1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright 2013-2015 Freescale Semiconductor, Inc. 4 * 5 * Freescale Quad Serial Peripheral Interface (QSPI) driver 6 */ 7 8 #include <common.h> 9 #include <malloc.h> 10 #include <spi.h> 11 #include <asm/io.h> 12 #include <linux/sizes.h> 13 #include <dm.h> 14 #include <errno.h> 15 #include <watchdog.h> 16 #include <wait_bit.h> 17 #include "fsl_qspi.h" 18 19 DECLARE_GLOBAL_DATA_PTR; 20 21 #define RX_BUFFER_SIZE 0x80 22 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \ 23 defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D) 24 #define TX_BUFFER_SIZE 0x200 25 #else 26 #define TX_BUFFER_SIZE 0x40 27 #endif 28 29 #define OFFSET_BITS_MASK GENMASK(23, 0) 30 31 #define FLASH_STATUS_WEL 0x02 32 33 /* SEQID */ 34 #define SEQID_WREN 1 35 #define SEQID_FAST_READ 2 36 #define SEQID_RDSR 3 37 #define SEQID_SE 4 38 #define SEQID_CHIP_ERASE 5 39 #define SEQID_PP 6 40 #define SEQID_RDID 7 41 #define SEQID_BE_4K 8 42 #ifdef CONFIG_SPI_FLASH_BAR 43 #define SEQID_BRRD 9 44 #define SEQID_BRWR 10 45 #define SEQID_RDEAR 11 46 #define SEQID_WREAR 12 47 #endif 48 #define SEQID_WRAR 13 49 #define SEQID_RDAR 14 50 51 /* QSPI CMD */ 52 #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */ 53 #define QSPI_CMD_RDSR 0x05 /* Read status register */ 54 #define QSPI_CMD_WREN 0x06 /* Write enable */ 55 #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */ 56 #define QSPI_CMD_BE_4K 0x20 /* 4K erase */ 57 #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */ 58 #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */ 59 #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */ 60 61 /* Used for Micron, winbond and Macronix flashes */ 62 #define QSPI_CMD_WREAR 0xc5 /* EAR register write */ 63 #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */ 64 65 /* Used for Spansion flashes only. */ 66 #define QSPI_CMD_BRRD 0x16 /* Bank register read */ 67 #define QSPI_CMD_BRWR 0x17 /* Bank register write */ 68 69 /* Used for Spansion S25FS-S family flash only. */ 70 #define QSPI_CMD_RDAR 0x65 /* Read any device register */ 71 #define QSPI_CMD_WRAR 0x71 /* Write any device register */ 72 73 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */ 74 #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */ 75 #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */ 76 #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */ 77 78 /* fsl_qspi_platdata flags */ 79 #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0) 80 81 /* default SCK frequency, unit: HZ */ 82 #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000 83 84 /* QSPI max chipselect signals number */ 85 #define FSL_QSPI_MAX_CHIPSELECT_NUM 4 86 87 #ifdef CONFIG_DM_SPI 88 /** 89 * struct fsl_qspi_platdata - platform data for Freescale QSPI 90 * 91 * @flags: Flags for QSPI QSPI_FLAG_... 92 * @speed_hz: Default SCK frequency 93 * @reg_base: Base address of QSPI registers 94 * @amba_base: Base address of QSPI memory mapping 95 * @amba_total_size: size of QSPI memory mapping 96 * @flash_num: Number of active slave devices 97 * @num_chipselect: Number of QSPI chipselect signals 98 */ 99 struct fsl_qspi_platdata { 100 u32 flags; 101 u32 speed_hz; 102 fdt_addr_t reg_base; 103 fdt_addr_t amba_base; 104 fdt_size_t amba_total_size; 105 u32 flash_num; 106 u32 num_chipselect; 107 }; 108 #endif 109 110 /** 111 * struct fsl_qspi_priv - private data for Freescale QSPI 112 * 113 * @flags: Flags for QSPI QSPI_FLAG_... 114 * @bus_clk: QSPI input clk frequency 115 * @speed_hz: Default SCK frequency 116 * @cur_seqid: current LUT table sequence id 117 * @sf_addr: flash access offset 118 * @amba_base: Base address of QSPI memory mapping of every CS 119 * @amba_total_size: size of QSPI memory mapping 120 * @cur_amba_base: Base address of QSPI memory mapping of current CS 121 * @flash_num: Number of active slave devices 122 * @num_chipselect: Number of QSPI chipselect signals 123 * @regs: Point to QSPI register structure for I/O access 124 */ 125 struct fsl_qspi_priv { 126 u32 flags; 127 u32 bus_clk; 128 u32 speed_hz; 129 u32 cur_seqid; 130 u32 sf_addr; 131 u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM]; 132 u32 amba_total_size; 133 u32 cur_amba_base; 134 u32 flash_num; 135 u32 num_chipselect; 136 struct fsl_qspi_regs *regs; 137 }; 138 139 #ifndef CONFIG_DM_SPI 140 struct fsl_qspi { 141 struct spi_slave slave; 142 struct fsl_qspi_priv priv; 143 }; 144 #endif 145 146 static u32 qspi_read32(u32 flags, u32 *addr) 147 { 148 return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? 149 in_be32(addr) : in_le32(addr); 150 } 151 152 static void qspi_write32(u32 flags, u32 *addr, u32 val) 153 { 154 flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? 