xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision 48263504)
1 /*
2  * Copyright 2013-2015 Freescale Semiconductor, Inc.
3  *
4  * Freescale Quad Serial Peripheral Interface (QSPI) driver
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include <dm.h>
15 #include <errno.h>
16 #include <watchdog.h>
17 #include <wait_bit.h>
18 #include "fsl_qspi.h"
19 
20 DECLARE_GLOBAL_DATA_PTR;
21 
22 #define RX_BUFFER_SIZE		0x80
23 #ifdef CONFIG_MX6SX
24 #define TX_BUFFER_SIZE		0x200
25 #else
26 #define TX_BUFFER_SIZE		0x40
27 #endif
28 
29 #define OFFSET_BITS_MASK	GENMASK(23, 0)
30 
31 #define FLASH_STATUS_WEL	0x02
32 
33 /* SEQID */
34 #define SEQID_WREN		1
35 #define SEQID_FAST_READ		2
36 #define SEQID_RDSR		3
37 #define SEQID_SE		4
38 #define SEQID_CHIP_ERASE	5
39 #define SEQID_PP		6
40 #define SEQID_RDID		7
41 #define SEQID_BE_4K		8
42 #ifdef CONFIG_SPI_FLASH_BAR
43 #define SEQID_BRRD		9
44 #define SEQID_BRWR		10
45 #define SEQID_RDEAR		11
46 #define SEQID_WREAR		12
47 #endif
48 #define SEQID_WRAR		13
49 #define SEQID_RDAR		14
50 
51 /* QSPI CMD */
52 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
53 #define QSPI_CMD_RDSR		0x05	/* Read status register */
54 #define QSPI_CMD_WREN		0x06	/* Write enable */
55 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
56 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
57 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
58 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
59 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
60 
61 /* Used for Micron, winbond and Macronix flashes */
62 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
63 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
64 
65 /* Used for Spansion flashes only. */
66 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
67 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
68 
69 /* Used for Spansion S25FS-S family flash only. */
70 #define QSPI_CMD_RDAR		0x65	/* Read any device register */
71 #define QSPI_CMD_WRAR		0x71	/* Write any device register */
72 
73 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
74 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
75 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
76 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
77 
78 /* fsl_qspi_platdata flags */
79 #define QSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)
80 
81 /* default SCK frequency, unit: HZ */
82 #define FSL_QSPI_DEFAULT_SCK_FREQ	50000000
83 
84 /* QSPI max chipselect signals number */
85 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
86 
87 #ifdef CONFIG_DM_SPI
88 /**
89  * struct fsl_qspi_platdata - platform data for Freescale QSPI
90  *
91  * @flags: Flags for QSPI QSPI_FLAG_...
92  * @speed_hz: Default SCK frequency
93  * @reg_base: Base address of QSPI registers
94  * @amba_base: Base address of QSPI memory mapping
95  * @amba_total_size: size of QSPI memory mapping
96  * @flash_num: Number of active slave devices
97  * @num_chipselect: Number of QSPI chipselect signals
98  */
99 struct fsl_qspi_platdata {
100 	u32 flags;
101 	u32 speed_hz;
102 	fdt_addr_t reg_base;
103 	fdt_addr_t amba_base;
104 	fdt_size_t amba_total_size;
105 	u32 flash_num;
106 	u32 num_chipselect;
107 };
108 #endif
109 
110 /**
111  * struct fsl_qspi_priv - private data for Freescale QSPI
112  *
113  * @flags: Flags for QSPI QSPI_FLAG_...
