xref: /openbmc/u-boot/drivers/smem/msm_smem.c (revision afaea1f5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications AB.
4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5  * Copyright (c) 2018, Ramon Fried <ramon.fried@gmail.com>
6  */
7 
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <dm/of_access.h>
12 #include <dm/of_addr.h>
13 #include <asm/io.h>
14 #include <linux/ioport.h>
15 #include <linux/io.h>
16 #include <smem.h>
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 /*
21  * The Qualcomm shared memory system is an allocate-only heap structure that
22  * consists of one of more memory areas that can be accessed by the processors
23  * in the SoC.
24  *
25  * All systems contains a global heap, accessible by all processors in the SoC,
26  * with a table of contents data structure (@smem_header) at the beginning of
27  * the main shared memory block.
28  *
29  * The global header contains meta data for allocations as well as a fixed list
30  * of 512 entries (@smem_global_entry) that can be initialized to reference
31  * parts of the shared memory space.
32  *
33  *
34  * In addition to this global heap, a set of "private" heaps can be set up at
35  * boot time with access restrictions so that only certain processor pairs can
36  * access the data.
37  *
38  * These partitions are referenced from an optional partition table
39  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
40  * partition table entries (@smem_ptable_entry) lists the involved processors
41  * (or hosts) and their location in the main shared memory region.
42  *
43  * Each partition starts with a header (@smem_partition_header) that identifies
44  * the partition and holds properties for the two internal memory regions. The
45  * two regions are cached and non-cached memory respectively. Each region
46  * contain a link list of allocation headers (@smem_private_entry) followed by
47  * their data.
48  *
49  * Items in the non-cached region are allocated from the start of the partition
50  * while items in the cached region are allocated from the end. The free area
51  * is hence the region between the cached and non-cached offsets. The header of
52  * cached items comes after the data.
53  *
54  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
55  * for the global heap. A new global partition is created from the global heap
56  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
57  * set by the bootloader.
58  *
59  */
60 
61 /*
62  * The version member of the smem header contains an array of versions for the
63  * various software components in the SoC. We verify that the boot loader
64  * version is a valid version as a sanity check.
65  */
66 #define SMEM_MASTER_SBL_VERSION_INDEX	7
67 #define SMEM_GLOBAL_HEAP_VERSION	11
68 #define SMEM_GLOBAL_PART_VERSION	12
69 
70 /*
71  * The first 8 items are only to be allocated by the boot loader while
72  * initializing the heap.
73  */
74 #define SMEM_ITEM_LAST_FIXED	8
75 
76 /* Highest accepted item number, for both global and private heaps */
77 #define SMEM_ITEM_COUNT		512
78 
79 /* Processor/host identifier for the application processor */
80 #define SMEM_HOST_APPS		0
81 
82 /* Processor/host identifier for the global partition */
83 #define SMEM_GLOBAL_HOST	0xfffe
84 
85 /* Max number of processors/hosts in a system */
86 #define SMEM_HOST_COUNT		10
87 
88 /**
89  * struct smem_proc_comm - proc_comm communication struct (legacy)
90  * @command:	current command to be executed
91  * @status:	status of the currently requested command
92  * @params:	parameters to the command
93  */
94 struct smem_proc_comm {
95 	__le32 command;
96 	__le32 status;
97 	__le32 params[2];
98 };
99 
100 /**
101  * struct smem_global_entry - entry to reference smem items on the heap
102  * @allocated:	boolean to indicate if this entry is used
103  * @offset:	offset to the allocated space
104  * @size:	size of the allocated space, 8 byte aligned
105  * @aux_base:	base address for the memory region used by this unit, or 0 for
106  *		the default region. bits 0,1 are reserved
107  */
108 struct smem_global_entry {
109 	__le32 allocated;
110 	__le32 offset;
111 	__le32 size;
112 	__le32 aux_base; /* bits 1:0 reserved */
113 };
114 #define AUX_BASE_MASK		0xfffffffc
115 
116 /**
117  * struct smem_header - header found in beginning of primary smem region
118  * @proc_comm:		proc_comm communication interface (legacy)
119  * @version:		array of versions for the various subsystems
120  * @initialized:	boolean to indicate that smem is initialized
121  * @free_offset:	index of the first unallocated byte in smem
122  * @available:		number of bytes available for allocation
123  * @reserved:		reserved field, must be 0
124  * toc:			array of references to items
125  */
126 struct smem_header {
127 	struct smem_proc_comm proc_comm[4];
128 	__le32 version[32];
129 	__le32 initialized;
130 	__le32 free_offset;
131 	__le32 available;
132 	__le32 reserved;
133 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
134 };
135 
136 /**
137  * struct smem_ptable_entry - one entry in the @smem_ptable list
138  * @offset:	offset, within the main shared memory region, of the partition
139  * @size:	size of the partition
140  * @flags:	flags for the partition (currently unused)
141  * @host0:	first processor/host with access to this partition
142  * @host1:	second processor/host with access to this partition
143  * @cacheline:	alignment for "cached" entries
144  * @reserved:	reserved entries for later use
145  */
146 struct smem_ptable_entry {
147 	__le32 offset;
148 	__le32 size;
149 	__le32 flags;
150 	__le16 host0;
151 	__le16 host1;
152 	__le32 cacheline;
153 	__le32 reserved[7];
154 };
155 
156 /**
157  * struct smem_ptable - partition table for the private partitions
158  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
159  * @version:	version of the partition table
160  * @num_entries: number of partitions in the table
161  * @reserved:	for now reserved entries
