xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision d928664f)
1 /*
2  * Copyright 2013-2014 Freescale Semiconductor, Inc.
3  *
4  * Freescale Quad Serial Peripheral Interface (QSPI) driver
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include "fsl_qspi.h"
15 
16 #define RX_BUFFER_SIZE		0x80
17 #ifdef CONFIG_MX6SX
18 #define TX_BUFFER_SIZE		0x200
19 #else
20 #define TX_BUFFER_SIZE		0x40
21 #endif
22 
23 #define OFFSET_BITS_MASK	0x00ffffff
24 
25 #define FLASH_STATUS_WEL	0x02
26 
27 /* SEQID */
28 #define SEQID_WREN		1
29 #define SEQID_FAST_READ		2
30 #define SEQID_RDSR		3
31 #define SEQID_SE		4
32 #define SEQID_CHIP_ERASE	5
33 #define SEQID_PP		6
34 #define SEQID_RDID		7
35 #define SEQID_BE_4K		8
36 #ifdef CONFIG_SPI_FLASH_BAR
37 #define SEQID_BRRD		9
38 #define SEQID_BRWR		10
39 #define SEQID_RDEAR		11
40 #define SEQID_WREAR		12
41 #endif
42 
43 /* QSPI CMD */
44 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
45 #define QSPI_CMD_RDSR		0x05	/* Read status register */
46 #define QSPI_CMD_WREN		0x06	/* Write enable */
47 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
48 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
49 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
50 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
51 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
52 
53 /* Used for Micron, winbond and Macronix flashes */
54 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
55 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
56 
57 /* Used for Spansion flashes only. */
58 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
59 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
60 
61 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
62 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
63 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
64 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
65 
66 #ifdef CONFIG_SYS_FSL_QSPI_LE
67 #define qspi_read32		in_le32
68 #define qspi_write32		out_le32
69 #elif defined(CONFIG_SYS_FSL_QSPI_BE)
70 #define qspi_read32		in_be32
71 #define qspi_write32		out_be32
72 #endif
73 
74 static unsigned long spi_bases[] = {
75 	QSPI0_BASE_ADDR,
76 #ifdef CONFIG_MX6SX
77 	QSPI1_BASE_ADDR,
78 #endif
79 };
80 
81 static unsigned long amba_bases[] = {
82 	QSPI0_AMBA_BASE,
83 #ifdef CONFIG_MX6SX
84 	QSPI1_AMBA_BASE,
85 #endif
86 };
87 
88 struct fsl_qspi {
89 	struct spi_slave slave;
90 	unsigned long reg_base;
91 	unsigned long amba_base;
92 	u32 sf_addr;
93 	u8 cur_seqid;
94 };
95 
96 /* QSPI support swapping the flash read/write data
97  * in hardware for LS102xA, but not for VF610 */
98 static inline u32 qspi_endian_xchg(u32 data)
99 {
100 #ifdef CONFIG_VF610
101 	return swab32(data);
102 #else
103 	return data;
104 #endif
105 }
106 
107 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
108 {
109 	return container_of(slave, struct fsl_qspi, slave);
110 }
111 
112 static void qspi_set_lut(struct fsl_qspi *qspi)
113 {
114 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
115 	u32 lut_base;
116 
117 	/* Unlock the LUT */
118 	qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
119 	qspi_write32(&regs->lckcr, QSPI_LCKCR_UNLOCK);
120 
121 	/* Write Enable */
122 	lut_base = SEQID_WREN * 4;
123 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
124 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
125 	qspi_write32(&regs->lut[lut_base + 1], 0);
126 	qspi_write32(&regs->lut[lut_base + 2], 0);
127 	qspi_write32(&regs->lut[lut_base + 3], 0);
128 
129 	/* Fast Read */
130 	lut_base = SEQID_FAST_READ * 4;
131 #ifdef CONFIG_SPI_FLASH_BAR
132 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
133 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
134 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
135 #else
136 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
137 		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
138 			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
139 			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
140 	else
141 		qspi_write32(&regs->lut[lut_base],
142 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
143 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
144 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
145 			     INSTR1(LUT_ADDR));
146 #endif
147 	qspi_write32(&regs->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
148 		INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
149 		INSTR1(LUT_READ));
150 	qspi_write32(&regs->lut[lut_base + 2], 0);
151 	qspi_write32(&regs->lut[lut_base + 3], 0);
152 
153 	/* Read Status */
154 	lut_base = SEQID_RDSR * 4;
155 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
156 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
157 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
158 	qspi_write32(&regs->lut[lut_base + 1], 0);
159 	qspi_write32(&regs->lut[lut_base + 2], 0);
160 	qspi_write32(&regs->lut[lut_base + 3], 0);
161 
