xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision 2290fe06)
1 /*
2  * Copyright 2013-2015 Freescale Semiconductor, Inc.
3  *
4  * Freescale Quad Serial Peripheral Interface (QSPI) driver
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <malloc.h>
11 #include <spi.h>
12 #include <asm/io.h>
13 #include <linux/sizes.h>
14 #include <dm.h>
15 #include <errno.h>
16 #include <watchdog.h>
17 #include "fsl_qspi.h"
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 #define RX_BUFFER_SIZE		0x80
22 #ifdef CONFIG_MX6SX
23 #define TX_BUFFER_SIZE		0x200
24 #else
25 #define TX_BUFFER_SIZE		0x40
26 #endif
27 
28 #define OFFSET_BITS_MASK	GENMASK(23, 0)
29 
30 #define FLASH_STATUS_WEL	0x02
31 
32 /* SEQID */
33 #define SEQID_WREN		1
34 #define SEQID_FAST_READ		2
35 #define SEQID_RDSR		3
36 #define SEQID_SE		4
37 #define SEQID_CHIP_ERASE	5
38 #define SEQID_PP		6
39 #define SEQID_RDID		7
40 #define SEQID_BE_4K		8
41 #ifdef CONFIG_SPI_FLASH_BAR
42 #define SEQID_BRRD		9
43 #define SEQID_BRWR		10
44 #define SEQID_RDEAR		11
45 #define SEQID_WREAR		12
46 #endif
47 #define SEQID_WRAR		13
48 #define SEQID_RDAR		14
49 
50 /* QSPI CMD */
51 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
52 #define QSPI_CMD_RDSR		0x05	/* Read status register */
53 #define QSPI_CMD_WREN		0x06	/* Write enable */
54 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
55 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
56 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
57 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
58 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
59 
60 /* Used for Micron, winbond and Macronix flashes */
61 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
62 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
63 
64 /* Used for Spansion flashes only. */
65 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
66 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
67 
68 /* Used for Spansion S25FS-S family flash only. */
69 #define QSPI_CMD_RDAR		0x65	/* Read any device register */
70 #define QSPI_CMD_WRAR		0x71	/* Write any device register */
71 
72 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
73 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
74 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
75 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
76 
77 /* fsl_qspi_platdata flags */
78 #define QSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)
79 
80 /* default SCK frequency, unit: HZ */
81 #define FSL_QSPI_DEFAULT_SCK_FREQ	50000000
82 
83 /* QSPI max chipselect signals number */
84 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
85 
86 #ifdef CONFIG_DM_SPI
87 /**
88  * struct fsl_qspi_platdata - platform data for Freescale QSPI
89  *
90  * @flags: Flags for QSPI QSPI_FLAG_...
91  * @speed_hz: Default SCK frequency
92  * @reg_base: Base address of QSPI registers
93  * @amba_base: Base address of QSPI memory mapping
94  * @amba_total_size: size of QSPI memory mapping
95  * @flash_num: Number of active slave devices
96  * @num_chipselect: Number of QSPI chipselect signals
97  */
98 struct fsl_qspi_platdata {
99 	u32 flags;
100 	u32 speed_hz;
101 	fdt_addr_t reg_base;
102 	fdt_addr_t amba_base;
103 	fdt_size_t amba_total_size;
104 	u32 flash_num;
105 	u32 num_chipselect;
106 };
107 #endif
108 
109 /**
110  * struct fsl_qspi_priv - private data for Freescale QSPI
111  *
112  * @flags: Flags for QSPI QSPI_FLAG_...
