xref: /openbmc/u-boot/drivers/spi/exynos_spi.c (revision 39f7611fecc55cbde02c8a84f7c12861abe31b53)
1  /*
2   * (C) Copyright 2012 SAMSUNG Electronics
3   * Padmavathi Venna <padma.v@samsung.com>
4   *
5   * SPDX-License-Identifier:	GPL-2.0+
6   */
7  
8  #include <common.h>
9  #include <malloc.h>
10  #include <spi.h>
11  #include <fdtdec.h>
12  #include <asm/arch/clk.h>
13  #include <asm/arch/clock.h>
14  #include <asm/arch/cpu.h>
15  #include <asm/arch/gpio.h>
16  #include <asm/arch/pinmux.h>
17  #include <asm/arch-exynos/spi.h>
18  #include <asm/io.h>
19  
20  DECLARE_GLOBAL_DATA_PTR;
21  
22  /* Information about each SPI controller */
23  struct spi_bus {
24  	enum periph_id periph_id;
25  	s32 frequency;		/* Default clock frequency, -1 for none */
26  	struct exynos_spi *regs;
27  	int inited;		/* 1 if this bus is ready for use */
28  	int node;
29  	uint deactivate_delay_us;	/* Delay to wait after deactivate */
30  };
31  
32  /* A list of spi buses that we know about */
33  static struct spi_bus spi_bus[EXYNOS5_SPI_NUM_CONTROLLERS];
34  static unsigned int bus_count;
35  
36  struct exynos_spi_slave {
37  	struct spi_slave slave;
38  	struct exynos_spi *regs;
39  	unsigned int freq;		/* Default frequency */
40  	unsigned int mode;
41  	enum periph_id periph_id;	/* Peripheral ID for this device */
42  	unsigned int fifo_size;
43  	int skip_preamble;
44  	struct spi_bus *bus;		/* Pointer to our SPI bus info */
45  	ulong last_transaction_us;	/* Time of last transaction end */
46  };
47  
48  static struct spi_bus *spi_get_bus(unsigned dev_index)
49  {
50  	if (dev_index < bus_count)
51  		return &spi_bus[dev_index];
52  	debug("%s: invalid bus %d", __func__, dev_index);
53  
54  	return NULL;
55  }
56  
57  static inline struct exynos_spi_slave *to_exynos_spi(struct spi_slave *slave)
58  {
59  	return container_of(slave, struct exynos_spi_slave, slave);
60  }
61  
62  /**
63   * Setup the driver private data
64   *
65   * @param bus		ID of the bus that the slave is attached to
66   * @param cs		ID of the chip select connected to the slave
67   * @param max_hz	Required spi frequency
68   * @param mode		Required spi mode (clk polarity, clk phase and
69   *			master or slave)
70   * @return new device or NULL
71   */
72  struct spi_slave *spi_setup_slave(unsigned int busnum, unsigned int cs,
73  			unsigned int max_hz, unsigned int mode)
74  {
75  	struct exynos_spi_slave *spi_slave;
76  	struct spi_bus *bus;
77  
78  	if (!spi_cs_is_valid(busnum, cs)) {
79  		debug("%s: Invalid bus/chip select %d, %d\n", __func__,
80  		      busnum, cs);
81  		return NULL;
82  	}
83  
84  	spi_slave = spi_alloc_slave(struct exynos_spi_slave, busnum, cs);
85  	if (!spi_slave) {
86  		debug("%s: Could not allocate spi_slave\n", __func__);
87  		return NULL;
88  	}
89  
90  	bus = &spi_bus[busnum];
91  	spi_slave->bus = bus;
92  	spi_slave->regs = bus->regs;
93  	spi_slave->mode = mode;
94  	spi_slave->periph_id = bus->periph_id;
95  	if (bus->periph_id == PERIPH_ID_SPI1 ||
96  	    bus->periph_id == PERIPH_ID_SPI2)
97  		spi_slave->fifo_size = 64;