162 	/* Erase a sector */
163 	lut_base = SEQID_SE * 4;
164 #ifdef CONFIG_SPI_FLASH_BAR
165 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
166 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
167 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
168 #else
169 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
170 		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
171 			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
172 			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
173 	else
174 		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) |
175 			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
176 			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
177 #endif
178 	qspi_write32(&regs->lut[lut_base + 1], 0);
179 	qspi_write32(&regs->lut[lut_base + 2], 0);
180 	qspi_write32(&regs->lut[lut_base + 3], 0);
181 
182 	/* Erase the whole chip */
183 	lut_base = SEQID_CHIP_ERASE * 4;
184 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) |
185 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
186 	qspi_write32(&regs->lut[lut_base + 1], 0);
187 	qspi_write32(&regs->lut[lut_base + 2], 0);
188 	qspi_write32(&regs->lut[lut_base + 3], 0);
189 
190 	/* Page Program */
191 	lut_base = SEQID_PP * 4;
192 #ifdef CONFIG_SPI_FLASH_BAR
193 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
194 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
195 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
196 #else
197 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
198 		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
199 			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
200 			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
201 	else
202 		qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) |
203 			PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
204 			PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
205 #endif
206 #ifdef CONFIG_MX6SX
207 	/*
208 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
209 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
210 	 */
211 	qspi_write32(&regs->lut[lut_base + 1], OPRND0(0) |
212 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
213 #else
214 	qspi_write32(&regs->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
215 		PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
216 #endif
217 	qspi_write32(&regs->lut[lut_base + 2], 0);
218 	qspi_write32(&regs->lut[lut_base + 3], 0);
219 
220 	/* READ ID */
221 	lut_base = SEQID_RDID * 4;
222 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
223 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
224 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
225 	qspi_write32(&regs->lut[lut_base + 1], 0);
226 	qspi_write32(&regs->lut[lut_base + 2], 0);
227 	qspi_write32(&regs->lut[lut_base + 3], 0);
228 
229 	/* SUB SECTOR 4K ERASE */
230 	lut_base = SEQID_BE_4K * 4;
231 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
232 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
233 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
234 
235 #ifdef CONFIG_SPI_FLASH_BAR
236 	/*
237 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
238 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
239 	 * initialization.
240 	 */
241 	lut_base = SEQID_BRRD * 4;
242 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
243 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
244 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
245 
246 	lut_base = SEQID_BRWR * 4;
247 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
248 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
249 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
250 
251 	lut_base = SEQID_RDEAR * 4;
252 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
253 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
254 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
255 
256 	lut_base = SEQID_WREAR * 4;
257 	qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
258 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
259 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
260 #endif
261 	/* Lock the LUT */
262 	qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
263 	qspi_write32(&regs->lckcr, QSPI_LCKCR_LOCK);
264 }
265 
266 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
267 /*
268  * If we have changed the content of the flash by writing or erasing,
269  * we need to invalidate the AHB buffer. If we do not do so, we may read out
270  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
271  * domain at the same time.
272  */
273 static inline void qspi_ahb_invalid(struct fsl_qspi *q)
274 {
275 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
276 	u32 reg;
277 
278 	reg = qspi_read32(&regs->mcr);
279 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
280 	qspi_write32(&regs->mcr, reg);
281 
282 	/*
283 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
284 	 * Delay 1 us is enough.