113  * @bus_clk: QSPI input clk frequency
114  * @speed_hz: Default SCK frequency
115  * @cur_seqid: current LUT table sequence id
116  * @sf_addr: flash access offset
117  * @amba_base: Base address of QSPI memory mapping of every CS
118  * @amba_total_size: size of QSPI memory mapping
119  * @cur_amba_base: Base address of QSPI memory mapping of current CS
120  * @flash_num: Number of active slave devices
121  * @num_chipselect: Number of QSPI chipselect signals
122  * @regs: Point to QSPI register structure for I/O access
123  */
124 struct fsl_qspi_priv {
125 	u32 flags;
126 	u32 bus_clk;
127 	u32 speed_hz;
128 	u32 cur_seqid;
129 	u32 sf_addr;
130 	u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
131 	u32 amba_total_size;
132 	u32 cur_amba_base;
133 	u32 flash_num;
134 	u32 num_chipselect;
135 	struct fsl_qspi_regs *regs;
136 };
137 
138 #ifndef CONFIG_DM_SPI
139 struct fsl_qspi {
140 	struct spi_slave slave;
141 	struct fsl_qspi_priv priv;
142 };
143 #endif
144 
145 static u32 qspi_read32(u32 flags, u32 *addr)
146 {
147 	return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
148 		in_be32(addr) : in_le32(addr);
149 }
150 
151 static void qspi_write32(u32 flags, u32 *addr, u32 val)
152 {
153 	flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
154 		out_be32(addr, val) : out_le32(addr, val);
155 }
156 
157 /* QSPI support swapping the flash read/write data
158  * in hardware for LS102xA, but not for VF610 */
159 static inline u32 qspi_endian_xchg(u32 data)
160 {
161 #ifdef CONFIG_VF610
162 	return swab32(data);
163 #else
164 	return data;
165 #endif
166 }
167 
168 static void qspi_set_lut(struct fsl_qspi_priv *priv)
169 {
170 	struct fsl_qspi_regs *regs = priv->regs;
171 	u32 lut_base;
172 
173 	/* Unlock the LUT */
174 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
175 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
176 
177 	/* Write Enable */
178 	lut_base = SEQID_WREN * 4;
179 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
180 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
181 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
182 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
183 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
184 
185 	/* Fast Read */
186 	lut_base = SEQID_FAST_READ * 4;
187 #ifdef CONFIG_SPI_FLASH_BAR
188 	qspi_write32(priv->flags, &regs->lut[lut_base],
189 		     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
190 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
191 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
192 #else
193 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
194 		qspi_write32(priv->flags, &regs->lut[lut_base],
195 			     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
196 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
197 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
198 	else
199 		qspi_write32(priv->flags, &regs->lut[lut_base],
200 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
201 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
202 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
203 			     INSTR1(LUT_ADDR));
204 #endif
205 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
206 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
207 		     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
208 		     INSTR1(LUT_READ));
209 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
210 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
211 
212 	/* Read Status */
213 	lut_base = SEQID_RDSR * 4;
214 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
215 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
216 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
217 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
218 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
219 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
220 
221 	/* Erase a sector */
222 	lut_base = SEQID_SE * 4;
223 #ifdef CONFIG_SPI_FLASH_BAR
224 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
225 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
226 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
227 #else
228 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
229 		qspi_write32(priv->flags, &regs->lut[lut_base],
230 			     OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
231 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
232 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
233 	else
234 		qspi_write32(priv->flags, &regs->lut[lut_base],
235 			     OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
236 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
237 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
238 #endif
239 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
240 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
241 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
242 
243 	/* Erase the whole chip */
244 	lut_base = SEQID_CHIP_ERASE * 4;
245 	qspi_write32(priv->flags, &regs->lut[lut_base],
246 		     OPRND0(QSPI_CMD_CHIP_ERASE) |
247 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
248 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
249 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
250 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
251 
252 	/* Page Program */
253 	lut_base = SEQID_PP * 4;
254 #ifdef CONFIG_SPI_FLASH_BAR
255 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
256 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
257 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
258 #else
259 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
260 		qspi_write32(priv->flags, &regs->lut[lut_base],
261 			     OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
262 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
263 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
264 	else
265 		qspi_write32(priv->flags, &regs->lut[lut_base],
266 			     OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
267 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
268 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
269 #endif
270 #ifdef CONFIG_MX6SX
271 	/*
272 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
273 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
274 	 */
275 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
276 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
277 #else
278 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
279 		     OPRND0(TX_BUFFER_SIZE) |
280 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
281 #endif
282 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
283 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
284 
285 	/* READ ID */
286 	lut_base = SEQID_RDID * 4;
287 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
288 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
289 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
290 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
291 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
292 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
293 
294 	/* SUB SECTOR 4K ERASE */
295 	lut_base = SEQID_BE_4K * 4;
296 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
297 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
298 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
299 
300 #ifdef CONFIG_SPI_FLASH_BAR
301 	/*
302 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
303 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
304 	 * initialization.
305 	 */
306 	lut_base = SEQID_BRRD * 4;
307 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
308 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
309 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
310 
311 	lut_base = SEQID_BRWR * 4;
312 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
313 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
314 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
315 
316 	lut_base = SEQID_RDEAR * 4;
317 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
318 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
319 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
320 
321 	lut_base = SEQID_WREAR * 4;
322 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
323 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
324 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
325 #endif
326 
327 	/*
328 	 * Read any device register.
