content of the flash by writing or erasing,
361  * we need to invalidate the AHB buffer. If we do not do so, we may read out
362  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
363  * domain at the same time.
364  */
365 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
366 {
367 	struct fsl_qspi_regs *regs = priv->regs;
368 	u32 reg;
369 
370 	reg = qspi_read32(priv->flags, &regs->mcr);
371 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
372 	qspi_write32(priv->flags, &regs->mcr, reg);
373 
374 	/*
375 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
376 	 * Delay 1 us is enough.
377 	 */
378 	udelay(1);
379 
380 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
381 	qspi_write32(priv->flags, &regs->mcr, reg);
382 }
383 
384 /* Read out the data from the AHB buffer. */
385 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
386 {
387 	struct fsl_qspi_regs *regs = priv->regs;
388 	u32 mcr_reg;
389 	void *rx_addr = NULL;
390 
391 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
392 
393 	qspi_write32(priv->flags, &regs->mcr,
394 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
395 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
396 
397 	rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
398 	/* Read out the data directly from the AHB buffer. */
399 	memcpy(rxbuf, rx_addr, len);
400 
401 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
402 }
403 
404 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
405 {
406 	u32 reg, reg2;
407 	struct fsl_qspi_regs *regs = priv->regs;
408 
409 	reg = qspi_read32(priv->flags, &regs->mcr);
410 	/* Disable the module */
411 	qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
412 
413 	/* Set the Sampling Register for DDR */
414 	reg2 = qspi_read32(priv->flags, &regs->smpr);
415 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
416 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
417 	qspi_write32(priv->flags, &regs->smpr, reg2);
418 
419 	/* Enable the module again (enable the DDR too) */
420 	reg |= QSPI_MCR_DDR_EN_MASK;
421 	/* Enable bit 29 for imx6sx */
422 	reg |= BIT(29);
423 
424 	qspi_write32(priv->flags, &regs->mcr, reg);
425 }
426 
427 /*
428  * There are two different ways to read out the data from the flash:
429  *  the "IP Command Read" and the "AHB Command Read".
430  *
431  * The IC guy suggests we use the "AHB Command Read" which is faster
432  * then the "IP Command Read". (What's more is that there is a bug in
433  * the "IP Command Read" in the Vybrid.)
434  *
435  * After we set up the registers for the "AHB Command Read", we can use
436  * the memcpy to read the data directly. A "missed" access to the buffer
437  * causes the controller to clear the buffer, and use the sequence pointed
438  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
439  */
440 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
441 {
442 	struct fsl_qspi_regs *regs = priv->regs;
443 
444 	/* AHB configuration for access buffer 0/1/2 .*/
445 	qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
446 	qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
447 	qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
448 	qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
449 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
450 
451 	/* We only use the buffer3 */
452 	qspi_write32(priv->flags, &regs->buf0ind, 0);
453 	qspi_write32(priv->flags, &regs->buf1ind, 0);
454 	qspi_write32(priv->flags, &regs->buf2ind, 0);
455 
456 	/*
457 	 * Set the default lut sequence for AHB Read.
458 	 * Parallel mode is disabled.