285 	 */
286 	udelay(1);
287 
288 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
289 	qspi_write32(&regs->mcr, reg);
290 }
291 
292 /* Read out the data from the AHB buffer. */
293 static inline void qspi_ahb_read(struct fsl_qspi *q, u8 *rxbuf, int len)
294 {
295 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
296 	u32 mcr_reg;
297 
298 	mcr_reg = qspi_read32(&regs->mcr);
299 
300 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
301 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
302 
303 	/* Read out the data directly from the AHB buffer. */
304 	memcpy(rxbuf, (u8 *)(q->amba_base + q->sf_addr), len);
305 
306 	qspi_write32(&regs->mcr, mcr_reg);
307 }
308 
309 static void qspi_enable_ddr_mode(struct fsl_qspi_regs *regs)
310 {
311 	u32 reg, reg2;
312 
313 	reg = qspi_read32(&regs->mcr);
314 	/* Disable the module */
315 	qspi_write32(&regs->mcr, reg | QSPI_MCR_MDIS_MASK);
316 
317 	/* Set the Sampling Register for DDR */
318 	reg2 = qspi_read32(&regs->smpr);
319 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
320 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
321 	qspi_write32(&regs->smpr, reg2);
322 
323 	/* Enable the module again (enable the DDR too) */
324 	reg |= QSPI_MCR_DDR_EN_MASK;
325 	/* Enable bit 29 for imx6sx */
326 	reg |= (1 << 29);
327 
328 	qspi_write32(&regs->mcr, reg);
329 }
330 
331 /*
332  * There are two different ways to read out the data from the flash:
333  *  the "IP Command Read" and the "AHB Command Read".
334  *
335  * The IC guy suggests we use the "AHB Command Read" which is faster
336  * then the "IP Command Read". (What's more is that there is a bug in
337  * the "IP Command Read" in the Vybrid.)
338  *
339  * After we set up the registers for the "AHB Command Read", we can use
340  * the memcpy to read the data directly. A "missed" access to the buffer
341  * causes the controller to clear the buffer, and use the sequence pointed
342  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
343  */
344 static void qspi_init_ahb_read(struct fsl_qspi_regs *regs)
345 {
346 	/* AHB configuration for access buffer 0/1/2 .*/
347 	qspi_write32(&regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
348 	qspi_write32(&regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
349 	qspi_write32(&regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
350 	qspi_write32(&regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
351 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
352 
353 	/* We only use the buffer3 */
354 	qspi_write32(&regs->buf0ind, 0);
355 	qspi_write32(&regs->buf1ind, 0);
356 	qspi_write32(&regs->buf2ind, 0);
357 
358 	/*
359 	 * Set the default lut sequence for AHB Read.
360 	 * Parallel mode is disabled.
361 	 */
362 	qspi_write32(&regs->bfgencr,
363 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
364 
365 	/*Enable DDR Mode*/
366 	qspi_enable_ddr_mode(regs);
367 }
368 #endif
369 
370 void spi_init()
371 {
372 	/* do nothing */
373 }
374 
375 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
376 		unsigned int max_hz, unsigned int mode)
377 {
378 	struct fsl_qspi *qspi;
379 	struct fsl_qspi_regs *regs;
380 	u32 smpr_val;
381 	u32 total_size;
382 
383 	if (bus >= ARRAY_SIZE(spi_bases))
384 		return NULL;
385 
386 	if (cs >= FSL_QSPI_FLASH_NUM)
387 		return NULL;
388 
389 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
390 	if (!qspi)
391 		return NULL;
392 
393 	qspi->reg_base = spi_bases[bus];
394 	/*
395 	 * According cs, use different amba_base to choose the
396 	 * corresponding flash devices.
397 	 *
398 	 * If not, only one flash device is used even if passing
399 	 * different cs using `sf probe`
400 	 */
401 	qspi->amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
402 
403 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
404 
405 	regs = (struct fsl_qspi_regs *)qspi->reg_base;
406 	qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
407 
408 	smpr_val = qspi_read32(&regs->smpr);
409 	qspi_write32(&regs->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
410 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
411 	qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
412 
413 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
414 	/*
415 	 * Any read access to non-implemented addresses will provide
416 	 * undefined results.
