xref: /openbmc/u-boot/drivers/spi/davinci_spi.c (revision da4105df)
1 /*
2  * Copyright (C) 2009 Texas Instruments Incorporated - http://www.ti.com/
3  *
4  * Driver for SPI controller on DaVinci. Based on atmel_spi.c
5  * by Atmel Corporation
6  *
7  * Copyright (C) 2007 Atmel Corporation
8  *
9  * SPDX-License-Identifier:	GPL-2.0+
10  */
11 #include <common.h>
12 #include <spi.h>
13 #include <malloc.h>
14 #include <asm/io.h>
15 #include <asm/arch/hardware.h>
16 #include "davinci_spi.h"
17 
18 void spi_init()
19 {
20 	/* do nothing */
21 }
22 
23 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
24 			unsigned int max_hz, unsigned int mode)
25 {
26 	struct davinci_spi_slave	*ds;
27 
28 	if (!spi_cs_is_valid(bus, cs))
29 		return NULL;
30 
31 	ds = spi_alloc_slave(struct davinci_spi_slave, bus, cs);
32 	if (!ds)
33 		return NULL;
34 
35 	ds->regs = (struct davinci_spi_regs *)CONFIG_SYS_SPI_BASE;
36 	ds->freq = max_hz;
37 
38 	return &ds->slave;
39 }
40 
41 void spi_free_slave(struct spi_slave *slave)
42 {
43 	struct davinci_spi_slave *ds = to_davinci_spi(slave);
44 
45 	free(ds);
46 }
47 
48 int spi_claim_bus(struct spi_slave *slave)
49 {
50 	struct davinci_spi_slave *ds = to_davinci_spi(slave);
51 	unsigned int scalar;
52 
53 	/* Enable the SPI hardware */
54 	writel(SPIGCR0_SPIRST_MASK, &ds->regs->gcr0);
55 	udelay(1000);
56 	writel(SPIGCR0_SPIENA_MASK, &ds->regs->gcr0);
57 
58 	/* Set master mode, powered up and not activated */
59 	writel(SPIGCR1_MASTER_MASK | SPIGCR1_CLKMOD_MASK, &ds->regs->gcr1);
60 
61 	/* CS, CLK, SIMO and SOMI are functional pins */
62 	writel((SPIPC0_EN0FUN_MASK | SPIPC0_CLKFUN_MASK |
63 		SPIPC0_DOFUN_MASK | SPIPC0_DIFUN_MASK), &ds->regs->pc0);
64 
65 	/* setup format */
66 	scalar = ((CONFIG_SYS_SPI_CLK / ds->freq) - 1) & 0xFF;
67 
68 	/*
69 	 * Use following format:
70 	 *   character length = 8,
71 	 *   clock signal delayed by half clk cycle,
72 	 *   clock low in idle state - Mode 0,
73 	 *   MSB shifted out first
74 	 */
75 	writel(8 | (scalar << SPIFMT_PRESCALE_SHIFT) |
76 		(1 << SPIFMT_PHASE_SHIFT), &ds->regs->fmt0);
77 
78 	/*
79 	 * Including a minor delay. No science here. Should be good even with
80 	 * no delay
81 	 */
82 	writel((50 << SPI_C2TDELAY_SHIFT) |
83 		(50 << SPI_T2CDELAY_SHIFT), &ds->regs->delay);
84 
85 	/* default chip select register */
86 	writel(SPIDEF_CSDEF0_MASK, &ds->regs->def);
87 
88 	/* no interrupts */
89 	writel(0, &ds->regs->int0);
90 	writel(0, &ds->regs->lvl);
91 
92 	/* enable SPI */
93 	writel((readl(&ds->regs->gcr1) | SPIGCR1_SPIENA_MASK), &ds->regs->gcr1);
94 
95 	return 0;
96 }
97 
98 void spi_release_bus(struct spi_slave *slave)
99 {
100 	struct davinci_spi_slave *ds = to_davinci_spi(slave);
101 
102 	/* Disable the SPI hardware */
103 	writel(SPIGCR0_SPIRST_MASK, &ds->regs->gcr0);
104 }
105 
106 /*
107  * This functions needs to act like a macro to avoid pipeline reloads in the
108  * loops below. Use always_inline. This gains us about 160KiB/s and the bloat
109  * appears to be zero bytes (da830).