155 out_be32(addr, val) : out_le32(addr, val); 156 } 157 158 static inline int is_controller_busy(const struct fsl_qspi_priv *priv) 159 { 160 u32 val; 161 const u32 mask = QSPI_SR_BUSY_MASK | QSPI_SR_AHB_ACC_MASK | 162 QSPI_SR_IP_ACC_MASK; 163 unsigned int retry = 5; 164 165 do { 166 val = qspi_read32(priv->flags, &priv->regs->sr); 167 168 if ((~val & mask) == mask) 169 return 0; 170 171 udelay(1); 172 } while (--retry); 173 174 return -ETIMEDOUT; 175 } 176 177 /* QSPI support swapping the flash read/write data 178 * in hardware for LS102xA, but not for VF610 */ 179 static inline u32 qspi_endian_xchg(u32 data) 180 { 181 #ifdef CONFIG_VF610 182 return swab32(data); 183 #else 184 return data; 185 #endif 186 } 187 188 static void qspi_set_lut(struct fsl_qspi_priv *priv) 189 { 190 struct fsl_qspi_regs *regs = priv->regs; 191 u32 lut_base; 192 193 /* Unlock the LUT */ 194 qspi_write32(priv->flags, ®s->lutkey, LUT_KEY_VALUE); 195 qspi_write32(priv->flags, ®s->lckcr, QSPI_LCKCR_UNLOCK); 196 197 /* Write Enable */ 198 lut_base = SEQID_WREN * 4; 199 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_WREN) | 200 PAD0(LUT_PAD1) | INSTR0(LUT_CMD)); 201 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); 202 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 203 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 204 205 /* Fast Read */ 206 lut_base = SEQID_FAST_READ * 4; 207 #ifdef CONFIG_SPI_FLASH_BAR 208 qspi_write32(priv->flags, ®s->lut[lut_base], 209 OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) | 210 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 211 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 212 #else 213 if (FSL_QSPI_FLASH_SIZE <= SZ_16M) 214 qspi_write32(priv->flags, ®s->lut[lut_base], 215 OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) | 216 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 217 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 218 else 219 qspi_write32(priv->flags, ®s->lut[lut_base], 220 OPRND0(QSPI_CMD_FAST_READ_4B) | 221 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | 222 OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) | 223 INSTR1(LUT_ADDR)); 224 #endif 225 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 226 OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) | 227 OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) | 228 INSTR1(LUT_READ)); 229 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 230 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 231 232 /* Read Status */ 233 lut_base = SEQID_RDSR * 4; 234 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDSR) | 235 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | 236 PAD1(LUT_PAD1) | INSTR1(LUT_READ)); 237 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); 238 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 239 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 240 241 /* Erase a sector */ 242 lut_base = SEQID_SE * 4; 243 #ifdef CONFIG_SPI_FLASH_BAR 244 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_SE) | 245 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 246 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 247 #else 248 if (FSL_QSPI_FLASH_SIZE <= SZ_16M) 249 qspi_write32(priv->flags, ®s->lut[lut_base], 250 OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) | 251 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 252 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 253 else 254 qspi_write32(priv->flags, ®s->lut[lut_base], 255 OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) | 256 INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) | 257 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 258 #endif 259 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); 260 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 261 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 262 263 /* Erase the whole chip */ 264 lut_base = SEQID_CHIP_ERASE * 4; 265 qspi_write32(priv->flags, ®s->lut[lut_base], 266 OPRND0(QSPI_CMD_CHIP_ERASE) | 267 PAD0(LUT_PAD1) | INSTR0(LUT_CMD)); 268 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); 269 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 270 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 271 272 /* Page Program */ 273 lut_base = SEQID_PP * 4; 274 #ifdef CONFIG_SPI_FLASH_BAR 275 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_PP) | 276 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 277 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 278 #else 279 if (FSL_QSPI_FLASH_SIZE <= SZ_16M) 280 qspi_write32(priv->flags, ®s->lut[lut_base], 281 OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) | 282 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 283 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 284 else 285 qspi_write32(priv->flags, ®s->lut[lut_base], 286 OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) | 287 INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) | 288 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 289 #endif 290 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \ 291 defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D) 292 /* 293 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly. 294 * So, Use IDATSZ in IPCR to determine the size and here set 0. 