98  	else
99  		spi_slave->fifo_size = 256;
100  
101  	spi_slave->skip_preamble = 0;
102  	spi_slave->last_transaction_us = timer_get_us();
103  
104  	spi_slave->freq = bus->frequency;
105  	if (max_hz)
106  		spi_slave->freq = min(max_hz, spi_slave->freq);
107  
108  	return &spi_slave->slave;
109  }
110  
111  /**
112   * Free spi controller
113   *
114   * @param slave	Pointer to spi_slave to which controller has to
115   *		communicate with
116   */
117  void spi_free_slave(struct spi_slave *slave)
118  {
119  	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
120  
121  	free(spi_slave);
122  }
123  
124  /**
125   * Flush spi tx, rx fifos and reset the SPI controller
126   *
127   * @param slave	Pointer to spi_slave to which controller has to
128   *		communicate with
129   */
130  static void spi_flush_fifo(struct spi_slave *slave)
131  {
132  	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
133  	struct exynos_spi *regs = spi_slave->regs;
134  
135  	clrsetbits_le32(&regs->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST);
136  	clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
137  	setbits_le32(&regs->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON);
138  }
139  
140  /**
141   * Initialize the spi base registers, set the required clock frequency and
142   * initialize the gpios
143   *
144   * @param slave	Pointer to spi_slave to which controller has to
145   *		communicate with
146   * @return zero on success else a negative value
147   */
148  int spi_claim_bus(struct spi_slave *slave)
149  {
150  	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
151  	struct exynos_spi *regs = spi_slave->regs;
152  	u32 reg = 0;
153  	int ret;
154  
155  	ret = set_spi_clk(spi_slave->periph_id,
156  					spi_slave->freq);
157  	if (ret < 0) {
158  		debug("%s: Failed to setup spi clock\n", __func__);
159  		return ret;
160  	}
161  
162  	exynos_pinmux_config(spi_slave->periph_id, PINMUX_FLAG_NONE);
163  
164  	spi_flush_fifo(slave);
165  
166  	reg = readl(&regs->ch_cfg);
167  	reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L);
168  
169  	if (spi_slave->mode & SPI_CPHA)
170  		reg |= SPI_CH_CPHA_B;
171  
172  	if (spi_slave->mode & SPI_CPOL)
173  		reg |= SPI_CH_CPOL_L;
174  
175  	writel(reg, &regs->ch_cfg);
176  	writel(SPI_FB_DELAY_180, &regs->fb_clk);
177  
178  	return 0;
179  }
180  
181  /**
182   * Reset the spi H/W and flush the tx and rx fifos
183   *
184   * @param slave	Pointer to spi_slave to which controller has to
185   *		communicate with
186   */
187  void spi_release_bus(struct spi_slave *slave)
188  {
189  	spi_flush_fifo(slave);
190  }
191  
192  static void spi_get_fifo_levels(struct exynos_spi *regs,
193  	int *rx_lvl, int *tx_lvl)
194  {
195  	uint32_t spi_sts = readl(&regs->spi_sts);
196  
197  	*rx_lvl = (spi_sts >> SPI_RX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
198  	*tx_lvl = (spi_sts >> SPI_TX_LVL_OFFSET) & SPI_FIFO_LVL_MASK;
199  }
200  
201  /**
202   * If there's something to transfer, do a software reset and set a
203   * transaction size.