329 	 * Used for Spansion S25FS-S family flash only.
330 	 */
331 	lut_base = SEQID_RDAR * 4;
332 	qspi_write32(priv->flags, &regs->lut[lut_base],
333 		     OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
334 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
335 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
336 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
337 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
338 		     OPRND1(1) | PAD1(LUT_PAD1) |
339 		     INSTR1(LUT_READ));
340 
341 	/*
342 	 * Write any device register.
343 	 * Used for Spansion S25FS-S family flash only.
344 	 */
345 	lut_base = SEQID_WRAR * 4;
346 	qspi_write32(priv->flags, &regs->lut[lut_base],
347 		     OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
348 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
349 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
350 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
351 		     OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
352 
353 	/* Lock the LUT */
354 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
355 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
356 }
357 
358 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
359 /*
360  * If we have changed the content of the flash by writing or erasing,
361  * we need to invalidate the AHB buffer. If we do not do so, we may read out
362  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
363  * domain at the same time.
364  */
365 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
366 {
367 	struct fsl_qspi_regs *regs = priv->regs;
368 	u32 reg;
369 
370 	reg = qspi_read32(priv->flags, &regs->mcr);
371 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
372 	qspi_write32(priv->flags, &regs->mcr, reg);
373 
374 	/*
375 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
376 	 * Delay 1 us is enough.
377 	 */
378 	udelay(1);
379 
380 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
381 	qspi_write32(priv->flags, &regs->mcr, reg);
382 }
383 
384 /* Read out the data from the AHB buffer. */
385 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
386 {
387 	struct fsl_qspi_regs *regs = priv->regs;
388 	u32 mcr_reg;
389 
390 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
391 
392 	qspi_write32(priv->flags, &regs->mcr,
393 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
394 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
395 
396 	/* Read out the data directly from the AHB buffer. */
397 	memcpy(rxbuf, (u8 *)(priv->cur_amba_base + priv->sf_addr), len);
398 
399 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
400 }
401 
402 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
403 {
404 	u32 reg, reg2;
405 	struct fsl_qspi_regs *regs = priv->regs;
406 
407 	reg = qspi_read32(priv->flags, &regs->mcr);
408 	/* Disable the module */
409 	qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
410 
411 	/* Set the Sampling Register for DDR */
412 	reg2 = qspi_read32(priv->flags, &regs->smpr);
413 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
414 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
415 	qspi_write32(priv->flags, &regs->smpr, reg2);
416 
417 	/* Enable the module again (enable the DDR too) */
418 	reg |= QSPI_MCR_DDR_EN_MASK;
419 	/* Enable bit 29 for imx6sx */
420 	reg |= BIT(29);
421 
422 	qspi_write32(priv->flags, &regs->mcr, reg);
423 }
424 
425 /*
426  * There are two different ways to read out the data from the flash:
427  *  the "IP Command Read" and the "AHB Command Read".
428  *
429  * The IC guy suggests we use the "AHB Command Read" which is faster
430  * then the "IP Command Read". (What's more is that there is a bug in
431  * the "IP Command Read" in the Vybrid.)
432  *
433  * After we set up the registers for the "AHB Command Read", we can use
434  * the memcpy to read the data directly. A "missed" access to the buffer
435  * causes the controller to clear the buffer, and use the sequence pointed
436  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
437  */
438 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
439 {
440 	struct fsl_qspi_regs *regs = priv->regs;
441 
442 	/* AHB configuration for access buffer 0/1/2 .*/
443 	qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
444 	qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
445 	qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
446 	qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
447 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
448 
449 	/* We only use the buffer3 */
450 	qspi_write32(priv->flags, &regs->buf0ind, 0);
451 	qspi_write32(priv->flags, &regs->buf1ind, 0);
452 	qspi_write32(priv->flags, &regs->buf2ind, 0);
453 
454 	/*
455 	 * Set the default lut sequence for AHB Read.
456 	 * Parallel mode is disabled.