295 */ 296 qspi_write32(priv->flags, ®s->lut[lut_base + 1], OPRND0(0) | 297 PAD0(LUT_PAD1) | INSTR0(LUT_WRITE)); 298 #else 299 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 300 OPRND0(TX_BUFFER_SIZE) | 301 PAD0(LUT_PAD1) | INSTR0(LUT_WRITE)); 302 #endif 303 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 304 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 305 306 /* READ ID */ 307 lut_base = SEQID_RDID * 4; 308 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDID) | 309 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) | 310 PAD1(LUT_PAD1) | INSTR1(LUT_READ)); 311 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); 312 qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); 313 qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); 314 315 /* SUB SECTOR 4K ERASE */ 316 lut_base = SEQID_BE_4K * 4; 317 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) | 318 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 319 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 320 321 #ifdef CONFIG_SPI_FLASH_BAR 322 /* 323 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to 324 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during 325 * initialization. 326 */ 327 lut_base = SEQID_BRRD * 4; 328 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_BRRD) | 329 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | 330 PAD1(LUT_PAD1) | INSTR1(LUT_READ)); 331 332 lut_base = SEQID_BRWR * 4; 333 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_BRWR) | 334 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | 335 PAD1(LUT_PAD1) | INSTR1(LUT_WRITE)); 336 337 lut_base = SEQID_RDEAR * 4; 338 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) | 339 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | 340 PAD1(LUT_PAD1) | INSTR1(LUT_READ)); 341 342 lut_base = SEQID_WREAR * 4; 343 qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_WREAR) | 344 PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | 345 PAD1(LUT_PAD1) | INSTR1(LUT_WRITE)); 346 #endif 347 348 /* 349 * Read any device register. 350 * Used for Spansion S25FS-S family flash only. 351 */ 352 lut_base = SEQID_RDAR * 4; 353 qspi_write32(priv->flags, ®s->lut[lut_base], 354 OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) | 355 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 356 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 357 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 358 OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) | 359 OPRND1(1) | PAD1(LUT_PAD1) | 360 INSTR1(LUT_READ)); 361 362 /* 363 * Write any device register. 364 * Used for Spansion S25FS-S family flash only. 365 */ 366 lut_base = SEQID_WRAR * 4; 367 qspi_write32(priv->flags, ®s->lut[lut_base], 368 OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) | 369 INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | 370 PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); 371 qspi_write32(priv->flags, ®s->lut[lut_base + 1], 372 OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE)); 373 374 /* Lock the LUT */ 375 qspi_write32(priv->flags, ®s->lutkey, LUT_KEY_VALUE); 376 qspi_write32(priv->flags, ®s->lckcr, QSPI_LCKCR_LOCK); 377 } 378 379 #if defined(CONFIG_SYS_FSL_QSPI_AHB) 380 /* 381 * If we have changed the content of the flash by writing or erasing, 382 * we need to invalidate the AHB buffer. If we do not do so, we may read out 383 * the wrong data. The spec tells us reset the AHB domain and Serial Flash 384 * domain at the same time. 385 */ 386 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv) 387 { 388 struct fsl_qspi_regs *regs = priv->regs; 389 u32 reg; 390 391 reg = qspi_read32(priv->flags, ®s->mcr); 392 reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK; 393 qspi_write32(priv->flags, ®s->mcr, reg); 394 395 /* 396 * The minimum delay : 1 AHB + 2 SFCK clocks. 397 * Delay 1 us is enough. 398 */ 399 udelay(1); 400 401 reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK); 402 qspi_write32(priv->flags, ®s->mcr, reg); 403 } 404 405 /* Read out the data from the AHB buffer. */ 406 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len) 407 { 408 struct fsl_qspi_regs *regs = priv->regs; 409 u32 mcr_reg; 410 void *rx_addr; 411 412 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 413 414 qspi_write32(priv->flags, ®s->mcr, 415 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 416 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 417 418 rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr); 419 /* Read out the data directly from the AHB buffer. */ 420 memcpy(rxbuf, rx_addr, len); 421 422 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 423 } 424 425 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv) 426 { 427 u32 reg, reg2; 428 struct fsl_qspi_regs *regs = priv->regs; 429 430 reg = qspi_read32(priv->flags, ®s->mcr); 431 /* Disable the module */ 432 qspi_write32(priv->flags, ®s->mcr, reg | QSPI_MCR_MDIS_MASK); 433 434 /* Set the Sampling Register for DDR */ 435 reg2 = qspi_read32(priv->flags, ®s->smpr); 436 reg2 &= ~QSPI_SMPR_DDRSMP_MASK; 437 reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT); 438 qspi_write32(priv->flags, ®s->smpr, reg2); 439 440 /* Enable the module again (enable the DDR too) */ 441 reg |= QSPI_MCR_DDR_EN_MASK; 442 /* Enable bit 29 for imx6sx */ 443 reg |= BIT(29); 444 445 qspi_write32(priv->flags, ®s->mcr, reg); 446 } 447 448 /* 449 * There are two different ways to read out the data from the flash: 450 * the "IP Command Read" and the "AHB Command Read". 