204   *
205   * @param regs	SPI peripheral registers
206   * @param count	Number of bytes to transfer
207   * @param step	Number of bytes to transfer in each packet (1 or 4)
208   */
209  static void spi_request_bytes(struct exynos_spi *regs, int count, int step)
210  {
211  	/* For word address we need to swap bytes */
212  	if (step == 4) {
213  		setbits_le32(&regs->mode_cfg,
214  			     SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
215  		count /= 4;
216  		setbits_le32(&regs->swap_cfg, SPI_TX_SWAP_EN | SPI_RX_SWAP_EN |
217  			SPI_TX_BYTE_SWAP | SPI_RX_BYTE_SWAP |
218  			SPI_TX_HWORD_SWAP | SPI_RX_HWORD_SWAP);
219  	} else {
220  		/* Select byte access and clear the swap configuration */
221  		clrbits_le32(&regs->mode_cfg,
222  			     SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD);
223  		writel(0, &regs->swap_cfg);
224  	}
225  
226  	assert(count && count < (1 << 16));
227  	setbits_le32(&regs->ch_cfg, SPI_CH_RST);
228  	clrbits_le32(&regs->ch_cfg, SPI_CH_RST);
229  
230  	writel(count | SPI_PACKET_CNT_EN, &regs->pkt_cnt);
231  }
232  
233  static int spi_rx_tx(struct exynos_spi_slave *spi_slave, int todo,
234  			void **dinp, void const **doutp, unsigned long flags)
235  {
236  	struct exynos_spi *regs = spi_slave->regs;
237  	uchar *rxp = *dinp;
238  	const uchar *txp = *doutp;
239  	int rx_lvl, tx_lvl;
240  	uint out_bytes, in_bytes;
241  	int toread;
242  	unsigned start = get_timer(0);
243  	int stopping;
244  	int step;
245  
246  	out_bytes = in_bytes = todo;
247  
248  	stopping = spi_slave->skip_preamble && (flags & SPI_XFER_END) &&
249  					!(spi_slave->mode & SPI_SLAVE);
250  
251  	/*
252  	 * Try to transfer words if we can. This helps read performance at
253  	 * SPI clock speeds above about 20MHz.
254  	 */
255  	step = 1;
256  	if (!((todo | (uintptr_t)rxp | (uintptr_t)txp) & 3) &&
257  	    !spi_slave->skip_preamble)
258  		step = 4;
259  
260  	/*
261  	 * If there's something to send, do a software reset and set a
262  	 * transaction size.
263  	 */
264  	spi_request_bytes(regs, todo, step);
265  
266  	/*
267  	 * Bytes are transmitted/received in pairs. Wait to receive all the
268  	 * data because then transmission will be done as well.
269  	 */
270  	toread = in_bytes;
271  
272  	while (in_bytes) {
273  		int temp;
274  
275  		/* Keep the fifos full/empty. */
276  		spi_get_fifo_levels(regs, &rx_lvl, &tx_lvl);
277  
278  		/*
279  		 * Don't completely fill the txfifo, since we don't want our
280  		 * rxfifo to overflow, and it may already contain data.
281  		 */
282  		while (tx_lvl < spi_slave->fifo_size/2 && out_bytes) {
283  			if (!txp)
284  				temp = -1;
285  			else if (step == 4)
286  				temp = *(uint32_t *)txp;
287  			else
288  				temp = *txp;
289  			writel(temp, &regs->tx_data);
290  			out_bytes -= step;
291  			if (txp)
292  				txp += step;
293  			tx_lvl += step;
294  		}
295  		if (rx_lvl >= step) {
296  			while (rx_lvl >= step) {
297  				temp = readl(&regs->rx_data);
298  				if (spi_slave->skip_preamble) {
299  					if (temp == SPI_PREAMBLE_END_BYTE) {
300  						spi_slave->skip_preamble = 0;
301  						stopping = 0;
302  					}
303  				} else {
304  					if (rxp || stopping) {
305  						*rxp = temp;
306  						rxp += step;
307  					}
308  					in_bytes -= step;
309  				}
310  				toread -= step;
311  				rx_lvl -= step;
312  			}
313  		} else if (!toread) {
314  			/*
315  			 * We have run out of input data, but haven't read
316  			 * enough bytes after the preamble yet. Read some more,
317  			 * and make sure that we transmit dummy bytes too, to
318  			 * keep things going.