457 	 */
458 	qspi_write32(priv->flags, &regs->bfgencr,
459 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
460 
461 	/*Enable DDR Mode*/
462 	qspi_enable_ddr_mode(priv);
463 }
464 #endif
465 
466 #ifdef CONFIG_SPI_FLASH_BAR
467 /* Bank register read/write, EAR register read/write */
468 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
469 {
470 	struct fsl_qspi_regs *regs = priv->regs;
471 	u32 reg, mcr_reg, data, seqid;
472 
473 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
474 	qspi_write32(priv->flags, &regs->mcr,
475 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
476 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
477 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
478 
479 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
480 
481 	if (priv->cur_seqid == QSPI_CMD_BRRD)
482 		seqid = SEQID_BRRD;
483 	else
484 		seqid = SEQID_RDEAR;
485 
486 	qspi_write32(priv->flags, &regs->ipcr,
487 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
488 
489 	/* Wait previous command complete */
490 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
491 		;
492 
493 	while (1) {
494 		reg = qspi_read32(priv->flags, &regs->rbsr);
495 		if (reg & QSPI_RBSR_RDBFL_MASK) {
496 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
497 			data = qspi_endian_xchg(data);
498 			memcpy(rxbuf, &data, len);
499 			qspi_write32(priv->flags, &regs->mcr,
500 				     qspi_read32(priv->flags, &regs->mcr) |
501 				     QSPI_MCR_CLR_RXF_MASK);
502 			break;
503 		}
504 	}
505 
506 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
507 }
508 #endif
509 
510 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
511 {
512 	struct fsl_qspi_regs *regs = priv->regs;
513 	u32 mcr_reg, rbsr_reg, data, size;
514 	int i;
515 
516 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
517 	qspi_write32(priv->flags, &regs->mcr,
518 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
519 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
520 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
521 
522 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
523 
524 	qspi_write32(priv->flags, &regs->ipcr,
525 		     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
526 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
527 		;
528 
529 	i = 0;
530 	while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
531 		rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
532 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
533 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
534 			data = qspi_endian_xchg(data);
535 			size = (len < 4) ? len : 4;
536 			memcpy(rxbuf, &data, size);
537 			len -= size;
538 			rxbuf++;
539 			i++;
540 		}
541 	}
542 
543 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
544 }
545 
546 /* If not use AHB read, read data from ip interface */
547 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
548 {
549 	struct fsl_qspi_regs *regs = priv->regs;
550 	u32 mcr_reg, data;
551 	int i, size;
552 	u32 to_or_from;
553 	u32 seqid;
554 
555 	if (priv->cur_seqid == QSPI_CMD_RDAR)
556 		seqid = SEQID_RDAR;
557 	else
558 		seqid = SEQID_FAST_READ;
559 
560 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
561 	qspi_write32(priv->flags, &regs->mcr,
562 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
563 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
564 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
565 
566 	to_or_from = priv->sf_addr + priv->cur_amba_base;
567 
568 	while (len > 0) {
569 		WATCHDOG_RESET();
570 
571 		qspi_write32(priv->flags, &regs->sfar, to_or_from);
572 
573 		size = (len > RX_BUFFER_SIZE) ?
574 			RX_BUFFER_SIZE : len;
575 
576 		qspi_write32(priv->flags, &regs->ipcr,
577 			     (seqid << QSPI_IPCR_SEQID_SHIFT) |
578 			     size);
579 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
580 			;
581 
582 		to_or_from += size;
583 		len -= size;
584 
585 		i = 0;
586 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
587 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
588 			data = qspi_endian_xchg(data);
589 			if (size < 4)
590 				memcpy(rxbuf, &data, size);
591 			else
592 				memcpy(rxbuf, &data, 4);
593 			rxbuf++;
594 			size -= 4;
595 			i++;
596 		}
597 		qspi_write32(priv->flags, &regs->mcr,
598 			     qspi_read32(priv->flags, &regs->mcr) |
599 			     QSPI_MCR_CLR_RXF_MASK);
600 	}
601 
602 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
603 }
604 
605 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
606 {
607 	struct fsl_qspi_regs *regs = priv->regs;
608 	u32 mcr_reg, data, reg, status_reg, seqid;
609 	int i, size, tx_size;
610 	u32 to_or_from = 0;
611 
612 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
613 	qspi_write32(priv->flags, &regs->mcr,
614 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
615 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
616 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
617 
618 	status_reg = 0;
619 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
620 		WATCHDOG_RESET();
621 
622 		qspi_write32(priv->flags, &regs->ipcr,
623 			     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
624 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
625 			;
626 
627 		qspi_write32(priv->flags, &regs->ipcr,
628 			     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
629 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
630 			;
631 
632 		reg = qspi_read32(priv->flags, &regs->rbsr);
633 		if (reg & QSPI_RBSR_RDBFL_MASK) {
634 			status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
635 			status_reg = qspi_endian_xchg(status_reg);
636 		}
637 		qspi_write32(priv->flags, &regs->mcr,
638 			     qspi_read32(priv->flags, &regs->mcr) |
639 			     QSPI_MCR_CLR_RXF_MASK);
640 	}
641 
642 	/* Default is page programming */
643 	seqid = SEQID_PP;
644 	if (priv->cur_seqid == QSPI_CMD_WRAR)
645 		seqid = SEQID_WRAR;
646 #ifdef CONFIG_SPI_FLASH_BAR
647 	if (priv->cur_seqid == QSPI_CMD_BRWR)
648 		seqid = SEQID_BRWR;
649 	else if (priv->cur_seqid == QSPI_CMD_WREAR)
650 		seqid = SEQID_WREAR;
651 #endif
652 
653 	to_or_from = priv->sf_addr + priv->cur_amba_base;
654 
655 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
656 
657 	tx_size = (len > TX_BUFFER_SIZE) ?