451 * 452 * The IC guy suggests we use the "AHB Command Read" which is faster 453 * then the "IP Command Read". (What's more is that there is a bug in 454 * the "IP Command Read" in the Vybrid.) 455 * 456 * After we set up the registers for the "AHB Command Read", we can use 457 * the memcpy to read the data directly. A "missed" access to the buffer 458 * causes the controller to clear the buffer, and use the sequence pointed 459 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. 460 */ 461 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv) 462 { 463 struct fsl_qspi_regs *regs = priv->regs; 464 465 /* AHB configuration for access buffer 0/1/2 .*/ 466 qspi_write32(priv->flags, ®s->buf0cr, QSPI_BUFXCR_INVALID_MSTRID); 467 qspi_write32(priv->flags, ®s->buf1cr, QSPI_BUFXCR_INVALID_MSTRID); 468 qspi_write32(priv->flags, ®s->buf2cr, QSPI_BUFXCR_INVALID_MSTRID); 469 qspi_write32(priv->flags, ®s->buf3cr, QSPI_BUF3CR_ALLMST_MASK | 470 (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT)); 471 472 /* We only use the buffer3 */ 473 qspi_write32(priv->flags, ®s->buf0ind, 0); 474 qspi_write32(priv->flags, ®s->buf1ind, 0); 475 qspi_write32(priv->flags, ®s->buf2ind, 0); 476 477 /* 478 * Set the default lut sequence for AHB Read. 479 * Parallel mode is disabled. 480 */ 481 qspi_write32(priv->flags, ®s->bfgencr, 482 SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT); 483 484 /*Enable DDR Mode*/ 485 qspi_enable_ddr_mode(priv); 486 } 487 #endif 488 489 #ifdef CONFIG_SPI_FLASH_BAR 490 /* Bank register read/write, EAR register read/write */ 491 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len) 492 { 493 struct fsl_qspi_regs *regs = priv->regs; 494 u32 reg, mcr_reg, data, seqid; 495 496 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 497 qspi_write32(priv->flags, ®s->mcr, 498 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 499 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 500 qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); 501 502 qspi_write32(priv->flags, ®s->sfar, priv->cur_amba_base); 503 504 if (priv->cur_seqid == QSPI_CMD_BRRD) 505 seqid = SEQID_BRRD; 506 else 507 seqid = SEQID_RDEAR; 508 509 qspi_write32(priv->flags, ®s->ipcr, 510 (seqid << QSPI_IPCR_SEQID_SHIFT) | len); 511 512 /* Wait previous command complete */ 513 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 514 ; 515 516 while (1) { 517 WATCHDOG_RESET(); 518 519 reg = qspi_read32(priv->flags, ®s->rbsr); 520 if (reg & QSPI_RBSR_RDBFL_MASK) { 521 data = qspi_read32(priv->flags, ®s->rbdr[0]); 522 data = qspi_endian_xchg(data); 523 memcpy(rxbuf, &data, len); 524 qspi_write32(priv->flags, ®s->mcr, 525 qspi_read32(priv->flags, ®s->mcr) | 526 QSPI_MCR_CLR_RXF_MASK); 527 break; 528 } 529 } 530 531 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 532 } 533 #endif 534 535 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len) 536 { 537 struct fsl_qspi_regs *regs = priv->regs; 538 u32 mcr_reg, rbsr_reg, data, size; 539 int i; 540 541 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 542 qspi_write32(priv->flags, ®s->mcr, 543 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 544 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 545 qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); 546 547 qspi_write32(priv->flags, ®s->sfar, priv->cur_amba_base); 548 549 qspi_write32(priv->flags, ®s->ipcr, 550 (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0); 551 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 552 ; 553 554 i = 0; 555 while ((RX_BUFFER_SIZE >= len) && (len > 0)) { 556 WATCHDOG_RESET(); 557 558 rbsr_reg = qspi_read32(priv->flags, ®s->rbsr); 559 if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) { 560 data = qspi_read32(priv->flags, ®s->rbdr[i]); 561 data = qspi_endian_xchg(data); 562 size = (len < 4) ? len : 4; 563 memcpy(rxbuf, &data, size); 564 len -= size; 565 rxbuf++; 566 i++; 567 } 568 } 569 570 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 571 } 572 573 /* If not use AHB read, read data from ip interface */ 574 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len) 575 { 576 struct fsl_qspi_regs *regs = priv->regs; 577 u32 mcr_reg, data; 578 int i, size; 579 u32 to_or_from; 580 u32 seqid; 581 582 if (priv->cur_seqid == QSPI_CMD_RDAR) 583 seqid = SEQID_RDAR; 584 else 585 seqid = SEQID_FAST_READ; 586 587 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 588 qspi_write32(priv->flags, ®s->mcr, 589 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 590 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 591 qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); 592 593 to_or_from = priv->sf_addr + priv->cur_amba_base; 594 595 while (len > 0) { 596 WATCHDOG_RESET(); 597 598 qspi_write32(priv->flags, ®s->sfar, to_or_from); 599 600 size = (len > RX_BUFFER_SIZE) ? 