417 	 *
418 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
419 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
420 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
421 	 * setting the size of these devices to 0.  This would ensure
422 	 * that the complete memory map is assigned to only one flash device.
423 	 */
424 	qspi_write32(&regs->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
425 	qspi_write32(&regs->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
426 	qspi_write32(&regs->sfb1ad, total_size | amba_bases[bus]);
427 	qspi_write32(&regs->sfb2ad, total_size | amba_bases[bus]);
428 
429 	qspi_set_lut(qspi);
430 
431 	smpr_val = qspi_read32(&regs->smpr);
432 	smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
433 	qspi_write32(&regs->smpr, smpr_val);
434 	qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
435 
436 #ifdef CONFIG_SYS_FSL_QSPI_AHB
437 	qspi_init_ahb_read(regs);
438 #endif
439 	return &qspi->slave;
440 }
441 
442 void spi_free_slave(struct spi_slave *slave)
443 {
444 	struct fsl_qspi *qspi = to_qspi_spi(slave);
445 
446 	free(qspi);
447 }
448 
449 int spi_claim_bus(struct spi_slave *slave)
450 {
451 	return 0;
452 }
453 
454 #ifdef CONFIG_SPI_FLASH_BAR
455 /* Bank register read/write, EAR register read/write */
456 static void qspi_op_rdbank(struct fsl_qspi *qspi, u8 *rxbuf, u32 len)
457 {
458 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
459 	u32 reg, mcr_reg, data, seqid;
460 
461 	mcr_reg = qspi_read32(&regs->mcr);
462 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
463 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
464 	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
465 
466 	qspi_write32(&regs->sfar, qspi->amba_base);
467 
468 	if (qspi->cur_seqid == QSPI_CMD_BRRD)
469 		seqid = SEQID_BRRD;
470 	else
471 		seqid = SEQID_RDEAR;
472 
473 	qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
474 
475 	/* Wait previous command complete */
476 	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
477 		;
478 
479 	while (1) {
480 		reg = qspi_read32(&regs->rbsr);
481 		if (reg & QSPI_RBSR_RDBFL_MASK) {
482 			data = qspi_read32(&regs->rbdr[0]);
483 			data = qspi_endian_xchg(data);
484 			memcpy(rxbuf, &data, len);
485 			qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
486 				     QSPI_MCR_CLR_RXF_MASK);
487 			break;
488 		}
489 	}
490 
491 	qspi_write32(&regs->mcr, mcr_reg);
492 }
493 #endif
494 
495 static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
496 {
497 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
498 	u32 mcr_reg, rbsr_reg, data;
499 	int i, size;
500 
501 	mcr_reg = qspi_read32(&regs->mcr);
502 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
503 		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
504 	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
505 
506 	qspi_write32(&regs->sfar, qspi->amba_base);
507 
508 	qspi_write32(&regs->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
509 	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
510 		;
511 
512 	i = 0;
513 	size = len;
514 	while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
515 		rbsr_reg = qspi_read32(&regs->rbsr);
516 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
517 			data = qspi_read32(&regs->rbdr[i]);
518 			data = qspi_endian_xchg(data);
519 			memcpy(rxbuf, &data, 4);
520 			rxbuf++;
521 			size -= 4;
522 			i++;
523 		}
524 	}
525 
526 	qspi_write32(&regs->mcr, mcr_reg);
527 }
528 
529 #ifndef CONFIG_SYS_FSL_QSPI_AHB
530 /* If not use AHB read, read data from ip interface */
531 static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
532 {
533 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
534 	u32 mcr_reg, data;
535 	int i, size;
536 	u32 to_or_from;
537 
538 	mcr_reg = qspi_read32(&regs->mcr);
539 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
540 		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
541 	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
542 
543 	to_or_from = qspi->sf_addr + qspi->amba_base;
544 
545 	while (len > 0) {
546 		qspi_write32(&regs->sfar, to_or_from);
547 
548 		size = (len > RX_BUFFER_SIZE) ?