658 		TX_BUFFER_SIZE : len;
659 
660 	size = tx_size / 4;
661 	for (i = 0; i < size; i++) {
662 		memcpy(&data, txbuf, 4);
663 		data = qspi_endian_xchg(data);
664 		qspi_write32(priv->flags, &regs->tbdr, data);
665 		txbuf += 4;
666 	}
667 
668 	size = tx_size % 4;
669 	if (size) {
670 		data = 0;
671 		memcpy(&data, txbuf, size);
672 		data = qspi_endian_xchg(data);
673 		qspi_write32(priv->flags, &regs->tbdr, data);
674 	}
675 
676 	qspi_write32(priv->flags, &regs->ipcr,
677 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
678 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
679 		;
680 
681 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
682 }
683 
684 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
685 {
686 	struct fsl_qspi_regs *regs = priv->regs;
687 	u32 mcr_reg, reg, data;
688 
689 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
690 	qspi_write32(priv->flags, &regs->mcr,
691 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
692 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
693 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
694 
695 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
696 
697 	qspi_write32(priv->flags, &regs->ipcr,
698 		     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
699 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
700 		;
701 
702 	while (1) {
703 		reg = qspi_read32(priv->flags, &regs->rbsr);
704 		if (reg & QSPI_RBSR_RDBFL_MASK) {
705 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
706 			data = qspi_endian_xchg(data);
707 			memcpy(rxbuf, &data, len);
708 			qspi_write32(priv->flags, &regs->mcr,
709 				     qspi_read32(priv->flags, &regs->mcr) |
710 				     QSPI_MCR_CLR_RXF_MASK);
711 			break;
712 		}
713 	}
714 
715 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
716 }
717 
718 static void qspi_op_erase(struct fsl_qspi_priv *priv)
719 {
720 	struct fsl_qspi_regs *regs = priv->regs;
721 	u32 mcr_reg;
722 	u32 to_or_from = 0;
723 
724 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
725 	qspi_write32(priv->flags, &regs->mcr,
726 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
727 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
728 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
729 
730 	to_or_from = priv->sf_addr + priv->cur_amba_base;
731 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
732 
733 	qspi_write32(priv->flags, &regs->ipcr,
734 		     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
735 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
736 		;
737 
738 	if (priv->cur_seqid == QSPI_CMD_SE) {
739 		qspi_write32(priv->flags, &regs->ipcr,
740 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
741 	} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
742 		qspi_write32(priv->flags, &regs->ipcr,
743 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
744 	}
745 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
746 		;
747 
748 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
749 }
750 
751 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
752 		const void *dout, void *din, unsigned long flags)
753 {
754 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
755 	static u32 wr_sfaddr;
756 	u32 txbuf;
757 
758 	if (dout) {
759 		if (flags & SPI_XFER_BEGIN) {
760 			priv->cur_seqid = *(u8 *)dout;
761 			memcpy(&txbuf, dout, 4);
762 		}
763 
764 		if (flags == SPI_XFER_END) {
765 			priv->sf_addr = wr_sfaddr;
766 			qspi_op_write(priv, (u8 *)dout, bytes);
767 			return 0;
768 		}
769 
770 		if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
771 		    priv->cur_seqid == QSPI_CMD_RDAR) {
772 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
773 		} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
774 			   (priv->cur_seqid == QSPI_CMD_BE_4K)) {
775 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
776 			qspi_op_erase(priv);
777 		} else if (priv->cur_seqid == QSPI_CMD_PP ||
778 			   priv->cur_seqid == QSPI_CMD_WRAR) {
779 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