601 RX_BUFFER_SIZE : len; 602 603 qspi_write32(priv->flags, ®s->ipcr, 604 (seqid << QSPI_IPCR_SEQID_SHIFT) | 605 size); 606 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 607 ; 608 609 to_or_from += size; 610 len -= size; 611 612 i = 0; 613 while ((RX_BUFFER_SIZE >= size) && (size > 0)) { 614 data = qspi_read32(priv->flags, ®s->rbdr[i]); 615 data = qspi_endian_xchg(data); 616 if (size < 4) 617 memcpy(rxbuf, &data, size); 618 else 619 memcpy(rxbuf, &data, 4); 620 rxbuf++; 621 size -= 4; 622 i++; 623 } 624 qspi_write32(priv->flags, ®s->mcr, 625 qspi_read32(priv->flags, ®s->mcr) | 626 QSPI_MCR_CLR_RXF_MASK); 627 } 628 629 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 630 } 631 632 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len) 633 { 634 struct fsl_qspi_regs *regs = priv->regs; 635 u32 mcr_reg, data, reg, status_reg, seqid; 636 int i, size, tx_size; 637 u32 to_or_from = 0; 638 639 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 640 qspi_write32(priv->flags, ®s->mcr, 641 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 642 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 643 qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); 644 645 status_reg = 0; 646 while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) { 647 WATCHDOG_RESET(); 648 649 qspi_write32(priv->flags, ®s->ipcr, 650 (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0); 651 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 652 ; 653 654 qspi_write32(priv->flags, ®s->ipcr, 655 (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1); 656 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 657 ; 658 659 reg = qspi_read32(priv->flags, ®s->rbsr); 660 if (reg & QSPI_RBSR_RDBFL_MASK) { 661 status_reg = qspi_read32(priv->flags, ®s->rbdr[0]); 662 status_reg = qspi_endian_xchg(status_reg); 663 } 664 qspi_write32(priv->flags, ®s->mcr, 665 qspi_read32(priv->flags, ®s->mcr) | 666 QSPI_MCR_CLR_RXF_MASK); 667 } 668 669 /* Default is page programming */ 670 seqid = SEQID_PP; 671 if (priv->cur_seqid == QSPI_CMD_WRAR) 672 seqid = SEQID_WRAR; 673 #ifdef CONFIG_SPI_FLASH_BAR 674 if (priv->cur_seqid == QSPI_CMD_BRWR) 675 seqid = SEQID_BRWR; 676 else if (priv->cur_seqid == QSPI_CMD_WREAR) 677 seqid = SEQID_WREAR; 678 #endif 679 680 to_or_from = priv->sf_addr + priv->cur_amba_base; 681 682 qspi_write32(priv->flags, ®s->sfar, to_or_from); 683 684 tx_size = (len > TX_BUFFER_SIZE) ? 685 TX_BUFFER_SIZE : len; 686 687 size = tx_size / 16; 688 /* 689 * There must be atleast 128bit data 690 * available in TX FIFO for any pop operation 691 */ 692 if (tx_size % 16) 693 size++; 694 for (i = 0; i < size * 4; i++) { 695 memcpy(&data, txbuf, 4); 696 data = qspi_endian_xchg(data); 697 qspi_write32(priv->flags, ®s->tbdr, data); 698 txbuf += 4; 699 } 700 701 qspi_write32(priv->flags, ®s->ipcr, 702 (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size); 703 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 704 ; 705 706 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 707 } 708 709 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len) 710 { 711 struct fsl_qspi_regs *regs = priv->regs; 712 u32 mcr_reg, reg, data; 713 714 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 715 qspi_write32(priv->flags, ®s->mcr, 716 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 717 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 718 qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); 719 720 qspi_write32(priv->flags, ®s->sfar, priv->cur_amba_base); 721 722 qspi_write32(priv->flags, ®s->ipcr, 723 (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0); 724 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 725 ; 726 727 while (1) { 728 WATCHDOG_RESET(); 729 730 reg = qspi_read32(priv->flags, ®s->rbsr); 731 if (reg & QSPI_RBSR_RDBFL_MASK) { 732 data = qspi_read32(priv->flags, ®s->rbdr[0]); 733 data = qspi_endian_xchg(data); 734 memcpy(rxbuf, &data, len); 735 qspi_write32(priv->flags, ®s->mcr, 736 qspi_read32(priv->flags, ®s->mcr) | 737 QSPI_MCR_CLR_RXF_MASK); 738 break; 739 } 740 } 741 742 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 743 } 744 745 static void qspi_op_erase(struct fsl_qspi_priv *priv) 746 { 747 struct fsl_qspi_regs *regs = priv->regs; 748 u32 mcr_reg; 749 u32 to_or_from = 0; 750 751 mcr_reg = qspi_read32(priv->flags, ®s->mcr); 752 qspi_write32(priv->flags, ®s->mcr, 753 QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | 754 QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); 755 qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); 756 757 to_or_from = priv->sf_addr + priv->cur_amba_base; 758 qspi_write32(priv->flags, ®s->sfar, to_or_from); 759 760 qspi_write32(priv->flags, ®s->ipcr, 761 (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0); 762 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 763 ; 764 765 if (priv->cur_seqid == QSPI_CMD_SE) { 766 qspi_write32(priv->flags, ®s->ipcr, 767 (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0); 768 } else if (priv->cur_seqid == QSPI_CMD_BE_4K) { 769 qspi_write32(priv->flags, ®s->ipcr, 770 (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0); 771 } 772 while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) 773 ; 774 775 qspi_write32(priv->flags, ®s->mcr, mcr_reg); 776 } 777 778 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen, 779 const void *dout, void *din, unsigned long flags) 780 { 781 u32 bytes = DIV_ROUND_UP(bitlen, 8); 782 static u32 wr_sfaddr; 783 u32 txbuf; 784 785 WATCHDOG_RESET(); 786 787 if (dout) { 788 if (flags & SPI_XFER_BEGIN) { 789 priv->cur_seqid = *(u8 *)dout; 790 memcpy(&txbuf, dout, 4); 791 } 792 793 if (flags == SPI_XFER_END) { 794 priv->sf_addr = wr_sfaddr; 795 qspi_op_write(priv, (u8 *)dout, bytes); 796 return 0; 797 } 798 799 if (priv->cur_seqid == QSPI_CMD_FAST_READ || 800 priv->cur_seqid == QSPI_CMD_RDAR) { 801 priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK; 802 } else if ((priv->cur_seqid == QSPI_CMD_SE) || 803 (priv->cur_seqid == QSPI_CMD_BE_4K)) { 804 priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK; 805 qspi_op_erase(priv); 806 } else if (priv->cur_seqid == QSPI_CMD_PP || 807 priv->cur_seqid == QSPI_CMD_WRAR) { 808 wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK; 809 } else if ((priv->cur_seqid == QSPI_CMD_BRWR) || 810 (priv->cur_seqid == QSPI_CMD_WREAR)) { 811 #ifdef CONFIG_SPI_FLASH_BAR 812 wr_sfaddr = 0; 813 #endif 814 } 815 } 816 817 if (din) { 818 if (priv->cur_seqid == QSPI_CMD_FAST_READ) { 819 #ifdef CONFIG_SYS_FSL_QSPI_AHB 820 qspi_ahb_read(priv, din, bytes); 821 #else 822 qspi_op_read(priv, din, bytes); 823 #endif 824 } else if (priv->cur_seqid == QSPI_CMD_RDAR) { 825 qspi_op_read(priv, din, bytes); 826 } else if (priv->cur_seqid == QSPI_CMD_RDID) 827 qspi_op_rdid(priv, din, bytes); 828 else if (priv->cur_seqid == QSPI_CMD_RDSR) 829 qspi_op_rdsr(priv, din, bytes); 830 #ifdef CONFIG_SPI_FLASH_BAR 831 else if ((priv->cur_seqid == QSPI_CMD_BRRD) || 832 (priv->cur_seqid == QSPI_CMD_RDEAR)) { 833 priv->sf_addr = 0; 834 qspi_op_rdbank(priv, din, bytes); 835 } 836 #endif 837 } 838 839 #ifdef CONFIG_SYS_FSL_QSPI_AHB 840 if ((priv->cur_seqid == QSPI_CMD_SE) || 841 (priv->cur_seqid == QSPI_CMD_PP) || 842 (priv->cur_seqid == QSPI_CMD_BE_4K) || 843 (priv->cur_seqid == QSPI_CMD_WREAR) || 844 (priv->cur_seqid == QSPI_CMD_BRWR)) 845 qspi_ahb_invalid(priv); 846 #endif 847 848 return 0; 849 } 850 851 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable) 852 { 853 u32 mcr_val; 854 855 mcr_val = qspi_read32(priv->flags, &priv->regs->mcr); 856 if (disable) 857 mcr_val |= QSPI_MCR_MDIS_MASK; 858 else 859 mcr_val &= ~QSPI_MCR_MDIS_MASK; 860 qspi_write32(priv->flags, &priv->regs->mcr, mcr_val); 861 } 862 863 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits) 864 { 865 u32 smpr_val; 866 867 smpr_val = qspi_read32(priv->flags, &priv->regs->smpr); 868 smpr_val &= ~clear_bits; 869 smpr_val |= set_bits; 870 qspi_write32(priv->flags, &priv->regs->smpr, smpr_val); 871 } 872 #ifndef CONFIG_DM_SPI 873 static unsigned long spi_bases[] = { 874 QSPI0_BASE_ADDR, 875 #ifdef CONFIG_MX6SX 876 QSPI1_BASE_ADDR, 877 #endif 878 }; 879 880 static unsigned long amba_bases[] = { 881 QSPI0_AMBA_BASE, 882 #ifdef CONFIG_MX6SX 883 QSPI1_AMBA_BASE, 884 #endif 885 }; 886 887 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave) 888 { 889 return container_of(slave, struct fsl_qspi, slave); 890 } 891 892 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, 893 unsigned int max_hz, unsigned int mode) 894 { 895 u32 mcr_val; 896 struct fsl_qspi *qspi; 897 struct fsl_qspi_regs *regs; 898 u32 total_size; 899 900 if (bus >= ARRAY_SIZE(spi_bases)) 901 return NULL; 902 903 if (cs >= FSL_QSPI_FLASH_NUM) 904 return NULL; 905 906 qspi = spi_alloc_slave(struct fsl_qspi, bus, cs); 907 if (!qspi) 908 return NULL; 909 910 #ifdef CONFIG_SYS_FSL_QSPI_BE 911 qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG; 912 #endif 913 914 regs = (struct fsl_qspi_regs *)spi_bases[bus]; 915 qspi->priv.regs = regs; 916 /* 917 * According cs, use different amba_base to choose the 918 * corresponding flash devices. 919 * 920 * If not, only one flash device is used even if passing 921 * different cs using `sf probe` 922 */ 923 qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE; 924 925 qspi->slave.max_write_size = TX_BUFFER_SIZE; 926 927 mcr_val = qspi_read32(qspi->priv.flags, ®s->mcr); 928 929 /* Set endianness to LE for i.mx */ 930 if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7)) 931 mcr_val = QSPI_MCR_END_CFD_LE; 932 933 qspi_write32(qspi->priv.flags, ®s->mcr, 934 QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK | 935 (mcr_val & QSPI_MCR_END_CFD_MASK)); 936 937 qspi_cfg_smpr(&qspi->priv, 938 ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK | 939 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0); 940 941 total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM; 942 /* 943 * Any read access to non-implemented addresses will provide 944 * undefined results. 