549 			RX_BUFFER_SIZE : len;
550 
551 		qspi_write32(&regs->ipcr,
552 			(SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
553 		while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
554 			;
555 
556 		to_or_from += size;
557 		len -= size;
558 
559 		i = 0;
560 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
561 			data = qspi_read32(&regs->rbdr[i]);
562 			data = qspi_endian_xchg(data);
563 			memcpy(rxbuf, &data, 4);
564 			rxbuf++;
565 			size -= 4;
566 			i++;
567 		}
568 		qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
569 			QSPI_MCR_CLR_RXF_MASK);
570 	}
571 
572 	qspi_write32(&regs->mcr, mcr_reg);
573 }
574 #endif
575 
576 static void qspi_op_write(struct fsl_qspi *qspi, u8 *txbuf, u32 len)
577 {
578 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
579 	u32 mcr_reg, data, reg, status_reg, seqid;
580 	int i, size, tx_size;
581 	u32 to_or_from = 0;
582 
583 	mcr_reg = qspi_read32(&regs->mcr);
584 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
585 		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
586 	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
587 
588 	status_reg = 0;
589 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
590 		qspi_write32(&regs->ipcr,
591 			(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
592 		while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
593 			;
594 
595 		qspi_write32(&regs->ipcr,
596 			(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
597 		while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
598 			;
599 
600 		reg = qspi_read32(&regs->rbsr);
601 		if (reg & QSPI_RBSR_RDBFL_MASK) {
602 			status_reg = qspi_read32(&regs->rbdr[0]);
603 			status_reg = qspi_endian_xchg(status_reg);
604 		}
605 		qspi_write32(&regs->mcr,
606 			qspi_read32(&regs->mcr) | QSPI_MCR_CLR_RXF_MASK);
607 	}
608 
609 	/* Default is page programming */
610 	seqid = SEQID_PP;
611 #ifdef CONFIG_SPI_FLASH_BAR
612 	if (qspi->cur_seqid == QSPI_CMD_BRWR)
613 		seqid = SEQID_BRWR;
614 	else if (qspi->cur_seqid == QSPI_CMD_WREAR)
615 		seqid = SEQID_WREAR;
616 #endif
617 
618 	to_or_from = qspi->sf_addr + qspi->amba_base;
619 
620 	qspi_write32(&regs->sfar, to_or_from);
621 
622 	tx_size = (len > TX_BUFFER_SIZE) ?
623 		TX_BUFFER_SIZE : len;
624 
625 	size = tx_size / 4;
626 	for (i = 0; i < size; i++) {
627 		memcpy(&data, txbuf, 4);
628 		data = qspi_endian_xchg(data);
629 		qspi_write32(&regs->tbdr, data);
630 		txbuf += 4;
631 	}
632 
633 	size = tx_size % 4;
634 	if (size) {
635 		data = 0;
636 		memcpy(&data, txbuf, size);
637 		data = qspi_endian_xchg(data);
638 		qspi_write32(&regs->tbdr, data);
639 	}
640 
641 	qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
642 	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
643 		;
644 
645 	qspi_write32(&regs->mcr, mcr_reg);
646 }
647 
648 static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
649 {
650 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
651 	u32 mcr_reg, reg, data;
652 
653 	mcr_reg = qspi_read32(&regs->mcr);
654 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
655 		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
656 	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
657 
658 	qspi_write32(&regs->sfar, qspi->amba_base);
659 
660 	qspi_write32(&regs->ipcr,
661 		(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
662 	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
663 		;
664 
665 	while (1) {
666 		reg = qspi_read32(&regs->rbsr);
667 		if (reg & QSPI_RBSR_RDBFL_MASK) {
668 			data = qspi_read32(&regs->rbdr[0]);
