xref: /openbmc/u-boot/drivers/spi/fsl_qspi.c (revision 21299d3a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2013-2015 Freescale Semiconductor, Inc.
4  *
5  * Freescale Quad Serial Peripheral Interface (QSPI) driver
6  */
7 
8 #include <common.h>
9 #include <malloc.h>
10 #include <spi.h>
11 #include <asm/io.h>
12 #include <linux/sizes.h>
13 #include <dm.h>
14 #include <errno.h>
15 #include <watchdog.h>
16 #include <wait_bit.h>
17 #include "fsl_qspi.h"
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 #define RX_BUFFER_SIZE		0x80
22 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
23 	defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
24 #define TX_BUFFER_SIZE		0x200
25 #else
26 #define TX_BUFFER_SIZE		0x40
27 #endif
28 
29 #define OFFSET_BITS_MASK	GENMASK(23, 0)
30 
31 #define FLASH_STATUS_WEL	0x02
32 
33 /* SEQID */
34 #define SEQID_WREN		1
35 #define SEQID_FAST_READ		2
36 #define SEQID_RDSR		3
37 #define SEQID_SE		4
38 #define SEQID_CHIP_ERASE	5
39 #define SEQID_PP		6
40 #define SEQID_RDID		7
41 #define SEQID_BE_4K		8
42 #ifdef CONFIG_SPI_FLASH_BAR
43 #define SEQID_BRRD		9
44 #define SEQID_BRWR		10
45 #define SEQID_RDEAR		11
46 #define SEQID_WREAR		12
47 #endif
48 #define SEQID_WRAR		13
49 #define SEQID_RDAR		14
50 
51 /* QSPI CMD */
52 #define QSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
53 #define QSPI_CMD_RDSR		0x05	/* Read status register */
54 #define QSPI_CMD_WREN		0x06	/* Write enable */
55 #define QSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
56 #define QSPI_CMD_BE_4K		0x20    /* 4K erase */
57 #define QSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
58 #define QSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
59 #define QSPI_CMD_RDID		0x9f	/* Read JEDEC ID */
60 
61 /* Used for Micron, winbond and Macronix flashes */
62 #define	QSPI_CMD_WREAR		0xc5	/* EAR register write */
63 #define	QSPI_CMD_RDEAR		0xc8	/* EAR reigster read */
64 
65 /* Used for Spansion flashes only. */
66 #define	QSPI_CMD_BRRD		0x16	/* Bank register read */
67 #define	QSPI_CMD_BRWR		0x17	/* Bank register write */
68 
69 /* Used for Spansion S25FS-S family flash only. */
70 #define QSPI_CMD_RDAR		0x65	/* Read any device register */
71 #define QSPI_CMD_WRAR		0x71	/* Write any device register */
72 
73 /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
74 #define QSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
75 #define QSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
76 #define QSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
77 
78 /* fsl_qspi_platdata flags */
79 #define QSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)
80 
81 /* default SCK frequency, unit: HZ */
82 #define FSL_QSPI_DEFAULT_SCK_FREQ	50000000
83 
84 /* QSPI max chipselect signals number */
85 #define FSL_QSPI_MAX_CHIPSELECT_NUM     4
86 
87 #ifdef CONFIG_DM_SPI
88 /**
89  * struct fsl_qspi_platdata - platform data for Freescale QSPI
90  *
91  * @flags: Flags for QSPI QSPI_FLAG_...
92  * @speed_hz: Default SCK frequency
93  * @reg_base: Base address of QSPI registers
94  * @amba_base: Base address of QSPI memory mapping
95  * @amba_total_size: size of QSPI memory mapping
96  * @flash_num: Number of active slave devices
97  * @num_chipselect: Number of QSPI chipselect signals
98  */
99 struct fsl_qspi_platdata {
100 	u32 flags;
101 	u32 speed_hz;
102 	fdt_addr_t reg_base;
103 	fdt_addr_t amba_base;
104 	fdt_size_t amba_total_size;
105 	u32 flash_num;
106 	u32 num_chipselect;
107 };
108 #endif
109 
110 /**
111  * struct fsl_qspi_priv - private data for Freescale QSPI
112  *
113  * @flags: Flags for QSPI QSPI_FLAG_...