110  */
111 __attribute__((always_inline))
112 static inline u32 davinci_spi_xfer_data(struct davinci_spi_slave *ds, u32 data)
113 {
114 	u32	buf_reg_val;
115 
116 	/* send out data */
117 	writel(data, &ds->regs->dat1);
118 
119 	/* wait for the data to clock in/out */
120 	while ((buf_reg_val = readl(&ds->regs->buf)) & SPIBUF_RXEMPTY_MASK)
121 		;
122 
123 	return buf_reg_val;
124 }
125 
126 static int davinci_spi_read(struct spi_slave *slave, unsigned int len,
127 			    u8 *rxp, unsigned long flags)
128 {
129 	struct davinci_spi_slave *ds = to_davinci_spi(slave);
130 	unsigned int data1_reg_val;
131 
132 	/* enable CS hold, CS[n] and clear the data bits */
133 	data1_reg_val = ((1 << SPIDAT1_CSHOLD_SHIFT) |
134 			 (slave->cs << SPIDAT1_CSNR_SHIFT));
135 
136 	/* wait till TXFULL is deasserted */
137 	while (readl(&ds->regs->buf) & SPIBUF_TXFULL_MASK)
138 		;
139 
140 	/* preload the TX buffer to avoid clock starvation */
141 	writel(data1_reg_val, &ds->regs->dat1);
142 
143 	/* keep reading 1 byte until only 1 byte left */
144 	while ((len--) > 1)
145 		*rxp++ = davinci_spi_xfer_data(ds, data1_reg_val);
146 
147 	/* clear CS hold when we reach the end */
148 	if (flags & SPI_XFER_END)
149 		data1_reg_val &= ~(1 << SPIDAT1_CSHOLD_SHIFT);
150 
151 	/* read the last byte */
152 	*rxp = davinci_spi_xfer_data(ds, data1_reg_val);
153 
154 	return 0;
155 }
156 
157 static int davinci_spi_write(struct spi_slave *slave, unsigned int len,
158 			     const u8 *txp, unsigned long flags)
159 {
160 	struct davinci_spi_slave *ds = to_davinci_spi(slave);
161 	unsigned int data1_reg_val;
162 
163 	/* enable CS hold and clear the data bits */
164 	data1_reg_val = ((1 << SPIDAT1_CSHOLD_SHIFT) |
165 			 (slave->cs << SPIDAT1_CSNR_SHIFT));
166 
167 	/* wait till TXFULL is deasserted */
168 	while (readl(&ds->regs->buf) & SPIBUF_TXFULL_MASK)
169 		;
170 
171 	/* preload the TX buffer to avoid clock starvation */
172 	if (len > 2) {
173 		writel(data1_reg_val | *txp++, &ds->regs->dat1);
174 		len--;
175 	}
176 
177 	/* keep writing 1 byte until only 1 byte left */
178 	while ((len--) > 1)
179 		davinci_spi_xfer_data(ds, data1_reg_val | *txp++);
180 
181 	/* clear CS hold when we reach the end */
182 	if (flags & SPI_XFER_END)
183 		data1_reg_val &= ~(1 << SPIDAT1_CSHOLD_SHIFT);
184 
185 	/* write the last byte */
186 	davinci_spi_xfer_data(ds, data1_reg_val | *txp);
187 
188 	return 0;
189 }
190 
191 #ifndef CONFIG_SPI_HALF_DUPLEX
192 static int davinci_spi_read_write(struct spi_slave *slave, unsigned int len,
193 				  u8 *rxp, const u8 *txp, unsigned long flags)
194 {
195 	struct davinci_spi_slave *ds = to_davinci_spi(slave);
196 	unsigned int data1_reg_val;
197 
198 	/* enable CS hold and clear the data bits */
199 	data1_reg_val = ((1 << SPIDAT1_CSHOLD_SHIFT) |
200 			 (slave->cs << SPIDAT1_CSNR_SHIFT));
201 
202 	/* wait till TXFULL is deasserted */
203 	while (readl(&ds->regs->buf) & SPIBUF_TXFULL_MASK)
204 		;
205 
206 	/* keep reading and writing 1 byte until only 1 byte left */
207 	while ((len--) > 1)
208 		*rxp++ = davinci_spi_xfer_data(ds, data1_reg_val | *txp++);
209 
210 	/* clear CS hold when we reach the end */
211 	if (flags & SPI_XFER_END)
212 		data1_reg_val &= ~(1 << SPIDAT1_CSHOLD_SHIFT);
213 
214 	/* read and write the last byte */
215 	*rxp = davinci_spi_xfer_data(ds, data1_reg_val | *txp);
216 
217 	return 0;
218 }
219 #endif
220 
221 int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
222 	     const void *dout, void *din, unsigned long flags)
223 {
224 	unsigned int len;
225 
226 	if (bitlen == 0)
227 		/* Finish any previously submitted transfers */
228 		goto out;
229 
230 	/*
231 	 * It's not clear how non-8-bit-aligned transfers are supposed to be
232 	 * represented as a stream of bytes...this is a limitation of
233 	 * the current SPI interface - here we terminate on receiving such a
234 	 * transfer request.
235 	 */
236 	if (bitlen % 8) {
237 		/* Errors always terminate an ongoing transfer */
238 		flags |= SPI_XFER_END;
239 		goto out;
240 	}
241 
242 	len = bitlen / 8;
243 
244 	if (!dout)
245 		return davinci_spi_read(slave, len, din, flags);
246 	else if (!din)
247 		return davinci_spi_write(slave, len, dout, flags);
248 #ifndef CONFIG_SPI_HALF_DUPLEX
249 	else
250 		return davinci_spi_read_write(slave, len, din, dout, flags);
251 #else
252 	printf("SPI full duplex transaction requested with "
253 	       "CONFIG_SPI_HALF_DUPLEX defined.\n");
254 	flags |= SPI_XFER_END;
255 #endif
256 
257 out:
258 	if (flags & SPI_XFER_END) {
259 		u8 dummy = 0;
260 		davinci_spi_write(slave, 1, &dummy, flags);
261 	}
262 	return 0;
263 }
264 
265 int spi_cs_is_valid(unsigned int bus, unsigned int cs)
266 {
267 	return bus == 0 && cs == 0;
268 }
269 
270 void spi_cs_activate(struct spi_slave *slave)
271 {
272 	/* do nothing */
273 }
274 
275 void spi_cs_deactivate(struct spi_slave *slave)
276 {
277 	/* do nothing */
278 }
279