459 	 */
460 	qspi_write32(priv->flags, &regs->bfgencr,
461 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
462 
463 	/*Enable DDR Mode*/
464 	qspi_enable_ddr_mode(priv);
465 }
466 #endif
467 
468 #ifdef CONFIG_SPI_FLASH_BAR
469 /* Bank register read/write, EAR register read/write */
470 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
471 {
472 	struct fsl_qspi_regs *regs = priv->regs;
473 	u32 reg, mcr_reg, data, seqid;
474 
475 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
476 	qspi_write32(priv->flags, &regs->mcr,
477 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
478 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
479 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
480 
481 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
482 
483 	if (priv->cur_seqid == QSPI_CMD_BRRD)
484 		seqid = SEQID_BRRD;
485 	else
486 		seqid = SEQID_RDEAR;
487 
488 	qspi_write32(priv->flags, &regs->ipcr,
489 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
490 
491 	/* Wait previous command complete */
492 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
493 		;
494 
495 	while (1) {
496 		reg = qspi_read32(priv->flags, &regs->rbsr);
497 		if (reg & QSPI_RBSR_RDBFL_MASK) {
498 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
499 			data = qspi_endian_xchg(data);
500 			memcpy(rxbuf, &data, len);
501 			qspi_write32(priv->flags, &regs->mcr,
502 				     qspi_read32(priv->flags, &regs->mcr) |
503 				     QSPI_MCR_CLR_RXF_MASK);
504 			break;
505 		}
506 	}
507 
508 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
509 }
510 #endif
511 
512 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
513 {
514 	struct fsl_qspi_regs *regs = priv->regs;
515 	u32 mcr_reg, rbsr_reg, data, size;
516 	int i;
517 
518 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
519 	qspi_write32(priv->flags, &regs->mcr,
520 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
521 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
522 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
523 
524 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
525 
526 	qspi_write32(priv->flags, &regs->ipcr,
527 		     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
528 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
529 		;
530 
531 	i = 0;
532 	while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
533 		rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
534 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
535 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
536 			data = qspi_endian_xchg(data);
537 			size = (len < 4) ? len : 4;
538 			memcpy(rxbuf, &data, size);
539 			len -= size;
540 			rxbuf++;
541 			i++;
542 		}
543 	}
544 
545 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
546 }
547 
548 /* If not use AHB read, read data from ip interface */
549 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
550 {
551 	struct fsl_qspi_regs *regs = priv->regs;
552 	u32 mcr_reg, data;
553 	int i, size;
554 	u32 to_or_from;
555 	u32 seqid;
556 
557 	if (priv->cur_seqid == QSPI_CMD_RDAR)
558 		seqid = SEQID_RDAR;
559 	else
560 		seqid = SEQID_FAST_READ;
561 
562 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
563 	qspi_write32(priv->flags, &regs->mcr,
564 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
565 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
566 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
567 
568 	to_or_from = priv->sf_addr + priv->cur_amba_base;
569 
570 	while (len > 0) {
571 		WATCHDOG_RESET();
572 
573 		qspi_write32(priv->flags, &regs->sfar, to_or_from);
574 
575 		size = (len > RX_BUFFER_SIZE) ?
576 			RX_BUFFER_SIZE : len;
577 
578 		qspi_write32(priv->flags, &regs->ipcr,
579 			     (seqid << QSPI_IPCR_SEQID_SHIFT) |
580 			     size);
581 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
582 			;
583 
584 		to_or_from += size;
585 		len -= size;
586 
587 		i = 0;
588 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
589 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
590 			data = qspi_endian_xchg(data);
591 			if (size < 4)
592 				memcpy(rxbuf, &data, size);
593 			else
594 				memcpy(rxbuf, &data, 4);
595 			rxbuf++;
596 			size -= 4;
597 			i++;
598 		}
599 		qspi_write32(priv->flags, &regs->mcr,
600 			     qspi_read32(priv->flags, &regs->mcr) |
601 			     QSPI_MCR_CLR_RXF_MASK);
602 	}
603 
604 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
605 }
606 
607 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
608 {
609 	struct fsl_qspi_regs *regs = priv->regs;
610 	u32 mcr_reg, data, reg, status_reg, seqid;
611 	int i, size, tx_size;
612 	u32 to_or_from = 0;
613 
614 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
615 	qspi_write32(priv->flags, &regs->mcr,
616 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
617 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
618 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
619 
620 	status_reg = 0;
621 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
622 		WATCHDOG_RESET();
623 
624 		qspi_write32(priv->flags, &regs->ipcr,
625 			     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
626 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
627 			;
628 
629 		qspi_write32(priv->flags, &regs->ipcr,
630 			     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
631 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
632 			;
633 
634 		reg = qspi_read32(priv->flags, &regs->rbsr);
635 		if (reg & QSPI_RBSR_RDBFL_MASK) {
636 			status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
637 			status_reg = qspi_endian_xchg(status_reg);
638 		}
639 		qspi_write32(priv->flags, &regs->mcr,
640 			     qspi_read32(priv->flags, &regs->mcr) |
641 			     QSPI_MCR_CLR_RXF_MASK);
642 	}
643 
644 	/* Default is page programming */
645 	seqid = SEQID_PP;
646 	if (priv->cur_seqid == QSPI_CMD_WRAR)
647 		seqid = SEQID_WRAR;
648 #ifdef CONFIG_SPI_FLASH_BAR
649 	if (priv->cur_seqid == QSPI_CMD_BRWR)
650 		seqid = SEQID_BRWR;
651 	else if (priv->cur_seqid == QSPI_CMD_WREAR)
652 		seqid = SEQID_WREAR;
653 #endif
654 
655 	to_or_from = priv->sf_addr + priv->cur_amba_base;
656 
657 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
658 
659 	tx_size = (len > TX_BUFFER_SIZE) ?