114  * @bus_clk: QSPI input clk frequency
115  * @speed_hz: Default SCK frequency
116  * @cur_seqid: current LUT table sequence id
117  * @sf_addr: flash access offset
118  * @amba_base: Base address of QSPI memory mapping of every CS
119  * @amba_total_size: size of QSPI memory mapping
120  * @cur_amba_base: Base address of QSPI memory mapping of current CS
121  * @flash_num: Number of active slave devices
122  * @num_chipselect: Number of QSPI chipselect signals
123  * @regs: Point to QSPI register structure for I/O access
124  */
125 struct fsl_qspi_priv {
126 	u32 flags;
127 	u32 bus_clk;
128 	u32 speed_hz;
129 	u32 cur_seqid;
130 	u32 sf_addr;
131 	u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
132 	u32 amba_total_size;
133 	u32 cur_amba_base;
134 	u32 flash_num;
135 	u32 num_chipselect;
136 	struct fsl_qspi_regs *regs;
137 };
138 
139 #ifndef CONFIG_DM_SPI
140 struct fsl_qspi {
141 	struct spi_slave slave;
142 	struct fsl_qspi_priv priv;
143 };
144 #endif
145 
146 static u32 qspi_read32(u32 flags, u32 *addr)
147 {
148 	return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
149 		in_be32(addr) : in_le32(addr);
150 }
151 
152 static void qspi_write32(u32 flags, u32 *addr, u32 val)
153 {
154 	flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
155 		out_be32(addr, val) : out_le32(addr, val);
156 }
157 
158 /* QSPI support swapping the flash read/write data
159  * in hardware for LS102xA, but not for VF610 */
160 static inline u32 qspi_endian_xchg(u32 data)
161 {
162 #ifdef CONFIG_VF610
163 	return swab32(data);
164 #else
165 	return data;
166 #endif
167 }
168 
169 static void qspi_set_lut(struct fsl_qspi_priv *priv)
170 {
171 	struct fsl_qspi_regs *regs = priv->regs;
172 	u32 lut_base;
173 
174 	/* Unlock the LUT */
175 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
176 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
177 
178 	/* Write Enable */
179 	lut_base = SEQID_WREN * 4;
180 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
181 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
182 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
183 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
184 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
185 
186 	/* Fast Read */
187 	lut_base = SEQID_FAST_READ * 4;
188 #ifdef CONFIG_SPI_FLASH_BAR
189 	qspi_write32(priv->flags, &regs->lut[lut_base],
190 		     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
191 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
192 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
193 #else
194 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
195 		qspi_write32(priv->flags, &regs->lut[lut_base],
196 			     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
197 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
198 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
199 	else
200 		qspi_write32(priv->flags, &regs->lut[lut_base],
201 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
202 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
203 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
204 			     INSTR1(LUT_ADDR));
205 #endif
206 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
207 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
208 		     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
209 		     INSTR1(LUT_READ));
210 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
211 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
212 
213 	/* Read Status */
214 	lut_base = SEQID_RDSR * 4;
215 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
216 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
217 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
218 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
219 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
220 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
221 
222 	/* Erase a sector */
223 	lut_base = SEQID_SE * 4;
224 #ifdef CONFIG_SPI_FLASH_BAR
225 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
226 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
227 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
228 #else
229 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
230 		qspi_write32(priv->flags, &regs->lut[lut_base],
231 			     OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
232 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
233 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
234 	else
235 		qspi_write32(priv->flags, &regs->lut[lut_base],
236 			     OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
237 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
238 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
239 #endif
240 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
241 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
242 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
243 
244 	/* Erase the whole chip */
245 	lut_base = SEQID_CHIP_ERASE * 4;
246 	qspi_write32(priv->flags, &regs->lut[lut_base],
247 		     OPRND0(QSPI_CMD_CHIP_ERASE) |
248 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
249 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
250 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
251 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
252 
253 	/* Page Program */
254 	lut_base = SEQID_PP * 4;
255 #ifdef CONFIG_SPI_FLASH_BAR
256 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
257 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
258 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
259 #else
260 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
261 		qspi_write32(priv->flags, &regs->lut[lut_base],
262 			     OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
263 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
264 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
265 	else
266 		qspi_write32(priv->flags, &regs->lut[lut_base],
267 			     OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
268 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
269 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
270 #endif
271 #ifdef CONFIG_MX6SX
272 	/*
273 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
274 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
275 	 */
276 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
277 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
278 #else
279 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
280 		     OPRND0(TX_BUFFER_SIZE) |
281 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
282 #endif
283 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
284 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
285 
286 	/* READ ID */
287 	lut_base = SEQID_RDID * 4;
288 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
289 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
290 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
291 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
292 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
293 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
294 
295 	/* SUB SECTOR 4K ERASE */
296 	lut_base = SEQID_BE_4K * 4;
297 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
298 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
299 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
300 
301 #ifdef CONFIG_SPI_FLASH_BAR
302 	/*
303 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
304 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
305 	 * initialization.
306 	 */
307 	lut_base = SEQID_BRRD * 4;
308 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
309 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
310 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
311 
312 	lut_base = SEQID_BRWR * 4;
313 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
314 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
315 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
316 
317 	lut_base = SEQID_RDEAR * 4;
318 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
319 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
320 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
321 
322 	lut_base = SEQID_WREAR * 4;
323 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
324 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
325 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
326 #endif
327 
328 	/*
329 	 * Read any device register.
330 	 * Used for Spansion S25FS-S family flash only.
331 	 */
332 	lut_base = SEQID_RDAR * 4;
333 	qspi_write32(priv->flags, &regs->lut[lut_base],
334 		     OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
335 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
336 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
337 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
338 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
339 		     OPRND1(1) | PAD1(LUT_PAD1) |
340 		     INSTR1(LUT_READ));
341 
342 	/*
343 	 * Write any device register.