780 		} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
781 			 (priv->cur_seqid == QSPI_CMD_WREAR)) {
782 #ifdef CONFIG_SPI_FLASH_BAR
783 			wr_sfaddr = 0;
784 #endif
785 		}
786 	}
787 
788 	if (din) {
789 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
790 #ifdef CONFIG_SYS_FSL_QSPI_AHB
791 			qspi_ahb_read(priv, din, bytes);
792 #else
793 			qspi_op_read(priv, din, bytes);
794 #endif
795 		} else if (priv->cur_seqid == QSPI_CMD_RDAR) {
796 			qspi_op_read(priv, din, bytes);
797 		} else if (priv->cur_seqid == QSPI_CMD_RDID)
798 			qspi_op_rdid(priv, din, bytes);
799 		else if (priv->cur_seqid == QSPI_CMD_RDSR)
800 			qspi_op_rdsr(priv, din, bytes);
801 #ifdef CONFIG_SPI_FLASH_BAR
802 		else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
803 			 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
804 			priv->sf_addr = 0;
805 			qspi_op_rdbank(priv, din, bytes);
806 		}
807 #endif
808 	}
809 
810 #ifdef CONFIG_SYS_FSL_QSPI_AHB
811 	if ((priv->cur_seqid == QSPI_CMD_SE) ||
812 	    (priv->cur_seqid == QSPI_CMD_PP) ||
813 	    (priv->cur_seqid == QSPI_CMD_BE_4K) ||
814 	    (priv->cur_seqid == QSPI_CMD_WREAR) ||
815 	    (priv->cur_seqid == QSPI_CMD_BRWR))
816 		qspi_ahb_invalid(priv);
817 #endif
818 
819 	return 0;
820 }
821 
822 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
823 {
824 	u32 mcr_val;
825 
826 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
827 	if (disable)
828 		mcr_val |= QSPI_MCR_MDIS_MASK;
829 	else
830 		mcr_val &= ~QSPI_MCR_MDIS_MASK;
831 	qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
832 }
833 
834 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
835 {
836 	u32 smpr_val;
837 
838 	smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
839 	smpr_val &= ~clear_bits;
840 	smpr_val |= set_bits;
841 	qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
842 }
843 #ifndef CONFIG_DM_SPI
844 static unsigned long spi_bases[] = {
845 	QSPI0_BASE_ADDR,
846 #ifdef CONFIG_MX6SX
847 	QSPI1_BASE_ADDR,
848 #endif
849 };
850 
851 static unsigned long amba_bases[] = {
852 	QSPI0_AMBA_BASE,
853 #ifdef CONFIG_MX6SX
854 	QSPI1_AMBA_BASE,
855 #endif
856 };
857 
858 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
859 {
860 	return container_of(slave, struct fsl_qspi, slave);
861 }
862 
863 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
864 		unsigned int max_hz, unsigned int mode)
865 {
866 	struct fsl_qspi *qspi;
867 	struct fsl_qspi_regs *regs;
868 	u32 total_size;
869 
870 	if (bus >= ARRAY_SIZE(spi_bases))
871 		return NULL;
872 
873 	if (cs >= FSL_QSPI_FLASH_NUM)
874 		return NULL;
875 
876 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
877 	if (!qspi)
878 		return NULL;
879 
880 #ifdef CONFIG_SYS_FSL_QSPI_BE
881 	qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
882 #endif
883 
884 	regs = (struct fsl_qspi_regs *)spi_bases[bus];
885 	qspi->priv.regs = regs;
886 	/*
887 	 * According cs, use different amba_base to choose the
888 	 * corresponding flash devices.
889 	 *
890 	 * If not, only one flash device is used even if passing
891 	 * different cs using `sf probe`
892 	 */
893 	qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
894 
895 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
896 
897 	qspi_write32(qspi->priv.flags, &regs->mcr,
898 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
899 
900 	qspi_cfg_smpr(&qspi->priv,
901 		      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
902 		      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
903 
904 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
905 	/*
906 	 * Any read access to non-implemented addresses will provide
907 	 * undefined results.
908 	 *
909 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
910 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
911 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
912 	 * setting the size of these devices to 0.  This would ensure
913 	 * that the complete memory map is assigned to only one flash device.