660 		TX_BUFFER_SIZE : len;
661 
662 	size = tx_size / 4;
663 	for (i = 0; i < size; i++) {
664 		memcpy(&data, txbuf, 4);
665 		data = qspi_endian_xchg(data);
666 		qspi_write32(priv->flags, &regs->tbdr, data);
667 		txbuf += 4;
668 	}
669 
670 	size = tx_size % 4;
671 	if (size) {
672 		data = 0;
673 		memcpy(&data, txbuf, size);
674 		data = qspi_endian_xchg(data);
675 		qspi_write32(priv->flags, &regs->tbdr, data);
676 	}
677 
678 	qspi_write32(priv->flags, &regs->ipcr,
679 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
680 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
681 		;
682 
683 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
684 }
685 
686 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
687 {
688 	struct fsl_qspi_regs *regs = priv->regs;
689 	u32 mcr_reg, reg, data;
690 
691 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
692 	qspi_write32(priv->flags, &regs->mcr,
693 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
694 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
695 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
696 
697 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
698 
699 	qspi_write32(priv->flags, &regs->ipcr,
700 		     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
701 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
702 		;
703 
704 	while (1) {
705 		reg = qspi_read32(priv->flags, &regs->rbsr);
706 		if (reg & QSPI_RBSR_RDBFL_MASK) {
707 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
708 			data = qspi_endian_xchg(data);
709 			memcpy(rxbuf, &data, len);
710 			qspi_write32(priv->flags, &regs->mcr,
711 				     qspi_read32(priv->flags, &regs->mcr) |
712 				     QSPI_MCR_CLR_RXF_MASK);
713 			break;
714 		}
715 	}
716 
717 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
718 }
719 
720 static void qspi_op_erase(struct fsl_qspi_priv *priv)
721 {
722 	struct fsl_qspi_regs *regs = priv->regs;
723 	u32 mcr_reg;
724 	u32 to_or_from = 0;
725 
726 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
727 	qspi_write32(priv->flags, &regs->mcr,
728 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
729 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
730 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
731 
732 	to_or_from = priv->sf_addr + priv->cur_amba_base;
733 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
734 
735 	qspi_write32(priv->flags, &regs->ipcr,
736 		     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
737 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
738 		;
739 
740 	if (priv->cur_seqid == QSPI_CMD_SE) {
741 		qspi_write32(priv->flags, &regs->ipcr,
742 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
743 	} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
744 		qspi_write32(priv->flags, &regs->ipcr,
745 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
746 	}
747 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
748 		;
749 
750 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
751 }
752 
753 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
754 		const void *dout, void *din, unsigned long flags)
755 {
756 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
757 	static u32 wr_sfaddr;
758 	u32 txbuf;
759 
760 	if (dout) {
761 		if (flags & SPI_XFER_BEGIN) {
762 			priv->cur_seqid = *(u8 *)dout;
763 			memcpy(&txbuf, dout, 4);
764 		}
765 
766 		if (flags == SPI_XFER_END) {
767 			priv->sf_addr = wr_sfaddr;
768 			qspi_op_write(priv, (u8 *)dout, bytes);
769 			return 0;
770 		}
771 
772 		if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
773 		    priv->cur_seqid == QSPI_CMD_RDAR) {
774 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
775 		} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
776 			   (priv->cur_seqid == QSPI_CMD_BE_4K)) {
777 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
778 			qspi_op_erase(priv);
779 		} else if (priv->cur_seqid == QSPI_CMD_PP ||
780 			   priv->cur_seqid == QSPI_CMD_WRAR) {
781 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
782 		} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