114  * @bus_clk: QSPI input clk frequency
115  * @speed_hz: Default SCK frequency
116  * @cur_seqid: current LUT table sequence id
117  * @sf_addr: flash access offset
118  * @amba_base: Base address of QSPI memory mapping of every CS
119  * @amba_total_size: size of QSPI memory mapping
120  * @cur_amba_base: Base address of QSPI memory mapping of current CS
121  * @flash_num: Number of active slave devices
122  * @num_chipselect: Number of QSPI chipselect signals
123  * @regs: Point to QSPI register structure for I/O access
124  */
125 struct fsl_qspi_priv {
126 	u32 flags;
127 	u32 bus_clk;
128 	u32 speed_hz;
129 	u32 cur_seqid;
130 	u32 sf_addr;
131 	u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
132 	u32 amba_total_size;
133 	u32 cur_amba_base;
134 	u32 flash_num;
135 	u32 num_chipselect;
136 	struct fsl_qspi_regs *regs;
137 };
138 
139 #ifndef CONFIG_DM_SPI
140 struct fsl_qspi {
141 	struct spi_slave slave;
142 	struct fsl_qspi_priv priv;
143 };
144 #endif
145 
146 static u32 qspi_read32(u32 flags, u32 *addr)
147 {
148 	return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
149 		in_be32(addr) : in_le32(addr);
150 }
151 
152 static void qspi_write32(u32 flags, u32 *addr, u32 val)
153 {
154 	flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
155 		out_be32(addr, val) : out_le32(addr, val);
156 }
157 
158 /* QSPI support swapping the flash read/write data
159  * in hardware for LS102xA, but not for VF610 */
160 static inline u32 qspi_endian_xchg(u32 data)
161 {
162 #ifdef CONFIG_VF610
163 	return swab32(data);
164 #else
165 	return data;
166 #endif
167 }
168 
169 static void qspi_set_lut(struct fsl_qspi_priv *priv)
170 {
171 	struct fsl_qspi_regs *regs = priv->regs;
172 	u32 lut_base;
173 
174 	/* Unlock the LUT */
175 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
176 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
177 
178 	/* Write Enable */
179 	lut_base = SEQID_WREN * 4;
180 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
181 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
182 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
183 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
184 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
185 
186 	/* Fast Read */
187 	lut_base = SEQID_FAST_READ * 4;
188 #ifdef CONFIG_SPI_FLASH_BAR
189 	qspi_write32(priv->flags, &regs->lut[lut_base],
190 		     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
191 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
192 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
193 #else
194 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
195 		qspi_write32(priv->flags, &regs->lut[lut_base],
196 			     OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
197 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
198 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
199 	else
200 		qspi_write32(priv->flags, &regs->lut[lut_base],
201 			     OPRND0(QSPI_CMD_FAST_READ_4B) |
202 			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
203 			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
204 			     INSTR1(LUT_ADDR));
205 #endif
206 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
207 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
208 		     OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
209 		     INSTR1(LUT_READ));
210 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
211 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
212 
213 	/* Read Status */
214 	lut_base = SEQID_RDSR * 4;
215 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
216 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
217 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
218 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
219 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
220 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
221 
222 	/* Erase a sector */
223 	lut_base = SEQID_SE * 4;
224 #ifdef CONFIG_SPI_FLASH_BAR
225 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
226 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
227 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
228 #else
229 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
230 		qspi_write32(priv->flags, &regs->lut[lut_base],
231 			     OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
232 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
233 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
234 	else
235 		qspi_write32(priv->flags, &regs->lut[lut_base],
236 			     OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
237 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
238 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
239 #endif
240 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
241 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
242 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
243 
244 	/* Erase the whole chip */
245 	lut_base = SEQID_CHIP_ERASE * 4;
246 	qspi_write32(priv->flags, &regs->lut[lut_base],
247 		     OPRND0(QSPI_CMD_CHIP_ERASE) |
248 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
249 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
250 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
251 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
252 
253 	/* Page Program */
254 	lut_base = SEQID_PP * 4;
255 #ifdef CONFIG_SPI_FLASH_BAR
256 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
257 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
258 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
259 #else
260 	if (FSL_QSPI_FLASH_SIZE  <= SZ_16M)
261 		qspi_write32(priv->flags, &regs->lut[lut_base],
262 			     OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
263 			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
264 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
265 	else
266 		qspi_write32(priv->flags, &regs->lut[lut_base],
267 			     OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
268 			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
269 			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
270 #endif
271 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
272 	defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
273 	/*
274 	 * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
275 	 * So, Use IDATSZ in IPCR to determine the size and here set 0.
276 	 */
277 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
278 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
279 #else
280 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
281 		     OPRND0(TX_BUFFER_SIZE) |
282 		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
283 #endif
284 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
285 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
286 
287 	/* READ ID */
288 	lut_base = SEQID_RDID * 4;
289 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
290 		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
291 		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
292 	qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
293 	qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
294 	qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
295 
296 	/* SUB SECTOR 4K ERASE */
297 	lut_base = SEQID_BE_4K * 4;
298 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
299 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
300 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
301 
302 #ifdef CONFIG_SPI_FLASH_BAR
303 	/*
304 	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
305 	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
306 	 * initialization.
307 	 */
308 	lut_base = SEQID_BRRD * 4;
309 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
310 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
311 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
312 
313 	lut_base = SEQID_BRWR * 4;
314 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
315 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
316 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
317 
318 	lut_base = SEQID_RDEAR * 4;
319 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
320 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
321 		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
322 
323 	lut_base = SEQID_WREAR * 4;
324 	qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
325 		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
326 		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
327 #endif
328 
329 	/*
330 	 * Read any device register.
331 	 * Used for Spansion S25FS-S family flash only.