344 	 * Used for Spansion S25FS-S family flash only.
345 	 */
346 	lut_base = SEQID_WRAR * 4;
347 	qspi_write32(priv->flags, &regs->lut[lut_base],
348 		     OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
349 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
350 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
351 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
352 		     OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
353 
354 	/* Lock the LUT */
355 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
356 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
357 }
358 
359 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
360 /*
361  * If we have changed the content of the flash by writing or erasing,
362  * we need to invalidate the AHB buffer. If we do not do so, we may read out
363  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
364  * domain at the same time.
365  */
366 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
367 {
368 	struct fsl_qspi_regs *regs = priv->regs;
369 	u32 reg;
370 
371 	reg = qspi_read32(priv->flags, &regs->mcr);
372 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
373 	qspi_write32(priv->flags, &regs->mcr, reg);
374 
375 	/*
376 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
377 	 * Delay 1 us is enough.
378 	 */
379 	udelay(1);
380 
381 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
382 	qspi_write32(priv->flags, &regs->mcr, reg);
383 }
384 
385 /* Read out the data from the AHB buffer. */
386 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
387 {
388 	struct fsl_qspi_regs *regs = priv->regs;
389 	u32 mcr_reg;
390 	void *rx_addr = NULL;
391 
392 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
393 
394 	qspi_write32(priv->flags, &regs->mcr,
395 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
396 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
397 
398 	rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
399 	/* Read out the data directly from the AHB buffer. */
400 	memcpy(rxbuf, rx_addr, len);
401 
402 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
403 }
404 
405 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
406 {
407 	u32 reg, reg2;
408 	struct fsl_qspi_regs *regs = priv->regs;
409 
410 	reg = qspi_read32(priv->flags, &regs->mcr);
411 	/* Disable the module */
412 	qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
413 
414 	/* Set the Sampling Register for DDR */
415 	reg2 = qspi_read32(priv->flags, &regs->smpr);
416 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
417 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
418 	qspi_write32(priv->flags, &regs->smpr, reg2);
419 
420 	/* Enable the module again (enable the DDR too) */
421 	reg |= QSPI_MCR_DDR_EN_MASK;
422 	/* Enable bit 29 for imx6sx */
423 	reg |= BIT(29);
424 
425 	qspi_write32(priv->flags, &regs->mcr, reg);
426 }
427 
428 /*
429  * There are two different ways to read out the data from the flash:
430  *  the "IP Command Read" and the "AHB Command Read".
431  *
432  * The IC guy suggests we use the "AHB Command Read" which is faster
433  * then the "IP Command Read". (What's more is that there is a bug in
434  * the "IP Command Read" in the Vybrid.)
435  *
436  * After we set up the registers for the "AHB Command Read", we can use
437  * the memcpy to read the data directly. A "missed" access to the buffer
438  * causes the controller to clear the buffer, and use the sequence pointed
439  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
440  */
441 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
442 {
443 	struct fsl_qspi_regs *regs = priv->regs;
444 
445 	/* AHB configuration for access buffer 0/1/2 .*/
446 	qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
447 	qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
448 	qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
449 	qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
450 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
451 
452 	/* We only use the buffer3 */
453 	qspi_write32(priv->flags, &regs->buf0ind, 0);
454 	qspi_write32(priv->flags, &regs->buf1ind, 0);
455 	qspi_write32(priv->flags, &regs->buf2ind, 0);
456 
457 	/*
458 	 * Set the default lut sequence for AHB Read.
459 	 * Parallel mode is disabled.