783 			 (priv->cur_seqid == QSPI_CMD_WREAR)) {
784 #ifdef CONFIG_SPI_FLASH_BAR
785 			wr_sfaddr = 0;
786 #endif
787 		}
788 	}
789 
790 	if (din) {
791 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
792 #ifdef CONFIG_SYS_FSL_QSPI_AHB
793 			qspi_ahb_read(priv, din, bytes);
794 #else
795 			qspi_op_read(priv, din, bytes);
796 #endif
797 		} else if (priv->cur_seqid == QSPI_CMD_RDAR) {
798 			qspi_op_read(priv, din, bytes);
799 		} else if (priv->cur_seqid == QSPI_CMD_RDID)
800 			qspi_op_rdid(priv, din, bytes);
801 		else if (priv->cur_seqid == QSPI_CMD_RDSR)
802 			qspi_op_rdsr(priv, din, bytes);
803 #ifdef CONFIG_SPI_FLASH_BAR
804 		else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
805 			 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
806 			priv->sf_addr = 0;
807 			qspi_op_rdbank(priv, din, bytes);
808 		}
809 #endif
810 	}
811 
812 #ifdef CONFIG_SYS_FSL_QSPI_AHB
813 	if ((priv->cur_seqid == QSPI_CMD_SE) ||
814 	    (priv->cur_seqid == QSPI_CMD_PP) ||
815 	    (priv->cur_seqid == QSPI_CMD_BE_4K) ||
816 	    (priv->cur_seqid == QSPI_CMD_WREAR) ||
817 	    (priv->cur_seqid == QSPI_CMD_BRWR))
818 		qspi_ahb_invalid(priv);
819 #endif
820 
821 	return 0;
822 }
823 
824 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
825 {
826 	u32 mcr_val;
827 
828 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
829 	if (disable)
830 		mcr_val |= QSPI_MCR_MDIS_MASK;
831 	else
832 		mcr_val &= ~QSPI_MCR_MDIS_MASK;
833 	qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
834 }
835 
836 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
837 {
838 	u32 smpr_val;
839 
840 	smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
841 	smpr_val &= ~clear_bits;
842 	smpr_val |= set_bits;
843 	qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
844 }
845 #ifndef CONFIG_DM_SPI
846 static unsigned long spi_bases[] = {
847 	QSPI0_BASE_ADDR,
848 #ifdef CONFIG_MX6SX
849 	QSPI1_BASE_ADDR,
850 #endif
851 };
852 
853 static unsigned long amba_bases[] = {
854 	QSPI0_AMBA_BASE,
855 #ifdef CONFIG_MX6SX
856 	QSPI1_AMBA_BASE,
857 #endif
858 };
859 
860 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
861 {
862 	return container_of(slave, struct fsl_qspi, slave);
863 }
864 
865 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
866 		unsigned int max_hz, unsigned int mode)
867 {
868 	u32 mcr_val;
869 	struct fsl_qspi *qspi;
870 	struct fsl_qspi_regs *regs;
871 	u32 total_size;
872 
873 	if (bus >= ARRAY_SIZE(spi_bases))
874 		return NULL;
875 
876 	if (cs >= FSL_QSPI_FLASH_NUM)
877 		return NULL;
878 
879 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
880 	if (!qspi)
881 		return NULL;
882 
883 #ifdef CONFIG_SYS_FSL_QSPI_BE
884 	qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
885 #endif
886 
887 	regs = (struct fsl_qspi_regs *)spi_bases[bus];
888 	qspi->priv.regs = regs;
889 	/*
890 	 * According cs, use different amba_base to choose the
891 	 * corresponding flash devices.
892 	 *
893 	 * If not, only one flash device is used even if passing
894 	 * different cs using `sf probe`
895 	 */
896 	qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
897 
898 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
899 
900 	mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
901 	qspi_write32(qspi->priv.flags, &regs->mcr,
902 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
903 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
904 
905 	qspi_cfg_smpr(&qspi->priv,
906 		      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
907 		      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
908 
909 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
910 	/*
911 	 * Any read access to non-implemented addresses will provide
912 	 * undefined results.
913 	 *
914 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
915 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
916 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
917 	 * setting the size of these devices to 0.  This would ensure
918 	 * that the complete memory map is assigned to only one flash device.