319  			 */
320  			assert(!out_bytes);
321  			out_bytes = in_bytes;
322  			toread = in_bytes;
323  			txp = NULL;
324  			spi_request_bytes(regs, toread, step);
325  		}
326  		if (spi_slave->skip_preamble && get_timer(start) > 100) {
327  			printf("SPI timeout: in_bytes=%d, out_bytes=%d, ",
328  			       in_bytes, out_bytes);
329  			return -1;
330  		}
331  	}
332  
333  	*dinp = rxp;
334  	*doutp = txp;
335  
336  	return 0;
337  }
338  
339  /**
340   * Transfer and receive data
341   *
342   * @param slave		Pointer to spi_slave to which controller has to
343   *			communicate with
344   * @param bitlen	No of bits to tranfer or receive
345   * @param dout		Pointer to transfer buffer
346   * @param din		Pointer to receive buffer
347   * @param flags		Flags for transfer begin and end
348   * @return zero on success else a negative value
349   */
350  int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
351  	     void *din, unsigned long flags)
352  {
353  	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
354  	int upto, todo;
355  	int bytelen;
356  	int ret = 0;
357  
358  	/* spi core configured to do 8 bit transfers */
359  	if (bitlen % 8) {
360  		debug("Non byte aligned SPI transfer.\n");
361  		return -1;
362  	}
363  
364  	/* Start the transaction, if necessary. */
365  	if ((flags & SPI_XFER_BEGIN))
366  		spi_cs_activate(slave);
367  
368  	/*
369  	 * Exynos SPI limits each transfer to 65535 transfers. To keep
370  	 * things simple, allow a maximum of 65532 bytes. We could allow
371  	 * more in word mode, but the performance difference is small.
372  	 */
373  	bytelen =  bitlen / 8;
374  	for (upto = 0; !ret && upto < bytelen; upto += todo) {
375  		todo = min(bytelen - upto, (1 << 16) - 4);
376  		ret = spi_rx_tx(spi_slave, todo, &din, &dout, flags);
377  		if (ret)
378  			break;
379  	}
380  
381  	/* Stop the transaction, if necessary. */
382  	if ((flags & SPI_XFER_END) && !(spi_slave->mode & SPI_SLAVE)) {
383  		spi_cs_deactivate(slave);
384  		if (spi_slave->skip_preamble) {
385  			assert(!spi_slave->skip_preamble);
386  			debug("Failed to complete premable transaction\n");
387  			ret = -1;
388  		}
389  	}
390  
391  	return ret;
392  }
393  
394  /**
395   * Validates the bus and chip select numbers
396   *
397   * @param bus	ID of the bus that the slave is attached to
398   * @param cs	ID of the chip select connected to the slave
399   * @return one on success else zero
400   */
401  int spi_cs_is_valid(unsigned int bus, unsigned int cs)
402  {
403  	return spi_get_bus(bus) && cs == 0;
404  }
405  
406  /**
407   * Activate the CS by driving it LOW
408   *
409   * @param slave	Pointer to spi_slave to which controller has to
410   *		communicate with
411   */
412  void spi_cs_activate(struct spi_slave *slave)
413  {
414  	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
415  
416  	/* If it's too soon to do another transaction, wait */
417  	if (spi_slave->bus->deactivate_delay_us &&
418  	    spi_slave->last_transaction_us) {
419  		ulong delay_us;		/* The delay completed so far */
420  		delay_us = timer_get_us() - spi_slave->last_transaction_us;
421  		if (delay_us < spi_slave->bus->deactivate_delay_us)
422  			udelay(spi_slave->bus->deactivate_delay_us - delay_us);
423  	}
424  
425  	clrbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
426  	debug("Activate CS, bus %d\n", spi_slave->slave.bus);
427  	spi_slave->skip_preamble = spi_slave->mode & SPI_PREAMBLE;
428  
429  	/* Remember time of this transaction so we can honour the bus delay */
430  	if (spi_slave->bus->deactivate_delay_us)
431  		spi_slave->last_transaction_us = timer_get_us();
432  }
433  
434  /**
435   * Deactivate the CS by driving it HIGH
436   *
437   * @param slave	Pointer to spi_slave to which controller has to
438   *		communicate with
439   */
440  void spi_cs_deactivate(struct spi_slave *slave)
441  {
442  	struct exynos_spi_slave *spi_slave = to_exynos_spi(slave);
443  
444  	setbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT);
445  	debug("Deactivate CS, bus %d\n", spi_slave->slave.bus);
446  }
447  
448  static inline struct exynos_spi *get_spi_base(int dev_index)
449  {
450  	if (dev_index < 3)
451  		return (struct exynos_spi *)samsung_get_base_spi() + dev_index;
452  	else
453  		return (struct exynos_spi *)samsung_get_base_spi_isp() +
454  					(dev_index - 3);
455  }
456  
457  /*
458   * Read the SPI config from the device tree node.