460 	 */
461 	qspi_write32(priv->flags, &regs->bfgencr,
462 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
463 
464 	/*Enable DDR Mode*/
465 	qspi_enable_ddr_mode(priv);
466 }
467 #endif
468 
469 #ifdef CONFIG_SPI_FLASH_BAR
470 /* Bank register read/write, EAR register read/write */
471 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
472 {
473 	struct fsl_qspi_regs *regs = priv->regs;
474 	u32 reg, mcr_reg, data, seqid;
475 
476 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
477 	qspi_write32(priv->flags, &regs->mcr,
478 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
479 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
480 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
481 
482 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
483 
484 	if (priv->cur_seqid == QSPI_CMD_BRRD)
485 		seqid = SEQID_BRRD;
486 	else
487 		seqid = SEQID_RDEAR;
488 
489 	qspi_write32(priv->flags, &regs->ipcr,
490 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
491 
492 	/* Wait previous command complete */
493 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
494 		;
495 
496 	while (1) {
497 		WATCHDOG_RESET();
498 
499 		reg = qspi_read32(priv->flags, &regs->rbsr);
500 		if (reg & QSPI_RBSR_RDBFL_MASK) {
501 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
502 			data = qspi_endian_xchg(data);
503 			memcpy(rxbuf, &data, len);
504 			qspi_write32(priv->flags, &regs->mcr,
505 				     qspi_read32(priv->flags, &regs->mcr) |
506 				     QSPI_MCR_CLR_RXF_MASK);
507 			break;
508 		}
509 	}
510 
511 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
512 }
513 #endif
514 
515 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
516 {
517 	struct fsl_qspi_regs *regs = priv->regs;
518 	u32 mcr_reg, rbsr_reg, data, size;
519 	int i;
520 
521 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
522 	qspi_write32(priv->flags, &regs->mcr,
523 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
524 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
525 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
526 
527 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
528 
529 	qspi_write32(priv->flags, &regs->ipcr,
530 		     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
531 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
532 		;
533 
534 	i = 0;
535 	while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
536 		WATCHDOG_RESET();
537 
538 		rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
539 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
540 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
541 			data = qspi_endian_xchg(data);
542 			size = (len < 4) ? len : 4;
543 			memcpy(rxbuf, &data, size);
544 			len -= size;
545 			rxbuf++;
546 			i++;
547 		}
548 	}
549 
550 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
551 }
552 
553 /* If not use AHB read, read data from ip interface */
554 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
555 {
556 	struct fsl_qspi_regs *regs = priv->regs;
557 	u32 mcr_reg, data;
558 	int i, size;
559 	u32 to_or_from;
560 	u32 seqid;
561 
562 	if (priv->cur_seqid == QSPI_CMD_RDAR)
563 		seqid = SEQID_RDAR;
564 	else
565 		seqid = SEQID_FAST_READ;
566 
567 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
568 	qspi_write32(priv->flags, &regs->mcr,
569 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
570 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
571 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
572 
573 	to_or_from = priv->sf_addr + priv->cur_amba_base;
574 
575 	while (len > 0) {
576 		WATCHDOG_RESET();
577 
578 		qspi_write32(priv->flags, &regs->sfar, to_or_from);
579 
580 		size = (len > RX_BUFFER_SIZE) ?
581 			RX_BUFFER_SIZE : len;
582 
583 		qspi_write32(priv->flags, &regs->ipcr,
584 			     (seqid << QSPI_IPCR_SEQID_SHIFT) |
585 			     size);
586 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
587 			;
588 
589 		to_or_from += size;
590 		len -= size;
591 
592 		i = 0;
593 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
594 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
595 			data = qspi_endian_xchg(data);
596 			if (size < 4)
597 				memcpy(rxbuf, &data, size);
598 			else
599 				memcpy(rxbuf, &data, 4);
600 			rxbuf++;
601 			size -= 4;
602 			i++;
603 		}
604 		qspi_write32(priv->flags, &regs->mcr,
605 			     qspi_read32(priv->flags, &regs->mcr) |
606 			     QSPI_MCR_CLR_RXF_MASK);
607 	}
608 
609 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
610 }
611 
612 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
613 {
614 	struct fsl_qspi_regs *regs = priv->regs;
615 	u32 mcr_reg, data, reg, status_reg, seqid;
616 	int i, size, tx_size;
617 	u32 to_or_from = 0;
618 
619 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
620 	qspi_write32(priv->flags, &regs->mcr,
621 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
622 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
623 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
624 
625 	status_reg = 0;
626 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
627 		WATCHDOG_RESET();
628 
629 		qspi_write32(priv->flags, &regs->ipcr,
630 			     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
631 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
632 			;
633 
634 		qspi_write32(priv->flags, &regs->ipcr,
635 			     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
636 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
637 			;
638 
639 		reg = qspi_read32(priv->flags, &regs->rbsr);
640 		if (reg & QSPI_RBSR_RDBFL_MASK) {
641 			status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
642 			status_reg = qspi_endian_xchg(status_reg);
643 		}
644 		qspi_write32(priv->flags, &regs->mcr,
645 			     qspi_read32(priv->flags, &regs->mcr) |
646 			     QSPI_MCR_CLR_RXF_MASK);
647 	}
648 
649 	/* Default is page programming */
650 	seqid = SEQID_PP;
651 	if (priv->cur_seqid == QSPI_CMD_WRAR)
652 		seqid = SEQID_WRAR;
653 #ifdef CONFIG_SPI_FLASH_BAR
654 	if (priv->cur_seqid == QSPI_CMD_BRWR)
655 		seqid = SEQID_BRWR;
656 	else if (priv->cur_seqid == QSPI_CMD_WREAR)
657 		seqid = SEQID_WREAR;
658 #endif
659 
660 	to_or_from = priv->sf_addr + priv->cur_amba_base;
661 
662 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
663 
664 	tx_size = (len > TX_BUFFER_SIZE) ?