914 	 */
915 	qspi_write32(qspi->priv.flags, &regs->sfa1ad,
916 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
917 	qspi_write32(qspi->priv.flags, &regs->sfa2ad,
918 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
919 	qspi_write32(qspi->priv.flags, &regs->sfb1ad,
920 		     total_size | amba_bases[bus]);
921 	qspi_write32(qspi->priv.flags, &regs->sfb2ad,
922 		     total_size | amba_bases[bus]);
923 
924 	qspi_set_lut(&qspi->priv);
925 
926 #ifdef CONFIG_SYS_FSL_QSPI_AHB
927 	qspi_init_ahb_read(&qspi->priv);
928 #endif
929 
930 	qspi_module_disable(&qspi->priv, 0);
931 
932 	return &qspi->slave;
933 }
934 
935 void spi_free_slave(struct spi_slave *slave)
936 {
937 	struct fsl_qspi *qspi = to_qspi_spi(slave);
938 
939 	free(qspi);
940 }
941 
942 int spi_claim_bus(struct spi_slave *slave)
943 {
944 	return 0;
945 }
946 
947 void spi_release_bus(struct spi_slave *slave)
948 {
949 	/* Nothing to do */
950 }
951 
952 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
953 		const void *dout, void *din, unsigned long flags)
954 {
955 	struct fsl_qspi *qspi = to_qspi_spi(slave);
956 
957 	return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
958 }
959 
960 void spi_init(void)
961 {
962 	/* Nothing to do */
963 }
964 #else
965 static int fsl_qspi_child_pre_probe(struct udevice *dev)
966 {
967 	struct spi_slave *slave = dev_get_parent_priv(dev);
968 
969 	slave->max_write_size = TX_BUFFER_SIZE;
970 
971 	return 0;
972 }
973 
974 static int fsl_qspi_probe(struct udevice *bus)
975 {
976 	u32 amba_size_per_chip;
977 	struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
978 	struct fsl_qspi_priv *priv = dev_get_priv(bus);
979 	struct dm_spi_bus *dm_spi_bus;
980 	int i;
981 
982 	dm_spi_bus = bus->uclass_priv;
983 
984 	dm_spi_bus->max_hz = plat->speed_hz;
985 
986 	priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
987 	priv->flags = plat->flags;
988 
989 	priv->speed_hz = plat->speed_hz;
990 	/*
991 	 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
992 	 * AMBA memory zone should be located on the 0~4GB space
993 	 * even on a 64bits cpu.
994 	 */
995 	priv->amba_base[0] = (u32)plat->amba_base;
996 	priv->amba_total_size = (u32)plat->amba_total_size;
997 	priv->flash_num = plat->flash_num;
998 	priv->num_chipselect = plat->num_chipselect;
999 
1000 	qspi_write32(priv->flags, &priv->regs->mcr,
1001 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
1002 
1003 	qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1004 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1005 
1006 	/*
1007 	 * Assign AMBA memory zone for every chipselect
1008 	 * QuadSPI has two channels, every channel has two chipselects.
1009 	 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1010 	 * into two parts and assign to every channel. This indicate that every
1011 	 * channel only has one valid chipselect.
1012 	 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1013 	 * into four parts and assign to every chipselect.
1014 	 * Every channel will has two valid chipselects.
1015 	 */
1016 	amba_size_per_chip = priv->amba_total_size >>
1017 			     (priv->num_chipselect >> 1);
1018 	for (i = 1 ; i < priv->num_chipselect ; i++)
1019 		priv->amba_base[i] =
1020 			amba_size_per_chip + priv->amba_base[i - 1];
1021 
1022 	/*
1023 	 * Any read access to non-implemented addresses will provide
1024 	 * undefined results.
1025 	 *
1026 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
1027 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
1028 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1029 	 * setting the size of these devices to 0.  This would ensure
1030 	 * that the complete memory map is assigned to only one flash device.