945 * 946 * In case single die flash devices, TOP_ADDR_MEMA2 and 947 * TOP_ADDR_MEMB2 should be initialized/programmed to 948 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect, 949 * setting the size of these devices to 0. This would ensure 950 * that the complete memory map is assigned to only one flash device. 951 */ 952 qspi_write32(qspi->priv.flags, ®s->sfa1ad, 953 FSL_QSPI_FLASH_SIZE | amba_bases[bus]); 954 qspi_write32(qspi->priv.flags, ®s->sfa2ad, 955 FSL_QSPI_FLASH_SIZE | amba_bases[bus]); 956 qspi_write32(qspi->priv.flags, ®s->sfb1ad, 957 total_size | amba_bases[bus]); 958 qspi_write32(qspi->priv.flags, ®s->sfb2ad, 959 total_size | amba_bases[bus]); 960 961 qspi_set_lut(&qspi->priv); 962 963 #ifdef CONFIG_SYS_FSL_QSPI_AHB 964 qspi_init_ahb_read(&qspi->priv); 965 #endif 966 967 qspi_module_disable(&qspi->priv, 0); 968 969 return &qspi->slave; 970 } 971 972 void spi_free_slave(struct spi_slave *slave) 973 { 974 struct fsl_qspi *qspi = to_qspi_spi(slave); 975 976 free(qspi); 977 } 978 979 int spi_claim_bus(struct spi_slave *slave) 980 { 981 return 0; 982 } 983 984 void spi_release_bus(struct spi_slave *slave) 985 { 986 /* Nothing to do */ 987 } 988 989 int spi_xfer(struct spi_slave *slave, unsigned int bitlen, 990 const void *dout, void *din, unsigned long flags) 991 { 992 struct fsl_qspi *qspi = to_qspi_spi(slave); 993 994 return qspi_xfer(&qspi->priv, bitlen, dout, din, flags); 995 } 996 997 void spi_init(void) 998 { 999 /* Nothing to do */ 1000 } 1001 #else 1002 static int fsl_qspi_child_pre_probe(struct udevice *dev) 1003 { 1004 struct spi_slave *slave = dev_get_parent_priv(dev); 1005 1006 slave->max_write_size = TX_BUFFER_SIZE; 1007 1008 return 0; 1009 } 1010 1011 static int fsl_qspi_probe(struct udevice *bus) 1012 { 1013 u32 mcr_val; 1014 u32 amba_size_per_chip; 1015 struct fsl_qspi_platdata *plat = dev_get_platdata(bus); 1016 struct fsl_qspi_priv *priv = dev_get_priv(bus); 1017 struct dm_spi_bus *dm_spi_bus; 1018 int i, ret; 1019 1020 dm_spi_bus = bus->uclass_priv; 1021 1022 dm_spi_bus->max_hz = plat->speed_hz; 1023 1024 priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base; 1025 priv->flags = plat->flags; 1026 1027 priv->speed_hz = plat->speed_hz; 1028 /* 1029 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1. 1030 * AMBA memory zone should be located on the 0~4GB space 1031 * even on a 64bits cpu. 1032 */ 1033 priv->amba_base[0] = (u32)plat->amba_base; 1034 priv->amba_total_size = (u32)plat->amba_total_size; 1035 priv->flash_num = plat->flash_num; 1036 priv->num_chipselect = plat->num_chipselect; 1037 1038 /* make sure controller is not busy anywhere */ 1039 ret = is_controller_busy(priv); 1040 1041 if (ret) { 1042 debug("ERROR : The controller is busy\n"); 1043 return ret; 1044 } 1045 1046 mcr_val = qspi_read32(priv->flags, &priv->regs->mcr); 1047 1048 /* Set endianness to LE for i.mx */ 1049 if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7)) 1050 mcr_val = QSPI_MCR_END_CFD_LE; 1051 1052 qspi_write32(priv->flags, &priv->regs->mcr, 1053 QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK | 1054 (mcr_val & QSPI_MCR_END_CFD_MASK)); 1055 1056 qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK | 1057 QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0); 1058 1059 /* 1060 * Assign AMBA memory zone for every chipselect 1061 * QuadSPI has two channels, every channel has two chipselects. 1062 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided 1063 * into two parts and assign to every channel. This indicate that every 1064 * channel only has one valid chipselect. 1065 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided 1066 * into four parts and assign to every chipselect. 1067 * Every channel will has two valid chipselects. 1068 */ 1069 amba_size_per_chip = priv->amba_total_size >> 1070 (priv->num_chipselect >> 1); 1071 for (i = 1 ; i < priv->num_chipselect ; i++) 1072 priv->amba_base[i] = 1073 amba_size_per_chip + priv->amba_base[i - 1]; 1074 1075 /* 1076 * Any read access to non-implemented addresses will provide 1077 * undefined results. 1078 * 1079 * In case single die flash devices, TOP_ADDR_MEMA2 and 1080 * TOP_ADDR_MEMB2 should be initialized/programmed to 1081 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect, 1082 * setting the size of these devices to 0. This would ensure 1083 * that the complete memory map is assigned to only one flash device. 