665 		TX_BUFFER_SIZE : len;
666 
667 	size = tx_size / 16;
668 	/*
669 	 * There must be atleast 128bit data
670 	 * available in TX FIFO for any pop operation
671 	 */
672 	if (tx_size % 16)
673 		size++;
674 	for (i = 0; i < size * 4; i++) {
675 		memcpy(&data, txbuf, 4);
676 		data = qspi_endian_xchg(data);
677 		qspi_write32(priv->flags, &regs->tbdr, data);
678 		txbuf += 4;
679 	}
680 
681 	qspi_write32(priv->flags, &regs->ipcr,
682 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
683 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
684 		;
685 
686 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
687 }
688 
689 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
690 {
691 	struct fsl_qspi_regs *regs = priv->regs;
692 	u32 mcr_reg, reg, data;
693 
694 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
695 	qspi_write32(priv->flags, &regs->mcr,
696 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
697 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
698 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
699 
700 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
701 
702 	qspi_write32(priv->flags, &regs->ipcr,
703 		     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
704 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
705 		;
706 
707 	while (1) {
708 		WATCHDOG_RESET();
709 
710 		reg = qspi_read32(priv->flags, &regs->rbsr);
711 		if (reg & QSPI_RBSR_RDBFL_MASK) {
712 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
713 			data = qspi_endian_xchg(data);
714 			memcpy(rxbuf, &data, len);
715 			qspi_write32(priv->flags, &regs->mcr,
716 				     qspi_read32(priv->flags, &regs->mcr) |
717 				     QSPI_MCR_CLR_RXF_MASK);
718 			break;
719 		}
720 	}
721 
722 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
723 }
724 
725 static void qspi_op_erase(struct fsl_qspi_priv *priv)
726 {
727 	struct fsl_qspi_regs *regs = priv->regs;
728 	u32 mcr_reg;
729 	u32 to_or_from = 0;
730 
731 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
732 	qspi_write32(priv->flags, &regs->mcr,
733 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
734 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
735 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
736 
737 	to_or_from = priv->sf_addr + priv->cur_amba_base;
738 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
739 
740 	qspi_write32(priv->flags, &regs->ipcr,
741 		     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
742 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
743 		;
744 
745 	if (priv->cur_seqid == QSPI_CMD_SE) {
746 		qspi_write32(priv->flags, &regs->ipcr,
747 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
748 	} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
749 		qspi_write32(priv->flags, &regs->ipcr,
750 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
751 	}
752 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
753 		;
754 
755 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
756 }
757 
758 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
759 		const void *dout, void *din, unsigned long flags)
760 {
761 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
762 	static u32 wr_sfaddr;
763 	u32 txbuf;
764 
765 	WATCHDOG_RESET();
766 
767 	if (dout) {
768 		if (flags & SPI_XFER_BEGIN) {
769 			priv->cur_seqid = *(u8 *)dout;
770 			memcpy(&txbuf, dout, 4);
771 		}
772 
773 		if (flags == SPI_XFER_END) {
774 			priv->sf_addr = wr_sfaddr;
775 			qspi_op_write(priv, (u8 *)dout, bytes);
776 			return 0;
777 		}
778 
779 		if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
780 		    priv->cur_seqid == QSPI_CMD_RDAR) {
781 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
782 		} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
783 			   (priv->cur_seqid == QSPI_CMD_BE_4K)) {
784 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
785 			qspi_op_erase(priv);
786 		} else if (priv->cur_seqid == QSPI_CMD_PP ||
787 			   priv->cur_seqid == QSPI_CMD_WRAR) {
788 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
789 		} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