919 	 */
920 	qspi_write32(qspi->priv.flags, &regs->sfa1ad,
921 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
922 	qspi_write32(qspi->priv.flags, &regs->sfa2ad,
923 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
924 	qspi_write32(qspi->priv.flags, &regs->sfb1ad,
925 		     total_size | amba_bases[bus]);
926 	qspi_write32(qspi->priv.flags, &regs->sfb2ad,
927 		     total_size | amba_bases[bus]);
928 
929 	qspi_set_lut(&qspi->priv);
930 
931 #ifdef CONFIG_SYS_FSL_QSPI_AHB
932 	qspi_init_ahb_read(&qspi->priv);
933 #endif
934 
935 	qspi_module_disable(&qspi->priv, 0);
936 
937 	return &qspi->slave;
938 }
939 
940 void spi_free_slave(struct spi_slave *slave)
941 {
942 	struct fsl_qspi *qspi = to_qspi_spi(slave);
943 
944 	free(qspi);
945 }
946 
947 int spi_claim_bus(struct spi_slave *slave)
948 {
949 	return 0;
950 }
951 
952 void spi_release_bus(struct spi_slave *slave)
953 {
954 	/* Nothing to do */
955 }
956 
957 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
958 		const void *dout, void *din, unsigned long flags)
959 {
960 	struct fsl_qspi *qspi = to_qspi_spi(slave);
961 
962 	return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
963 }
964 
965 void spi_init(void)
966 {
967 	/* Nothing to do */
968 }
969 #else
970 static int fsl_qspi_child_pre_probe(struct udevice *dev)
971 {
972 	struct spi_slave *slave = dev_get_parent_priv(dev);
973 
974 	slave->max_write_size = TX_BUFFER_SIZE;
975 
976 	return 0;
977 }
978 
979 static int fsl_qspi_probe(struct udevice *bus)
980 {
981 	u32 mcr_val;
982 	u32 amba_size_per_chip;
983 	struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
984 	struct fsl_qspi_priv *priv = dev_get_priv(bus);
985 	struct dm_spi_bus *dm_spi_bus;
986 	int i;
987 
988 	dm_spi_bus = bus->uclass_priv;
989 
990 	dm_spi_bus->max_hz = plat->speed_hz;
991 
992 	priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
993 	priv->flags = plat->flags;
994 
995 	priv->speed_hz = plat->speed_hz;
996 	/*
997 	 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
998 	 * AMBA memory zone should be located on the 0~4GB space
999 	 * even on a 64bits cpu.
1000 	 */
1001 	priv->amba_base[0] = (u32)plat->amba_base;
1002 	priv->amba_total_size = (u32)plat->amba_total_size;
1003 	priv->flash_num = plat->flash_num;
1004 	priv->num_chipselect = plat->num_chipselect;
1005 
1006 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1007 	qspi_write32(priv->flags, &priv->regs->mcr,
1008 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1009 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
1010 
1011 	qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1012 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1013 
1014 	/*
1015 	 * Assign AMBA memory zone for every chipselect
1016 	 * QuadSPI has two channels, every channel has two chipselects.
1017 	 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1018 	 * into two parts and assign to every channel. This indicate that every
1019 	 * channel only has one valid chipselect.
1020 	 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1021 	 * into four parts and assign to every chipselect.
1022 	 * Every channel will has two valid chipselects.
1023 	 */
1024 	amba_size_per_chip = priv->amba_total_size >>
1025 			     (priv->num_chipselect >> 1);
1026 	for (i = 1 ; i < priv->num_chipselect ; i++)
1027 		priv->amba_base[i] =
1028 			amba_size_per_chip + priv->amba_base[i - 1];
1029 
1030 	/*
1031 	 * Any read access to non-implemented addresses will provide
1032 	 * undefined results.
1033 	 *
1034 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
1035 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
1036 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1037 	 * setting the size of these devices to 0.  This would ensure
1038 	 * that the complete memory map is assigned to only one flash device.