332 	 */
333 	lut_base = SEQID_RDAR * 4;
334 	qspi_write32(priv->flags, &regs->lut[lut_base],
335 		     OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
336 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
337 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
338 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
339 		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
340 		     OPRND1(1) | PAD1(LUT_PAD1) |
341 		     INSTR1(LUT_READ));
342 
343 	/*
344 	 * Write any device register.
345 	 * Used for Spansion S25FS-S family flash only.
346 	 */
347 	lut_base = SEQID_WRAR * 4;
348 	qspi_write32(priv->flags, &regs->lut[lut_base],
349 		     OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
350 		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
351 		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
352 	qspi_write32(priv->flags, &regs->lut[lut_base + 1],
353 		     OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
354 
355 	/* Lock the LUT */
356 	qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
357 	qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
358 }
359 
360 #if defined(CONFIG_SYS_FSL_QSPI_AHB)
361 /*
362  * If we have changed the content of the flash by writing or erasing,
363  * we need to invalidate the AHB buffer. If we do not do so, we may read out
364  * the wrong data. The spec tells us reset the AHB domain and Serial Flash
365  * domain at the same time.
366  */
367 static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
368 {
369 	struct fsl_qspi_regs *regs = priv->regs;
370 	u32 reg;
371 
372 	reg = qspi_read32(priv->flags, &regs->mcr);
373 	reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
374 	qspi_write32(priv->flags, &regs->mcr, reg);
375 
376 	/*
377 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
378 	 * Delay 1 us is enough.
379 	 */
380 	udelay(1);
381 
382 	reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
383 	qspi_write32(priv->flags, &regs->mcr, reg);
384 }
385 
386 /* Read out the data from the AHB buffer. */
387 static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
388 {
389 	struct fsl_qspi_regs *regs = priv->regs;
390 	u32 mcr_reg;
391 	void *rx_addr = NULL;
392 
393 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
394 
395 	qspi_write32(priv->flags, &regs->mcr,
396 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
397 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
398 
399 	rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
400 	/* Read out the data directly from the AHB buffer. */
401 	memcpy(rxbuf, rx_addr, len);
402 
403 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
404 }
405 
406 static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
407 {
408 	u32 reg, reg2;
409 	struct fsl_qspi_regs *regs = priv->regs;
410 
411 	reg = qspi_read32(priv->flags, &regs->mcr);
412 	/* Disable the module */
413 	qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
414 
415 	/* Set the Sampling Register for DDR */
416 	reg2 = qspi_read32(priv->flags, &regs->smpr);
417 	reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
418 	reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
419 	qspi_write32(priv->flags, &regs->smpr, reg2);
420 
421 	/* Enable the module again (enable the DDR too) */
422 	reg |= QSPI_MCR_DDR_EN_MASK;
423 	/* Enable bit 29 for imx6sx */
424 	reg |= BIT(29);
425 
426 	qspi_write32(priv->flags, &regs->mcr, reg);
427 }
428 
429 /*
430  * There are two different ways to read out the data from the flash:
431  *  the "IP Command Read" and the "AHB Command Read".
432  *
433  * The IC guy suggests we use the "AHB Command Read" which is faster
434  * then the "IP Command Read". (What's more is that there is a bug in
435  * the "IP Command Read" in the Vybrid.)
436  *
437  * After we set up the registers for the "AHB Command Read", we can use
438  * the memcpy to read the data directly. A "missed" access to the buffer
439  * causes the controller to clear the buffer, and use the sequence pointed
440  * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
441  */
442 static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
443 {
444 	struct fsl_qspi_regs *regs = priv->regs;
445 
446 	/* AHB configuration for access buffer 0/1/2 .*/
447 	qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
448 	qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
449 	qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
450 	qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
451 		     (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
452 
453 	/* We only use the buffer3 */
454 	qspi_write32(priv->flags, &regs->buf0ind, 0);
455 	qspi_write32(priv->flags, &regs->buf1ind, 0);
456 	qspi_write32(priv->flags, &regs->buf2ind, 0);
457 
458 	/*
459 	 * Set the default lut sequence for AHB Read.
460 	 * Parallel mode is disabled.