1031 	 */
1032 	qspi_write32(priv->flags, &priv->regs->sfa1ad, priv->amba_base[1]);
1033 	switch (priv->num_chipselect) {
1034 	case 2:
1035 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1036 			     priv->amba_base[1]);
1037 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1038 			     priv->amba_base[1] + amba_size_per_chip);
1039 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1040 			     priv->amba_base[1] + amba_size_per_chip);
1041 		break;
1042 	case 4:
1043 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1044 			     priv->amba_base[2]);
1045 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1046 			     priv->amba_base[3]);
1047 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1048 			     priv->amba_base[3] + amba_size_per_chip);
1049 		break;
1050 	default:
1051 		debug("Error: Unsupported chipselect number %u!\n",
1052 		      priv->num_chipselect);
1053 		qspi_module_disable(priv, 1);
1054 		return -EINVAL;
1055 	}
1056 
1057 	qspi_set_lut(priv);
1058 
1059 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1060 	qspi_init_ahb_read(priv);
1061 #endif
1062 
1063 	qspi_module_disable(priv, 0);
1064 
1065 	return 0;
1066 }
1067 
1068 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1069 {
1070 	struct fdt_resource res_regs, res_mem;
1071 	struct fsl_qspi_platdata *plat = bus->platdata;
1072 	const void *blob = gd->fdt_blob;
1073 	int node = bus->of_offset;
1074 	int ret, flash_num = 0, subnode;
1075 
1076 	if (fdtdec_get_bool(blob, node, "big-endian"))
1077 		plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1078 
1079 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1080 				     "QuadSPI", &res_regs);
1081 	if (ret) {
1082 		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1083 		return -ENOMEM;
1084 	}
1085 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1086 				     "QuadSPI-memory", &res_mem);
1087 	if (ret) {
1088 		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1089 		return -ENOMEM;
1090 	}
1091 
1092 	/* Count flash numbers */
1093 	fdt_for_each_subnode(blob, subnode, node)
1094 		++flash_num;
1095 
1096 	if (flash_num == 0) {
1097 		debug("Error: Missing flashes!\n");
1098 		return -ENODEV;
1099 	}
1100 
1101 	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1102 					FSL_QSPI_DEFAULT_SCK_FREQ);
1103 	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1104 					      FSL_QSPI_MAX_CHIPSELECT_NUM);
1105 
1106 	plat->reg_base = res_regs.start;
1107 	plat->amba_base = res_mem.start;
1108 	plat->amba_total_size = res_mem.end - res_mem.start + 1;
1109 	plat->flash_num = flash_num;
1110 
1111 	debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1112 	      __func__,
1113 	      (u64)plat->reg_base,
1114 	      (u64)plat->amba_base,
1115 	      (u64)plat->amba_total_size,
1116 	      plat->speed_hz,
1117 	      plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1118 	      );
1119 
1120 	return 0;
1121 }
1122 
1123 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1124 		const void *dout, void *din, unsigned long flags)
1125 {
1126 	struct fsl_qspi_priv *priv;
1127 	struct udevice *bus;
1128 
1129 	bus = dev->parent;
1130 	priv = dev_get_priv(bus);
1131 
1132 	return qspi_xfer(priv, bitlen, dout, din, flags);
1133 }
1134 
1135 static int fsl_qspi_claim_bus(struct udevice *dev)
1136 {
1137 	struct fsl_qspi_priv *priv;
1138 	struct udevice *bus;
1139 	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1140 
1141 	bus = dev->parent;
1142 	priv = dev_get_priv(bus);
1143 
1144 	priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1145 
1146 	qspi_module_disable(priv, 0);
1147 
1148 	return 0;
1149 }
1150 
1151 static int fsl_qspi_release_bus(struct udevice *dev)
1152 {
1153 	struct fsl_qspi_priv *priv;
1154 	struct udevice *bus;
1155 
1156 	bus = dev->parent;
1157 	priv = dev_get_priv(bus);
1158 
1159 	qspi_module_disable(priv, 1);
1160 
1161 	return 0;
1162 }
1163 
1164 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1165 {
1166 	/* Nothing to do */
1167 	return 0;
1168 }
1169 
1170 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1171 {
1172 	/* Nothing to do */
1173 	return 0;
1174 }
1175 
1176 static const struct dm_spi_ops fsl_qspi_ops = {
1177 	.claim_bus	= fsl_qspi_claim_bus,
1178 	.release_bus	= fsl_qspi_release_bus,
1179 	.xfer		= fsl_qspi_xfer,
1180 	.set_speed	= fsl_qspi_set_speed,
1181 	.set_mode	= fsl_qspi_set_mode,
1182 };
1183 
1184 static const struct udevice_id fsl_qspi_ids[] = {
1185 	{ .compatible = "fsl,vf610-qspi" },
1186 	{ .compatible = "fsl,imx6sx-qspi" },
1187 	{ }
1188 };
1189 
1190 U_BOOT_DRIVER(fsl_qspi) = {
1191 	.name	= "fsl_qspi",
1192 	.id	= UCLASS_SPI,
1193 	.of_match = fsl_qspi_ids,
1194 	.ops	= &fsl_qspi_ops,
1195 	.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1196 	.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1197 	.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1198 	.probe	= fsl_qspi_probe,
1199 	.child_pre_probe = fsl_qspi_child_pre_probe,
1200 };
1201 #endif
1202