1039 	 */
1040 	qspi_write32(priv->flags, &priv->regs->sfa1ad, priv->amba_base[1]);
1041 	switch (priv->num_chipselect) {
1042 	case 2:
1043 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1044 			     priv->amba_base[1]);
1045 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1046 			     priv->amba_base[1] + amba_size_per_chip);
1047 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1048 			     priv->amba_base[1] + amba_size_per_chip);
1049 		break;
1050 	case 4:
1051 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1052 			     priv->amba_base[2]);
1053 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1054 			     priv->amba_base[3]);
1055 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1056 			     priv->amba_base[3] + amba_size_per_chip);
1057 		break;
1058 	default:
1059 		debug("Error: Unsupported chipselect number %u!\n",
1060 		      priv->num_chipselect);
1061 		qspi_module_disable(priv, 1);
1062 		return -EINVAL;
1063 	}
1064 
1065 	qspi_set_lut(priv);
1066 
1067 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1068 	qspi_init_ahb_read(priv);
1069 #endif
1070 
1071 	qspi_module_disable(priv, 0);
1072 
1073 	return 0;
1074 }
1075 
1076 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1077 {
1078 	struct fdt_resource res_regs, res_mem;
1079 	struct fsl_qspi_platdata *plat = bus->platdata;
1080 	const void *blob = gd->fdt_blob;
1081 	int node = dev_of_offset(bus);
1082 	int ret, flash_num = 0, subnode;
1083 
1084 	if (fdtdec_get_bool(blob, node, "big-endian"))
1085 		plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1086 
1087 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1088 				     "QuadSPI", &res_regs);
1089 	if (ret) {
1090 		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1091 		return -ENOMEM;
1092 	}
1093 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1094 				     "QuadSPI-memory", &res_mem);
1095 	if (ret) {
1096 		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1097 		return -ENOMEM;
1098 	}
1099 
1100 	/* Count flash numbers */
1101 	fdt_for_each_subnode(subnode, blob, node)
1102 		++flash_num;
1103 
1104 	if (flash_num == 0) {
1105 		debug("Error: Missing flashes!\n");
1106 		return -ENODEV;
1107 	}
1108 
1109 	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1110 					FSL_QSPI_DEFAULT_SCK_FREQ);
1111 	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1112 					      FSL_QSPI_MAX_CHIPSELECT_NUM);
1113 
1114 	plat->reg_base = res_regs.start;
1115 	plat->amba_base = res_mem.start;
1116 	plat->amba_total_size = res_mem.end - res_mem.start + 1;
1117 	plat->flash_num = flash_num;
1118 
1119 	debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1120 	      __func__,
1121 	      (u64)plat->reg_base,
1122 	      (u64)plat->amba_base,
1123 	      (u64)plat->amba_total_size,
1124 	      plat->speed_hz,
1125 	      plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1126 	      );
1127 
1128 	return 0;
1129 }
1130 
1131 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1132 		const void *dout, void *din, unsigned long flags)
1133 {
1134 	struct fsl_qspi_priv *priv;
1135 	struct udevice *bus;
1136 
1137 	bus = dev->parent;
1138 	priv = dev_get_priv(bus);
1139 
1140 	return qspi_xfer(priv, bitlen, dout, din, flags);
1141 }
1142 
1143 static int fsl_qspi_claim_bus(struct udevice *dev)
1144 {
1145 	struct fsl_qspi_priv *priv;
1146 	struct udevice *bus;
1147 	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1148 
1149 	bus = dev->parent;
1150 	priv = dev_get_priv(bus);
1151 
1152 	priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1153 
1154 	qspi_module_disable(priv, 0);
1155 
1156 	return 0;
1157 }
1158 
1159 static int fsl_qspi_release_bus(struct udevice *dev)
1160 {
1161 	struct fsl_qspi_priv *priv;
1162 	struct udevice *bus;
1163 
1164 	bus = dev->parent;
1165 	priv = dev_get_priv(bus);
1166 
1167 	qspi_module_disable(priv, 1);
1168 
1169 	return 0;
1170 }
1171 
1172 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1173 {
1174 	/* Nothing to do */
1175 	return 0;
1176 }
1177 
1178 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1179 {
1180 	/* Nothing to do */
1181 	return 0;
1182 }
1183 
1184 static const struct dm_spi_ops fsl_qspi_ops = {
1185 	.claim_bus	= fsl_qspi_claim_bus,
1186 	.release_bus	= fsl_qspi_release_bus,
1187 	.xfer		= fsl_qspi_xfer,
1188 	.set_speed	= fsl_qspi_set_speed,
1189 	.set_mode	= fsl_qspi_set_mode,
1190 };
1191 
1192 static const struct udevice_id fsl_qspi_ids[] = {
1193 	{ .compatible = "fsl,vf610-qspi" },
1194 	{ .compatible = "fsl,imx6sx-qspi" },
1195 	{ }
1196 };
1197 
1198 U_BOOT_DRIVER(fsl_qspi) = {
1199 	.name	= "fsl_qspi",
1200 	.id	= UCLASS_SPI,
1201 	.of_match = fsl_qspi_ids,
1202 	.ops	= &fsl_qspi_ops,
1203 	.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1204 	.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1205 	.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1206 	.probe	= fsl_qspi_probe,
1207 	.child_pre_probe = fsl_qspi_child_pre_probe,
1208 };
1209 #endif
1210