669 			data = qspi_endian_xchg(data);
670 			memcpy(rxbuf, &data, 4);
671 			qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
672 				QSPI_MCR_CLR_RXF_MASK);
673 			break;
674 		}
675 	}
676 
677 	qspi_write32(&regs->mcr, mcr_reg);
678 }
679 
680 static void qspi_op_erase(struct fsl_qspi *qspi)
681 {
682 	struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
683 	u32 mcr_reg;
684 	u32 to_or_from = 0;
685 
686 	mcr_reg = qspi_read32(&regs->mcr);
687 	qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
688 		QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
689 	qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
690 
691 	to_or_from = qspi->sf_addr + qspi->amba_base;
692 	qspi_write32(&regs->sfar, to_or_from);
693 
694 	qspi_write32(&regs->ipcr,
695 		(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
696 	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
697 		;
698 
699 	if (qspi->cur_seqid == QSPI_CMD_SE) {
700 		qspi_write32(&regs->ipcr,
701 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
702 	} else if (qspi->cur_seqid == QSPI_CMD_BE_4K) {
703 		qspi_write32(&regs->ipcr,
704 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
705 	}
706 	while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
707 		;
708 
709 	qspi_write32(&regs->mcr, mcr_reg);
710 }
711 
712 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
713 		const void *dout, void *din, unsigned long flags)
714 {
715 	struct fsl_qspi *qspi = to_qspi_spi(slave);
716 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
717 	static u32 wr_sfaddr;
718 	u32 txbuf;
719 
720 	if (dout) {
721 		if (flags & SPI_XFER_BEGIN) {
722 			qspi->cur_seqid = *(u8 *)dout;
723 			memcpy(&txbuf, dout, 4);
724 		}
725 
726 		if (flags == SPI_XFER_END) {
727 			qspi->sf_addr = wr_sfaddr;
728 			qspi_op_write(qspi, (u8 *)dout, bytes);
729 			return 0;
730 		}
731 
732 		if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
733 			qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
734 		} else if ((qspi->cur_seqid == QSPI_CMD_SE) ||
735 			   (qspi->cur_seqid == QSPI_CMD_BE_4K)) {
736 			qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
737 			qspi_op_erase(qspi);
738 		} else if (qspi->cur_seqid == QSPI_CMD_PP)
739 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
740 #ifdef CONFIG_SPI_FLASH_BAR
741 		else if ((qspi->cur_seqid == QSPI_CMD_BRWR) ||
742 			 (qspi->cur_seqid == QSPI_CMD_WREAR)) {
743 			wr_sfaddr = 0;
744 		}
745 #endif
746 	}
747 
748 	if (din) {
749 		if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
750 #ifdef CONFIG_SYS_FSL_QSPI_AHB
751 			qspi_ahb_read(qspi, din, bytes);
752 #else
753 			qspi_op_read(qspi, din, bytes);
754 #endif
755 		}
756 		else if (qspi->cur_seqid == QSPI_CMD_RDID)
757 			qspi_op_rdid(qspi, din, bytes);
758 		else if (qspi->cur_seqid == QSPI_CMD_RDSR)
759 			qspi_op_rdsr(qspi, din);
760 #ifdef CONFIG_SPI_FLASH_BAR
761 		else if ((qspi->cur_seqid == QSPI_CMD_BRRD) ||
762 			 (qspi->cur_seqid == QSPI_CMD_RDEAR)) {
763 			qspi->sf_addr = 0;
764 			qspi_op_rdbank(qspi, din, bytes);
765 		}
766 #endif
767 	}
768 
769 #ifdef CONFIG_SYS_FSL_QSPI_AHB
770 	if ((qspi->cur_seqid == QSPI_CMD_SE) ||
771 	    (qspi->cur_seqid == QSPI_CMD_PP) ||
772 	    (qspi->cur_seqid == QSPI_CMD_BE_4K) ||
773 	    (qspi->cur_seqid == QSPI_CMD_WREAR) ||
774 	    (qspi->cur_seqid == QSPI_CMD_BRWR))
775 		qspi_ahb_invalid(qspi);
776 #endif
777 
778 	return 0;
779 }
780 
781 void spi_release_bus(struct spi_slave *slave)
782 {
783 	/* Nothing to do */
784 }
785