461 	 */
462 	qspi_write32(priv->flags, &regs->bfgencr,
463 		     SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
464 
465 	/*Enable DDR Mode*/
466 	qspi_enable_ddr_mode(priv);
467 }
468 #endif
469 
470 #ifdef CONFIG_SPI_FLASH_BAR
471 /* Bank register read/write, EAR register read/write */
472 static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
473 {
474 	struct fsl_qspi_regs *regs = priv->regs;
475 	u32 reg, mcr_reg, data, seqid;
476 
477 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
478 	qspi_write32(priv->flags, &regs->mcr,
479 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
480 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
481 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
482 
483 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
484 
485 	if (priv->cur_seqid == QSPI_CMD_BRRD)
486 		seqid = SEQID_BRRD;
487 	else
488 		seqid = SEQID_RDEAR;
489 
490 	qspi_write32(priv->flags, &regs->ipcr,
491 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
492 
493 	/* Wait previous command complete */
494 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
495 		;
496 
497 	while (1) {
498 		WATCHDOG_RESET();
499 
500 		reg = qspi_read32(priv->flags, &regs->rbsr);
501 		if (reg & QSPI_RBSR_RDBFL_MASK) {
502 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
503 			data = qspi_endian_xchg(data);
504 			memcpy(rxbuf, &data, len);
505 			qspi_write32(priv->flags, &regs->mcr,
506 				     qspi_read32(priv->flags, &regs->mcr) |
507 				     QSPI_MCR_CLR_RXF_MASK);
508 			break;
509 		}
510 	}
511 
512 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
513 }
514 #endif
515 
516 static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
517 {
518 	struct fsl_qspi_regs *regs = priv->regs;
519 	u32 mcr_reg, rbsr_reg, data, size;
520 	int i;
521 
522 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
523 	qspi_write32(priv->flags, &regs->mcr,
524 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
525 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
526 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
527 
528 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
529 
530 	qspi_write32(priv->flags, &regs->ipcr,
531 		     (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
532 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
533 		;
534 
535 	i = 0;
536 	while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
537 		WATCHDOG_RESET();
538 
539 		rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
540 		if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
541 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
542 			data = qspi_endian_xchg(data);
543 			size = (len < 4) ? len : 4;
544 			memcpy(rxbuf, &data, size);
545 			len -= size;
546 			rxbuf++;
547 			i++;
548 		}
549 	}
550 
551 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
552 }
553 
554 /* If not use AHB read, read data from ip interface */
555 static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
556 {
557 	struct fsl_qspi_regs *regs = priv->regs;
558 	u32 mcr_reg, data;
559 	int i, size;
560 	u32 to_or_from;
561 	u32 seqid;
562 
563 	if (priv->cur_seqid == QSPI_CMD_RDAR)
564 		seqid = SEQID_RDAR;
565 	else
566 		seqid = SEQID_FAST_READ;
567 
568 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
569 	qspi_write32(priv->flags, &regs->mcr,
570 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
571 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
572 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
573 
574 	to_or_from = priv->sf_addr + priv->cur_amba_base;
575 
576 	while (len > 0) {
577 		WATCHDOG_RESET();
578 
579 		qspi_write32(priv->flags, &regs->sfar, to_or_from);
580 
581 		size = (len > RX_BUFFER_SIZE) ?
582 			RX_BUFFER_SIZE : len;
583 
584 		qspi_write32(priv->flags, &regs->ipcr,
585 			     (seqid << QSPI_IPCR_SEQID_SHIFT) |
586 			     size);
587 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
588 			;
589 
590 		to_or_from += size;
591 		len -= size;
592 
593 		i = 0;
594 		while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
595 			data = qspi_read32(priv->flags, &regs->rbdr[i]);
596 			data = qspi_endian_xchg(data);
597 			if (size < 4)
598 				memcpy(rxbuf, &data, size);
599 			else
600 				memcpy(rxbuf, &data, 4);
601 			rxbuf++;
602 			size -= 4;
603 			i++;
604 		}
605 		qspi_write32(priv->flags, &regs->mcr,
606 			     qspi_read32(priv->flags, &regs->mcr) |
607 			     QSPI_MCR_CLR_RXF_MASK);
608 	}
609 
610 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
611 }
612 
613 static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
614 {
615 	struct fsl_qspi_regs *regs = priv->regs;
616 	u32 mcr_reg, data, reg, status_reg, seqid;
617 	int i, size, tx_size;
618 	u32 to_or_from = 0;
619 
620 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
621 	qspi_write32(priv->flags, &regs->mcr,
622 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
623 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
624 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
625 
626 	status_reg = 0;
627 	while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
628 		WATCHDOG_RESET();
629 
630 		qspi_write32(priv->flags, &regs->ipcr,
631 			     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
632 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
633 			;
634 
635 		qspi_write32(priv->flags, &regs->ipcr,
636 			     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
637 		while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
638 			;
639 
640 		reg = qspi_read32(priv->flags, &regs->rbsr);
641 		if (reg & QSPI_RBSR_RDBFL_MASK) {
642 			status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
643 			status_reg = qspi_endian_xchg(status_reg);
644 		}
645 		qspi_write32(priv->flags, &regs->mcr,
646 			     qspi_read32(priv->flags, &regs->mcr) |
647 			     QSPI_MCR_CLR_RXF_MASK);
648 	}
649 
650 	/* Default is page programming */
651 	seqid = SEQID_PP;
652 	if (priv->cur_seqid == QSPI_CMD_WRAR)
653 		seqid = SEQID_WRAR;
654 #ifdef CONFIG_SPI_FLASH_BAR
655 	if (priv->cur_seqid == QSPI_CMD_BRWR)
656 		seqid = SEQID_BRWR;
657 	else if (priv->cur_seqid == QSPI_CMD_WREAR)
658 		seqid = SEQID_WREAR;
659 #endif
660 
661 	to_or_from = priv->sf_addr + priv->cur_amba_base;
662 
663 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
664 
665 	tx_size = (len > TX_BUFFER_SIZE) ?