459   *
460   * @param blob  FDT blob to read from
461   * @param node  Node offset to read from
462   * @param bus   SPI bus structure to fill with information
463   * @return 0 if ok, or -FDT_ERR_NOTFOUND if something was missing
464   */
465  #ifdef CONFIG_OF_CONTROL
466  static int spi_get_config(const void *blob, int node, struct spi_bus *bus)
467  {
468  	bus->node = node;
469  	bus->regs = (struct exynos_spi *)fdtdec_get_addr(blob, node, "reg");
470  	bus->periph_id = pinmux_decode_periph_id(blob, node);
471  
472  	if (bus->periph_id == PERIPH_ID_NONE) {
473  		debug("%s: Invalid peripheral ID %d\n", __func__,
474  			bus->periph_id);
475  		return -FDT_ERR_NOTFOUND;
476  	}
477  
478  	/* Use 500KHz as a suitable default */
479  	bus->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
480  					500000);
481  	bus->deactivate_delay_us = fdtdec_get_int(blob, node,
482  					"spi-deactivate-delay", 0);
483  
484  	return 0;
485  }
486  
487  /*
488   * Process a list of nodes, adding them to our list of SPI ports.
489   *
490   * @param blob          fdt blob
491   * @param node_list     list of nodes to process (any <=0 are ignored)
492   * @param count         number of nodes to process
493   * @param is_dvc        1 if these are DVC ports, 0 if standard I2C
494   * @return 0 if ok, -1 on error
495   */
496  static int process_nodes(const void *blob, int node_list[], int count)
497  {
498  	int i;
499  
500  	/* build the i2c_controllers[] for each controller */
501  	for (i = 0; i < count; i++) {
502  		int node = node_list[i];
503  		struct spi_bus *bus;
504  
505  		if (node <= 0)
506  			continue;
507  
508  		bus = &spi_bus[i];
509  		if (spi_get_config(blob, node, bus)) {
510  			printf("exynos spi_init: failed to decode bus %d\n",
511  				i);
512  			return -1;
513  		}
514  
515  		debug("spi: controller bus %d at %p, periph_id %d\n",
516  		      i, bus->regs, bus->periph_id);
517  		bus->inited = 1;
518  		bus_count++;
519  	}
520  
521  	return 0;
522  }
523  #endif
524  
525  /**
526   * Set up a new SPI slave for an fdt node
527   *
528   * @param blob		Device tree blob
529   * @param node		SPI peripheral node to use
530   * @return 0 if ok, -1 on error
531   */
532  struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
533  				      int spi_node)
534  {
535  	struct spi_bus *bus;
536  	unsigned int i;
537  
538  	for (i = 0, bus = spi_bus; i < bus_count; i++, bus++) {
539  		if (bus->node == spi_node)
540  			return spi_base_setup_slave_fdt(blob, i, slave_node);
541  	}
542  
543  	debug("%s: Failed to find bus node %d\n", __func__, spi_node);
544  	return NULL;
545  }
546  
547  /* Sadly there is no error return from this function */
548  void spi_init(void)
549  {
550  	int count;
551  
552  #ifdef CONFIG_OF_CONTROL
553  	int node_list[EXYNOS5_SPI_NUM_CONTROLLERS];
554  	const void *blob = gd->fdt_blob;
555  
556  	count = fdtdec_find_aliases_for_id(blob, "spi",
557  			COMPAT_SAMSUNG_EXYNOS_SPI, node_list,
558  			EXYNOS5_SPI_NUM_CONTROLLERS);
559  	if (process_nodes(blob, node_list, count))
560  		return;
561  
562  #else
563  	struct spi_bus *bus;
564  
565  	for (count = 0; count < EXYNOS5_SPI_NUM_CONTROLLERS; count++) {
566  		bus = &spi_bus[count];
567  		bus->regs = get_spi_base(count);
568  		bus->periph_id = PERIPH_ID_SPI0 + count;
569  
570  		/* Although Exynos5 supports upto 50Mhz speed,
571  		 * we are setting it to 10Mhz for safe side
572  		 */
573  		bus->frequency = 10000000;
574  		bus->inited = 1;
575  		bus->node = 0;
576  		bus_count = EXYNOS5_SPI_NUM_CONTROLLERS;
577  	}
578  #endif
579  }
580