790 			 (priv->cur_seqid == QSPI_CMD_WREAR)) {
791 #ifdef CONFIG_SPI_FLASH_BAR
792 			wr_sfaddr = 0;
793 #endif
794 		}
795 	}
796 
797 	if (din) {
798 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
799 #ifdef CONFIG_SYS_FSL_QSPI_AHB
800 			qspi_ahb_read(priv, din, bytes);
801 #else
802 			qspi_op_read(priv, din, bytes);
803 #endif
804 		} else if (priv->cur_seqid == QSPI_CMD_RDAR) {
805 			qspi_op_read(priv, din, bytes);
806 		} else if (priv->cur_seqid == QSPI_CMD_RDID)
807 			qspi_op_rdid(priv, din, bytes);
808 		else if (priv->cur_seqid == QSPI_CMD_RDSR)
809 			qspi_op_rdsr(priv, din, bytes);
810 #ifdef CONFIG_SPI_FLASH_BAR
811 		else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
812 			 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
813 			priv->sf_addr = 0;
814 			qspi_op_rdbank(priv, din, bytes);
815 		}
816 #endif
817 	}
818 
819 #ifdef CONFIG_SYS_FSL_QSPI_AHB
820 	if ((priv->cur_seqid == QSPI_CMD_SE) ||
821 	    (priv->cur_seqid == QSPI_CMD_PP) ||
822 	    (priv->cur_seqid == QSPI_CMD_BE_4K) ||
823 	    (priv->cur_seqid == QSPI_CMD_WREAR) ||
824 	    (priv->cur_seqid == QSPI_CMD_BRWR))
825 		qspi_ahb_invalid(priv);
826 #endif
827 
828 	return 0;
829 }
830 
831 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
832 {
833 	u32 mcr_val;
834 
835 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
836 	if (disable)
837 		mcr_val |= QSPI_MCR_MDIS_MASK;
838 	else
839 		mcr_val &= ~QSPI_MCR_MDIS_MASK;
840 	qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
841 }
842 
843 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
844 {
845 	u32 smpr_val;
846 
847 	smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
848 	smpr_val &= ~clear_bits;
849 	smpr_val |= set_bits;
850 	qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
851 }
852 #ifndef CONFIG_DM_SPI
853 static unsigned long spi_bases[] = {
854 	QSPI0_BASE_ADDR,
855 #ifdef CONFIG_MX6SX
856 	QSPI1_BASE_ADDR,
857 #endif
858 };
859 
860 static unsigned long amba_bases[] = {
861 	QSPI0_AMBA_BASE,
862 #ifdef CONFIG_MX6SX
863 	QSPI1_AMBA_BASE,
864 #endif
865 };
866 
867 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
868 {
869 	return container_of(slave, struct fsl_qspi, slave);
870 }
871 
872 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
873 		unsigned int max_hz, unsigned int mode)
874 {
875 	u32 mcr_val;
876 	struct fsl_qspi *qspi;
877 	struct fsl_qspi_regs *regs;
878 	u32 total_size;
879 
880 	if (bus >= ARRAY_SIZE(spi_bases))
881 		return NULL;
882 
883 	if (cs >= FSL_QSPI_FLASH_NUM)
884 		return NULL;
885 
886 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
887 	if (!qspi)
888 		return NULL;
889 
890 #ifdef CONFIG_SYS_FSL_QSPI_BE
891 	qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
892 #endif
893 
894 	regs = (struct fsl_qspi_regs *)spi_bases[bus];
895 	qspi->priv.regs = regs;
896 	/*
897 	 * According cs, use different amba_base to choose the
898 	 * corresponding flash devices.
899 	 *
900 	 * If not, only one flash device is used even if passing
901 	 * different cs using `sf probe`
902 	 */
903 	qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
904 
905 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
906 
907 	mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
908 	qspi_write32(qspi->priv.flags, &regs->mcr,
909 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
910 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
911 
912 	qspi_cfg_smpr(&qspi->priv,
913 		      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
914 		      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
915 
916 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
917 	/*
918 	 * Any read access to non-implemented addresses will provide
919 	 * undefined results.
920 	 *
921 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
922 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
923 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
924 	 * setting the size of these devices to 0.  This would ensure
925 	 * that the complete memory map is assigned to only one flash device.