666 		TX_BUFFER_SIZE : len;
667 
668 	size = tx_size / 16;
669 	/*
670 	 * There must be atleast 128bit data
671 	 * available in TX FIFO for any pop operation
672 	 */
673 	if (tx_size % 16)
674 		size++;
675 	for (i = 0; i < size * 4; i++) {
676 		memcpy(&data, txbuf, 4);
677 		data = qspi_endian_xchg(data);
678 		qspi_write32(priv->flags, &regs->tbdr, data);
679 		txbuf += 4;
680 	}
681 
682 	qspi_write32(priv->flags, &regs->ipcr,
683 		     (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
684 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
685 		;
686 
687 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
688 }
689 
690 static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
691 {
692 	struct fsl_qspi_regs *regs = priv->regs;
693 	u32 mcr_reg, reg, data;
694 
695 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
696 	qspi_write32(priv->flags, &regs->mcr,
697 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
698 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
699 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
700 
701 	qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
702 
703 	qspi_write32(priv->flags, &regs->ipcr,
704 		     (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
705 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
706 		;
707 
708 	while (1) {
709 		WATCHDOG_RESET();
710 
711 		reg = qspi_read32(priv->flags, &regs->rbsr);
712 		if (reg & QSPI_RBSR_RDBFL_MASK) {
713 			data = qspi_read32(priv->flags, &regs->rbdr[0]);
714 			data = qspi_endian_xchg(data);
715 			memcpy(rxbuf, &data, len);
716 			qspi_write32(priv->flags, &regs->mcr,
717 				     qspi_read32(priv->flags, &regs->mcr) |
718 				     QSPI_MCR_CLR_RXF_MASK);
719 			break;
720 		}
721 	}
722 
723 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
724 }
725 
726 static void qspi_op_erase(struct fsl_qspi_priv *priv)
727 {
728 	struct fsl_qspi_regs *regs = priv->regs;
729 	u32 mcr_reg;
730 	u32 to_or_from = 0;
731 
732 	mcr_reg = qspi_read32(priv->flags, &regs->mcr);
733 	qspi_write32(priv->flags, &regs->mcr,
734 		     QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
735 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
736 	qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
737 
738 	to_or_from = priv->sf_addr + priv->cur_amba_base;
739 	qspi_write32(priv->flags, &regs->sfar, to_or_from);
740 
741 	qspi_write32(priv->flags, &regs->ipcr,
742 		     (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
743 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
744 		;
745 
746 	if (priv->cur_seqid == QSPI_CMD_SE) {
747 		qspi_write32(priv->flags, &regs->ipcr,
748 			     (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
749 	} else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
750 		qspi_write32(priv->flags, &regs->ipcr,
751 			     (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
752 	}
753 	while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
754 		;
755 
756 	qspi_write32(priv->flags, &regs->mcr, mcr_reg);
757 }
758 
759 int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
760 		const void *dout, void *din, unsigned long flags)
761 {
762 	u32 bytes = DIV_ROUND_UP(bitlen, 8);
763 	static u32 wr_sfaddr;
764 	u32 txbuf;
765 
766 	WATCHDOG_RESET();
767 
768 	if (dout) {
769 		if (flags & SPI_XFER_BEGIN) {
770 			priv->cur_seqid = *(u8 *)dout;
771 			memcpy(&txbuf, dout, 4);
772 		}
773 
774 		if (flags == SPI_XFER_END) {
775 			priv->sf_addr = wr_sfaddr;
776 			qspi_op_write(priv, (u8 *)dout, bytes);
777 			return 0;
778 		}
779 
780 		if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
781 		    priv->cur_seqid == QSPI_CMD_RDAR) {
782 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
783 		} else if ((priv->cur_seqid == QSPI_CMD_SE) ||
784 			   (priv->cur_seqid == QSPI_CMD_BE_4K)) {
785 			priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
786 			qspi_op_erase(priv);
787 		} else if (priv->cur_seqid == QSPI_CMD_PP ||
788 			   priv->cur_seqid == QSPI_CMD_WRAR) {
789 			wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
790 		} else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
791 			 (priv->cur_seqid == QSPI_CMD_WREAR)) {
792 #ifdef CONFIG_SPI_FLASH_BAR
793 			wr_sfaddr = 0;
794 #endif
795 		}
796 	}
797 
798 	if (din) {
799 		if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
800 #ifdef CONFIG_SYS_FSL_QSPI_AHB
801 			qspi_ahb_read(priv, din, bytes);
802 #else
803 			qspi_op_read(priv, din, bytes);
804 #endif
805 		} else if (priv->cur_seqid == QSPI_CMD_RDAR) {
806 			qspi_op_read(priv, din, bytes);
807 		} else if (priv->cur_seqid == QSPI_CMD_RDID)
808 			qspi_op_rdid(priv, din, bytes);
809 		else if (priv->cur_seqid == QSPI_CMD_RDSR)
810 			qspi_op_rdsr(priv, din, bytes);
811 #ifdef CONFIG_SPI_FLASH_BAR
812 		else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
813 			 (priv->cur_seqid == QSPI_CMD_RDEAR)) {
814 			priv->sf_addr = 0;
815 			qspi_op_rdbank(priv, din, bytes);
816 		}
817 #endif
818 	}
819 
820 #ifdef CONFIG_SYS_FSL_QSPI_AHB
821 	if ((priv->cur_seqid == QSPI_CMD_SE) ||
822 	    (priv->cur_seqid == QSPI_CMD_PP) ||
823 	    (priv->cur_seqid == QSPI_CMD_BE_4K) ||
824 	    (priv->cur_seqid == QSPI_CMD_WREAR) ||
825 	    (priv->cur_seqid == QSPI_CMD_BRWR))