1084 */ 1085 qspi_write32(priv->flags, &priv->regs->sfa1ad, 1086 priv->amba_base[0] + amba_size_per_chip); 1087 switch (priv->num_chipselect) { 1088 case 1: 1089 break; 1090 case 2: 1091 qspi_write32(priv->flags, &priv->regs->sfa2ad, 1092 priv->amba_base[1]); 1093 qspi_write32(priv->flags, &priv->regs->sfb1ad, 1094 priv->amba_base[1] + amba_size_per_chip); 1095 qspi_write32(priv->flags, &priv->regs->sfb2ad, 1096 priv->amba_base[1] + amba_size_per_chip); 1097 break; 1098 case 4: 1099 qspi_write32(priv->flags, &priv->regs->sfa2ad, 1100 priv->amba_base[2]); 1101 qspi_write32(priv->flags, &priv->regs->sfb1ad, 1102 priv->amba_base[3]); 1103 qspi_write32(priv->flags, &priv->regs->sfb2ad, 1104 priv->amba_base[3] + amba_size_per_chip); 1105 break; 1106 default: 1107 debug("Error: Unsupported chipselect number %u!\n", 1108 priv->num_chipselect); 1109 qspi_module_disable(priv, 1); 1110 return -EINVAL; 1111 } 1112 1113 qspi_set_lut(priv); 1114 1115 #ifdef CONFIG_SYS_FSL_QSPI_AHB 1116 qspi_init_ahb_read(priv); 1117 #endif 1118 1119 qspi_module_disable(priv, 0); 1120 1121 return 0; 1122 } 1123 1124 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus) 1125 { 1126 struct fdt_resource res_regs, res_mem; 1127 struct fsl_qspi_platdata *plat = bus->platdata; 1128 const void *blob = gd->fdt_blob; 1129 int node = dev_of_offset(bus); 1130 int ret, flash_num = 0, subnode; 1131 1132 if (fdtdec_get_bool(blob, node, "big-endian")) 1133 plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG; 1134 1135 ret = fdt_get_named_resource(blob, node, "reg", "reg-names", 1136 "QuadSPI", &res_regs); 1137 if (ret) { 1138 debug("Error: can't get regs base addresses(ret = %d)!\n", ret); 1139 return -ENOMEM; 1140 } 1141 ret = fdt_get_named_resource(blob, node, "reg", "reg-names", 1142 "QuadSPI-memory", &res_mem); 1143 if (ret) { 1144 debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret); 1145 return -ENOMEM; 1146 } 1147 1148 /* Count flash numbers */ 1149 fdt_for_each_subnode(subnode, blob, node) 1150 ++flash_num; 1151 1152 if (flash_num == 0) { 1153 debug("Error: Missing flashes!\n"); 1154 return -ENODEV; 1155 } 1156 1157 plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency", 1158 FSL_QSPI_DEFAULT_SCK_FREQ); 1159 plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs", 1160 FSL_QSPI_MAX_CHIPSELECT_NUM); 1161 1162 plat->reg_base = res_regs.start; 1163 plat->amba_base = res_mem.start; 1164 plat->amba_total_size = res_mem.end - res_mem.start + 1; 1165 plat->flash_num = flash_num; 1166 1167 debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n", 1168 __func__, 1169 (u64)plat->reg_base, 1170 (u64)plat->amba_base, 1171 (u64)plat->amba_total_size, 1172 plat->speed_hz, 1173 plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le" 1174 ); 1175 1176 return 0; 1177 } 1178 1179 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen, 1180 const void *dout, void *din, unsigned long flags) 1181 { 1182 struct fsl_qspi_priv *priv; 1183 struct udevice *bus; 1184 1185 bus = dev->parent; 1186 priv = dev_get_priv(bus); 1187 1188 return qspi_xfer(priv, bitlen, dout, din, flags); 1189 } 1190 1191 static int fsl_qspi_claim_bus(struct udevice *dev) 1192 { 1193 struct fsl_qspi_priv *priv; 1194 struct udevice *bus; 1195 struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); 1196 int ret; 1197 1198 bus = dev->parent; 1199 priv = dev_get_priv(bus); 1200 1201 /* make sure controller is not busy anywhere */ 1202 ret = is_controller_busy(priv); 1203 1204 if (ret) { 1205 debug("ERROR : The controller is busy\n"); 1206 return ret; 1207 } 1208 1209 priv->cur_amba_base = priv->amba_base[slave_plat->cs]; 1210 1211 qspi_module_disable(priv, 0); 1212 1213 return 0; 1214 } 1215 1216 static int fsl_qspi_release_bus(struct udevice *dev) 1217 { 1218 struct fsl_qspi_priv *priv; 1219 struct udevice *bus; 1220 1221 bus = dev->parent; 1222 priv = dev_get_priv(bus); 1223 1224 qspi_module_disable(priv, 1); 1225 1226 return 0; 1227 } 1228 1229 static int fsl_qspi_set_speed(struct udevice *bus, uint speed) 1230 { 1231 /* Nothing to do */ 1232 return 0; 1233 } 1234 1235 static int fsl_qspi_set_mode(struct udevice *bus, uint mode) 1236 { 1237 /* Nothing to do */ 1238 return 0; 1239 } 1240 1241 static const struct dm_spi_ops fsl_qspi_ops = { 1242 .claim_bus = fsl_qspi_claim_bus, 1243 .release_bus = fsl_qspi_release_bus, 1244 .xfer = fsl_qspi_xfer, 1245 .set_speed = fsl_qspi_set_speed, 1246 .set_mode = fsl_qspi_set_mode, 1247 }; 1248 1249 static const struct udevice_id fsl_qspi_ids[] = { 1250 { .compatible = "fsl,vf610-qspi" }, 1251 { .compatible = "fsl,imx6sx-qspi" }, 1252 { .compatible = "fsl,imx6ul-qspi" }, 1253 { .compatible = "fsl,imx7d-qspi" }, 1254 { } 1255 }; 1256 1257 U_BOOT_DRIVER(fsl_qspi) = { 1258 .name = "fsl_qspi", 1259 .id = UCLASS_SPI, 1260 .of_match = fsl_qspi_ids, 1261 .ops = &fsl_qspi_ops, 1262 .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata, 1263 .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata), 1264 .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv), 1265 .probe = fsl_qspi_probe, 1266 .child_pre_probe = fsl_qspi_child_pre_probe, 1267 }; 1268 #endif 1269