926 	 */
927 	qspi_write32(qspi->priv.flags, &regs->sfa1ad,
928 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
929 	qspi_write32(qspi->priv.flags, &regs->sfa2ad,
930 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
931 	qspi_write32(qspi->priv.flags, &regs->sfb1ad,
932 		     total_size | amba_bases[bus]);
933 	qspi_write32(qspi->priv.flags, &regs->sfb2ad,
934 		     total_size | amba_bases[bus]);
935 
936 	qspi_set_lut(&qspi->priv);
937 
938 #ifdef CONFIG_SYS_FSL_QSPI_AHB
939 	qspi_init_ahb_read(&qspi->priv);
940 #endif
941 
942 	qspi_module_disable(&qspi->priv, 0);
943 
944 	return &qspi->slave;
945 }
946 
947 void spi_free_slave(struct spi_slave *slave)
948 {
949 	struct fsl_qspi *qspi = to_qspi_spi(slave);
950 
951 	free(qspi);
952 }
953 
954 int spi_claim_bus(struct spi_slave *slave)
955 {
956 	return 0;
957 }
958 
959 void spi_release_bus(struct spi_slave *slave)
960 {
961 	/* Nothing to do */
962 }
963 
964 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
965 		const void *dout, void *din, unsigned long flags)
966 {
967 	struct fsl_qspi *qspi = to_qspi_spi(slave);
968 
969 	return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
970 }
971 
972 void spi_init(void)
973 {
974 	/* Nothing to do */
975 }
976 #else
977 static int fsl_qspi_child_pre_probe(struct udevice *dev)
978 {
979 	struct spi_slave *slave = dev_get_parent_priv(dev);
980 
981 	slave->max_write_size = TX_BUFFER_SIZE;
982 
983 	return 0;
984 }
985 
986 static int fsl_qspi_probe(struct udevice *bus)
987 {
988 	u32 mcr_val;
989 	u32 amba_size_per_chip;
990 	struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
991 	struct fsl_qspi_priv *priv = dev_get_priv(bus);
992 	struct dm_spi_bus *dm_spi_bus;
993 	int i, ret;
994 
995 	dm_spi_bus = bus->uclass_priv;
996 
997 	dm_spi_bus->max_hz = plat->speed_hz;
998 
999 	priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
1000 	priv->flags = plat->flags;
1001 
1002 	priv->speed_hz = plat->speed_hz;
1003 	/*
1004 	 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
1005 	 * AMBA memory zone should be located on the 0~4GB space
1006 	 * even on a 64bits cpu.
1007 	 */
1008 	priv->amba_base[0] = (u32)plat->amba_base;
1009 	priv->amba_total_size = (u32)plat->amba_total_size;
1010 	priv->flash_num = plat->flash_num;
1011 	priv->num_chipselect = plat->num_chipselect;
1012 
1013 	/* make sure controller is not busy anywhere */
1014 	ret = wait_for_bit_le32(&priv->regs->sr,
1015 				QSPI_SR_BUSY_MASK |
1016 				QSPI_SR_AHB_ACC_MASK |
1017 				QSPI_SR_IP_ACC_MASK,
1018 				false, 100, false);
1019 
1020 	if (ret) {
1021 		debug("ERROR : The controller is busy\n");
1022 		return ret;
1023 	}
1024 
1025 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1026 	qspi_write32(priv->flags, &priv->regs->mcr,
1027 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1028 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
1029 
1030 	qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1031 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1032 
1033 	/*
1034 	 * Assign AMBA memory zone for every chipselect
1035 	 * QuadSPI has two channels, every channel has two chipselects.
1036 	 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1037 	 * into two parts and assign to every channel. This indicate that every
1038 	 * channel only has one valid chipselect.
1039 	 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1040 	 * into four parts and assign to every chipselect.
1041 	 * Every channel will has two valid chipselects.
1042 	 */
1043 	amba_size_per_chip = priv->amba_total_size >>
1044 			     (priv->num_chipselect >> 1);
1045 	for (i = 1 ; i < priv->num_chipselect ; i++)
1046 		priv->amba_base[i] =
1047 			amba_size_per_chip + priv->amba_base[i - 1];
1048 
1049 	/*
1050 	 * Any read access to non-implemented addresses will provide
1051 	 * undefined results.
1052 	 *
1053 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
1054 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
1055 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1056 	 * setting the size of these devices to 0.  This would ensure
1057 	 * that the complete memory map is assigned to only one flash device.