826 		qspi_ahb_invalid(priv);
827 #endif
828 
829 	return 0;
830 }
831 
832 void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
833 {
834 	u32 mcr_val;
835 
836 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
837 	if (disable)
838 		mcr_val |= QSPI_MCR_MDIS_MASK;
839 	else
840 		mcr_val &= ~QSPI_MCR_MDIS_MASK;
841 	qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
842 }
843 
844 void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
845 {
846 	u32 smpr_val;
847 
848 	smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
849 	smpr_val &= ~clear_bits;
850 	smpr_val |= set_bits;
851 	qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
852 }
853 #ifndef CONFIG_DM_SPI
854 static unsigned long spi_bases[] = {
855 	QSPI0_BASE_ADDR,
856 #ifdef CONFIG_MX6SX
857 	QSPI1_BASE_ADDR,
858 #endif
859 };
860 
861 static unsigned long amba_bases[] = {
862 	QSPI0_AMBA_BASE,
863 #ifdef CONFIG_MX6SX
864 	QSPI1_AMBA_BASE,
865 #endif
866 };
867 
868 static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
869 {
870 	return container_of(slave, struct fsl_qspi, slave);
871 }
872 
873 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
874 		unsigned int max_hz, unsigned int mode)
875 {
876 	u32 mcr_val;
877 	struct fsl_qspi *qspi;
878 	struct fsl_qspi_regs *regs;
879 	u32 total_size;
880 
881 	if (bus >= ARRAY_SIZE(spi_bases))
882 		return NULL;
883 
884 	if (cs >= FSL_QSPI_FLASH_NUM)
885 		return NULL;
886 
887 	qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
888 	if (!qspi)
889 		return NULL;
890 
891 #ifdef CONFIG_SYS_FSL_QSPI_BE
892 	qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
893 #endif
894 
895 	regs = (struct fsl_qspi_regs *)spi_bases[bus];
896 	qspi->priv.regs = regs;
897 	/*
898 	 * According cs, use different amba_base to choose the
899 	 * corresponding flash devices.
900 	 *
901 	 * If not, only one flash device is used even if passing
902 	 * different cs using `sf probe`
903 	 */
904 	qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
905 
906 	qspi->slave.max_write_size = TX_BUFFER_SIZE;
907 
908 	mcr_val = qspi_read32(qspi->priv.flags, &regs->mcr);
909 
910 	/* Set endianness to LE for i.mx */
911 	if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
912 		mcr_val = QSPI_MCR_END_CFD_LE;
913 
914 	qspi_write32(qspi->priv.flags, &regs->mcr,
915 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
916 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
917 
918 	qspi_cfg_smpr(&qspi->priv,
919 		      ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
920 		      QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
921 
922 	total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
923 	/*
924 	 * Any read access to non-implemented addresses will provide
925 	 * undefined results.
926 	 *
927 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
928 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
929 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
930 	 * setting the size of these devices to 0.  This would ensure
931 	 * that the complete memory map is assigned to only one flash device.
932 	 */
933 	qspi_write32(qspi->priv.flags, &regs->sfa1ad,
934 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
935 	qspi_write32(qspi->priv.flags, &regs->sfa2ad,
936 		     FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
937 	qspi_write32(qspi->priv.flags, &regs->sfb1ad,
938 		     total_size | amba_bases[bus]);
939 	qspi_write32(qspi->priv.flags, &regs->sfb2ad,
940 		     total_size | amba_bases[bus]);
941 
942 	qspi_set_lut(&qspi->priv);
943 
944 #ifdef CONFIG_SYS_FSL_QSPI_AHB
945 	qspi_init_ahb_read(&qspi->priv);
946 #endif
947 
948 	qspi_module_disable(&qspi->priv, 0);
949 
950 	return &qspi->slave;
951 }
952 
953 void spi_free_slave(struct spi_slave *slave)
954 {
955 	struct fsl_qspi *qspi = to_qspi_spi(slave);
956 
957 	free(qspi);
958 }
959 
960 int spi_claim_bus(struct spi_slave *slave)
961 {
962 	return 0;
963 }
964 
965 void spi_release_bus(struct spi_slave *slave)
966 {
967 	/* Nothing to do */
968 }
969 
970 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
971 		const void *dout, void *din, unsigned long flags)
972 {
973 	struct fsl_qspi *qspi = to_qspi_spi(slave);
974 
975 	return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
976 }
977 
978 void spi_init(void)
979 {
980 	/* Nothing to do */
981 }
982 #else
983 static int fsl_qspi_child_pre_probe(struct udevice *dev)
984 {
985 	struct spi_slave *slave = dev_get_parent_priv(dev);
986 
987 	slave->max_write_size = TX_BUFFER_SIZE;
988 
989 	return 0;
990 }
991 
992 static int fsl_qspi_probe(struct udevice *bus)
993 {
994 	u32 mcr_val;
995 	u32 amba_size_per_chip;
996 	struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
997 	struct fsl_qspi_priv *priv = dev_get_priv(bus);
998 	struct dm_spi_bus *dm_spi_bus;
999 	int i, ret;
1000 
1001 	dm_spi_bus = bus->uclass_priv;
1002 
1003 	dm_spi_bus->max_hz = plat->speed_hz;
1004 
1005 	priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
1006 	priv->flags = plat->flags;
1007 
1008 	priv->speed_hz = plat->speed_hz;
1009 	/*
1010 	 * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
1011 	 * AMBA memory zone should be located on the 0~4GB space
1012 	 * even on a 64bits cpu.
1013 	 */
1014 	priv->amba_base[0] = (u32)plat->amba_base;
1015 	priv->amba_total_size = (u32)plat->amba_total_size;
1016 	priv->flash_num = plat->flash_num;
1017 	priv->num_chipselect = plat->num_chipselect;
1018 
1019 	/* make sure controller is not busy anywhere */
1020 	ret = wait_for_bit_le32(&priv->regs->sr,
1021 				QSPI_SR_BUSY_MASK |
1022 				QSPI_SR_AHB_ACC_MASK |
1023 				QSPI_SR_IP_ACC_MASK,
1024 				false, 100, false);
1025 
1026 	if (ret) {
1027 		debug("ERROR : The controller is busy\n");
1028 		return ret;
1029 	}
1030 
1031 	mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
1032 
1033 	/* Set endianness to LE for i.mx */
1034 	if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
1035 		mcr_val = QSPI_MCR_END_CFD_LE;
1036 
1037 	qspi_write32(priv->flags, &priv->regs->mcr,
1038 		     QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
1039 		     (mcr_val & QSPI_MCR_END_CFD_MASK));
1040 
1041 	qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
1042 		QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
1043 
1044 	/*
1045 	 * Assign AMBA memory zone for every chipselect
1046 	 * QuadSPI has two channels, every channel has two chipselects.
1047 	 * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
1048 	 * into two parts and assign to every channel. This indicate that every
1049 	 * channel only has one valid chipselect.
1050 	 * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
1051 	 * into four parts and assign to every chipselect.
1052 	 * Every channel will has two valid chipselects.
1053 	 */
1054 	amba_size_per_chip = priv->amba_total_size >>
1055 			     (priv->num_chipselect >> 1);
1056 	for (i = 1 ; i < priv->num_chipselect ; i++)
1057 		priv->amba_base[i] =
1058 			amba_size_per_chip + priv->amba_base[i - 1];
1059 
1060 	/*
1061 	 * Any read access to non-implemented addresses will provide
1062 	 * undefined results.
1063 	 *
1064 	 * In case single die flash devices, TOP_ADDR_MEMA2 and
1065 	 * TOP_ADDR_MEMB2 should be initialized/programmed to
1066 	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
1067 	 * setting the size of these devices to 0.  This would ensure
1068 	 * that the complete memory map is assigned to only one flash device.