1058 	 */
1059 	qspi_write32(priv->flags, &priv->regs->sfa1ad,
1060 		     priv->amba_base[0] + amba_size_per_chip);
1061 	switch (priv->num_chipselect) {
1062 	case 1:
1063 		break;
1064 	case 2:
1065 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1066 			     priv->amba_base[1]);
1067 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1068 			     priv->amba_base[1] + amba_size_per_chip);
1069 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1070 			     priv->amba_base[1] + amba_size_per_chip);
1071 		break;
1072 	case 4:
1073 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1074 			     priv->amba_base[2]);
1075 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1076 			     priv->amba_base[3]);
1077 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1078 			     priv->amba_base[3] + amba_size_per_chip);
1079 		break;
1080 	default:
1081 		debug("Error: Unsupported chipselect number %u!\n",
1082 		      priv->num_chipselect);
1083 		qspi_module_disable(priv, 1);
1084 		return -EINVAL;
1085 	}
1086 
1087 	qspi_set_lut(priv);
1088 
1089 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1090 	qspi_init_ahb_read(priv);
1091 #endif
1092 
1093 	qspi_module_disable(priv, 0);
1094 
1095 	return 0;
1096 }
1097 
1098 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1099 {
1100 	struct fdt_resource res_regs, res_mem;
1101 	struct fsl_qspi_platdata *plat = bus->platdata;
1102 	const void *blob = gd->fdt_blob;
1103 	int node = dev_of_offset(bus);
1104 	int ret, flash_num = 0, subnode;
1105 
1106 	if (fdtdec_get_bool(blob, node, "big-endian"))
1107 		plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1108 
1109 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1110 				     "QuadSPI", &res_regs);
1111 	if (ret) {
1112 		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1113 		return -ENOMEM;
1114 	}
1115 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1116 				     "QuadSPI-memory", &res_mem);
1117 	if (ret) {
1118 		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1119 		return -ENOMEM;
1120 	}
1121 
1122 	/* Count flash numbers */
1123 	fdt_for_each_subnode(subnode, blob, node)
1124 		++flash_num;
1125 
1126 	if (flash_num == 0) {
1127 		debug("Error: Missing flashes!\n");
1128 		return -ENODEV;
1129 	}
1130 
1131 	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1132 					FSL_QSPI_DEFAULT_SCK_FREQ);
1133 	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1134 					      FSL_QSPI_MAX_CHIPSELECT_NUM);
1135 
1136 	plat->reg_base = res_regs.start;
1137 	plat->amba_base = res_mem.start;
1138 	plat->amba_total_size = res_mem.end - res_mem.start + 1;
1139 	plat->flash_num = flash_num;
1140 
1141 	debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1142 	      __func__,
1143 	      (u64)plat->reg_base,
1144 	      (u64)plat->amba_base,
1145 	      (u64)plat->amba_total_size,
1146 	      plat->speed_hz,
1147 	      plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1148 	      );
1149 
1150 	return 0;
1151 }
1152 
1153 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1154 		const void *dout, void *din, unsigned long flags)
1155 {
1156 	struct fsl_qspi_priv *priv;
1157 	struct udevice *bus;
1158 
1159 	bus = dev->parent;
1160 	priv = dev_get_priv(bus);
1161 
1162 	return qspi_xfer(priv, bitlen, dout, din, flags);
1163 }
1164 
1165 static int fsl_qspi_claim_bus(struct udevice *dev)
1166 {
1167 	struct fsl_qspi_priv *priv;
1168 	struct udevice *bus;
1169 	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1170 	int ret;
1171 
1172 	bus = dev->parent;
1173 	priv = dev_get_priv(bus);
1174 
1175 	/* make sure controller is not busy anywhere */
1176 	ret = wait_for_bit_le32(&priv->regs->sr,
1177 				QSPI_SR_BUSY_MASK |
1178 				QSPI_SR_AHB_ACC_MASK |
1179 				QSPI_SR_IP_ACC_MASK,
1180 				false, 100, false);
1181 
1182 	if (ret) {
1183 		debug("ERROR : The controller is busy\n");
1184 		return ret;
1185 	}
1186 
1187 	priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1188 
1189 	qspi_module_disable(priv, 0);
1190 
1191 	return 0;
1192 }
1193 
1194 static int fsl_qspi_release_bus(struct udevice *dev)
1195 {
1196 	struct fsl_qspi_priv *priv;
1197 	struct udevice *bus;
1198 
1199 	bus = dev->parent;
1200 	priv = dev_get_priv(bus);
1201 
1202 	qspi_module_disable(priv, 1);
1203 
1204 	return 0;
1205 }
1206 
1207 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1208 {
1209 	/* Nothing to do */
1210 	return 0;
1211 }
1212 
1213 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1214 {
1215 	/* Nothing to do */
1216 	return 0;
1217 }
1218 
1219 static const struct dm_spi_ops fsl_qspi_ops = {
1220 	.claim_bus	= fsl_qspi_claim_bus,
1221 	.release_bus	= fsl_qspi_release_bus,
1222 	.xfer		= fsl_qspi_xfer,
1223 	.set_speed	= fsl_qspi_set_speed,
1224 	.set_mode	= fsl_qspi_set_mode,
1225 };
1226 
1227 static const struct udevice_id fsl_qspi_ids[] = {
1228 	{ .compatible = "fsl,vf610-qspi" },
1229 	{ .compatible = "fsl,imx6sx-qspi" },
1230 	{ }
1231 };
1232 
1233 U_BOOT_DRIVER(fsl_qspi) = {
1234 	.name	= "fsl_qspi",
1235 	.id	= UCLASS_SPI,
1236 	.of_match = fsl_qspi_ids,
1237 	.ops	= &fsl_qspi_ops,
1238 	.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1239 	.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1240 	.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1241 	.probe	= fsl_qspi_probe,
1242 	.child_pre_probe = fsl_qspi_child_pre_probe,
1243 };
1244 #endif
1245