1069 	 */
1070 	qspi_write32(priv->flags, &priv->regs->sfa1ad,
1071 		     priv->amba_base[0] + amba_size_per_chip);
1072 	switch (priv->num_chipselect) {
1073 	case 1:
1074 		break;
1075 	case 2:
1076 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1077 			     priv->amba_base[1]);
1078 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1079 			     priv->amba_base[1] + amba_size_per_chip);
1080 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1081 			     priv->amba_base[1] + amba_size_per_chip);
1082 		break;
1083 	case 4:
1084 		qspi_write32(priv->flags, &priv->regs->sfa2ad,
1085 			     priv->amba_base[2]);
1086 		qspi_write32(priv->flags, &priv->regs->sfb1ad,
1087 			     priv->amba_base[3]);
1088 		qspi_write32(priv->flags, &priv->regs->sfb2ad,
1089 			     priv->amba_base[3] + amba_size_per_chip);
1090 		break;
1091 	default:
1092 		debug("Error: Unsupported chipselect number %u!\n",
1093 		      priv->num_chipselect);
1094 		qspi_module_disable(priv, 1);
1095 		return -EINVAL;
1096 	}
1097 
1098 	qspi_set_lut(priv);
1099 
1100 #ifdef CONFIG_SYS_FSL_QSPI_AHB
1101 	qspi_init_ahb_read(priv);
1102 #endif
1103 
1104 	qspi_module_disable(priv, 0);
1105 
1106 	return 0;
1107 }
1108 
1109 static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
1110 {
1111 	struct fdt_resource res_regs, res_mem;
1112 	struct fsl_qspi_platdata *plat = bus->platdata;
1113 	const void *blob = gd->fdt_blob;
1114 	int node = dev_of_offset(bus);
1115 	int ret, flash_num = 0, subnode;
1116 
1117 	if (fdtdec_get_bool(blob, node, "big-endian"))
1118 		plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
1119 
1120 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1121 				     "QuadSPI", &res_regs);
1122 	if (ret) {
1123 		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
1124 		return -ENOMEM;
1125 	}
1126 	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
1127 				     "QuadSPI-memory", &res_mem);
1128 	if (ret) {
1129 		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
1130 		return -ENOMEM;
1131 	}
1132 
1133 	/* Count flash numbers */
1134 	fdt_for_each_subnode(subnode, blob, node)
1135 		++flash_num;
1136 
1137 	if (flash_num == 0) {
1138 		debug("Error: Missing flashes!\n");
1139 		return -ENODEV;
1140 	}
1141 
1142 	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
1143 					FSL_QSPI_DEFAULT_SCK_FREQ);
1144 	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
1145 					      FSL_QSPI_MAX_CHIPSELECT_NUM);
1146 
1147 	plat->reg_base = res_regs.start;
1148 	plat->amba_base = res_mem.start;
1149 	plat->amba_total_size = res_mem.end - res_mem.start + 1;
1150 	plat->flash_num = flash_num;
1151 
1152 	debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
1153 	      __func__,
1154 	      (u64)plat->reg_base,
1155 	      (u64)plat->amba_base,
1156 	      (u64)plat->amba_total_size,
1157 	      plat->speed_hz,
1158 	      plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
1159 	      );
1160 
1161 	return 0;
1162 }
1163 
1164 static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
1165 		const void *dout, void *din, unsigned long flags)
1166 {
1167 	struct fsl_qspi_priv *priv;
1168 	struct udevice *bus;
1169 
1170 	bus = dev->parent;
1171 	priv = dev_get_priv(bus);
1172 
1173 	return qspi_xfer(priv, bitlen, dout, din, flags);
1174 }
1175 
1176 static int fsl_qspi_claim_bus(struct udevice *dev)
1177 {
1178 	struct fsl_qspi_priv *priv;
1179 	struct udevice *bus;
1180 	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
1181 	int ret;
1182 
1183 	bus = dev->parent;
1184 	priv = dev_get_priv(bus);
1185 
1186 	/* make sure controller is not busy anywhere */
1187 	ret = wait_for_bit_le32(&priv->regs->sr,
1188 				QSPI_SR_BUSY_MASK |
1189 				QSPI_SR_AHB_ACC_MASK |
1190 				QSPI_SR_IP_ACC_MASK,
1191 				false, 100, false);
1192 
1193 	if (ret) {
1194 		debug("ERROR : The controller is busy\n");
1195 		return ret;
1196 	}
1197 
1198 	priv->cur_amba_base = priv->amba_base[slave_plat->cs];
1199 
1200 	qspi_module_disable(priv, 0);
1201 
1202 	return 0;
1203 }
1204 
1205 static int fsl_qspi_release_bus(struct udevice *dev)
1206 {
1207 	struct fsl_qspi_priv *priv;
1208 	struct udevice *bus;
1209 
1210 	bus = dev->parent;
1211 	priv = dev_get_priv(bus);
1212 
1213 	qspi_module_disable(priv, 1);
1214 
1215 	return 0;
1216 }
1217 
1218 static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
1219 {
1220 	/* Nothing to do */
1221 	return 0;
1222 }
1223 
1224 static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
1225 {
1226 	/* Nothing to do */
1227 	return 0;
1228 }
1229 
1230 static const struct dm_spi_ops fsl_qspi_ops = {
1231 	.claim_bus	= fsl_qspi_claim_bus,
1232 	.release_bus	= fsl_qspi_release_bus,
1233 	.xfer		= fsl_qspi_xfer,
1234 	.set_speed	= fsl_qspi_set_speed,
1235 	.set_mode	= fsl_qspi_set_mode,
1236 };
1237 
1238 static const struct udevice_id fsl_qspi_ids[] = {
1239 	{ .compatible = "fsl,vf610-qspi" },
1240 	{ .compatible = "fsl,imx6sx-qspi" },
1241 	{ .compatible = "fsl,imx6ul-qspi" },
1242 	{ .compatible = "fsl,imx7d-qspi" },
1243 	{ }
1244 };
1245 
1246 U_BOOT_DRIVER(fsl_qspi) = {
1247 	.name	= "fsl_qspi",
1248 	.id	= UCLASS_SPI,
1249 	.of_match = fsl_qspi_ids,
1250 	.ops	= &fsl_qspi_ops,
1251 	.ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
1252 	.platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
1253 	.priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
1254 	.probe	= fsl_qspi_probe,
1255 	.child_pre_probe = fsl_qspi_child_pre_probe,
1256 };
1257 #endif
1258