162  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
163  */
164 struct smem_ptable {
165 	u8 magic[4];
166 	__le32 version;
167 	__le32 num_entries;
168 	__le32 reserved[5];
169 	struct smem_ptable_entry entry[];
170 };
171 
172 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
173 
174 /**
175  * struct smem_partition_header - header of the partitions
176  * @magic:	magic number, must be SMEM_PART_MAGIC
177  * @host0:	first processor/host with access to this partition
178  * @host1:	second processor/host with access to this partition
179  * @size:	size of the partition
180  * @offset_free_uncached: offset to the first free byte of uncached memory in
181  *		this partition
182  * @offset_free_cached: offset to the first free byte of cached memory in this
183  *		partition
184  * @reserved:	for now reserved entries
185  */
186 struct smem_partition_header {
187 	u8 magic[4];
188 	__le16 host0;
189 	__le16 host1;
190 	__le32 size;
191 	__le32 offset_free_uncached;
192 	__le32 offset_free_cached;
193 	__le32 reserved[3];
194 };
195 
196 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
197 
198 /**
199  * struct smem_private_entry - header of each item in the private partition
200  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
201  * @item:	identifying number of the smem item
202  * @size:	size of the data, including padding bytes
203  * @padding_data: number of bytes of padding of data
204  * @padding_hdr: number of bytes of padding between the header and the data
205  * @reserved:	for now reserved entry
206  */
207 struct smem_private_entry {
208 	u16 canary; /* bytes are the same so no swapping needed */
209 	__le16 item;
210 	__le32 size; /* includes padding bytes */
211 	__le16 padding_data;
212 	__le16 padding_hdr;
213 	__le32 reserved;
214 };
215 #define SMEM_PRIVATE_CANARY	0xa5a5
216 
217 /**
218  * struct smem_info - smem region info located after the table of contents
219  * @magic:	magic number, must be SMEM_INFO_MAGIC
220  * @size:	size of the smem region
221  * @base_addr:	base address of the smem region
222  * @reserved:	for now reserved entry
223  * @num_items:	highest accepted item number
224  */
225 struct smem_info {
226 	u8 magic[4];
227 	__le32 size;
228 	__le32 base_addr;
229 	__le32 reserved;
230 	__le16 num_items;
231 };
232 
233 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
234 
235 /**
236  * struct smem_region - representation of a chunk of memory used for smem
237  * @aux_base:	identifier of aux_mem base
238  * @virt_base:	virtual base address of memory with this aux_mem identifier
239  * @size:	size of the memory region
240  */
241 struct smem_region {
242 	u32 aux_base;
243 	void __iomem *virt_base;
244 	size_t size;
245 };
246 
247 /**
248  * struct qcom_smem - device data for the smem device
249  * @dev:	device pointer
250  * @global_partition:	pointer to global partition when in use
251  * @global_cacheline:	cacheline size for global partition
252  * @partitions:	list of pointers to partitions affecting the current
253  *		processor/host
254  * @cacheline:	list of cacheline sizes for each host
255  * @item_count: max accepted item number
256  * @num_regions: number of @regions
257  * @regions:	list of the memory regions defining the shared memory
258  */
259 struct qcom_smem {
260 	struct udevice *dev;
261 
262 	struct smem_partition_header *global_partition;
263 	size_t global_cacheline;
264 	struct smem_partition_header *partitions[SMEM_HOST_COUNT];
265 	size_t cacheline[SMEM_HOST_COUNT];
266 	u32 item_count;
267 
268 	unsigned int num_regions;
269 	struct smem_region regions[0];
270 };
271 
272 static struct smem_private_entry *
273 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
274 {
275 	void *p = phdr;
276 
277 	return p + le32_to_cpu(phdr->offset_free_uncached);
278 }
279 
280 static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr,
281 					size_t cacheline)
282 {
283 	void *p = phdr;
284 
285 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*phdr), cacheline);
286 }
287 
288 static void *phdr_to_last_cached_entry(struct smem_partition_header *phdr)
289 {
290 	void *p = phdr;
291 
292 	return p + le32_to_cpu(phdr->offset_free_cached);
293 }
294 
295 static struct smem_private_entry *
296 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
297 {
298 	void *p = phdr;
299 
300 	return p + sizeof(*phdr);
301 }
302 
303 static struct smem_private_entry *
304 uncached_entry_next(struct smem_private_entry *e)
305 {
306 	void *p = e;
307 
308 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
309 	       le32_to_cpu(e->size);
310 }
311 
312 static struct smem_private_entry *
313 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
314 {
315 	void *p = e;
316 
317 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
318 }
319 
320 static void *uncached_entry_to_item(struct smem_private_entry *e)
321 {
322 	void *p = e;
323 
324 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
325 }
326 
327 static void *cached_entry_to_item(struct smem_private_entry *e)
328 {
329 	void *p = e;
330 
331 	return p - le32_to_cpu(e->size);
332 }
333 
334 /* Pointer to the one and only smem handle */
335 static struct qcom_smem *__smem;
336 
337 static int qcom_smem_alloc_private(struct qcom_smem *smem,
338 				   struct smem_partition_header *phdr,
339 				   unsigned int item,
340 				   size_t size)
341 {
342 	struct smem_private_entry *hdr, *end;
343 	size_t alloc_size;
344 	void *cached;
345 
346 	hdr = phdr_to_first_uncached_entry(phdr);
347 	end = phdr_to_last_uncached_entry(phdr);
348 	cached = phdr_to_last_cached_entry(phdr);
349 
350 	while (hdr < end) {
351 		if (hdr->canary != SMEM_PRIVATE_CANARY) {
352 			dev_err(smem->dev,
353 				"Found invalid canary in hosts %d:%d partition\n",
354 				phdr->host0, phdr->host1);
355 			return -EINVAL;
356 		}
357 
358 		if (le16_to_cpu(hdr->item) == item)
359 			return -EEXIST;
360 
361 		hdr = uncached_entry_next(hdr);
362 	}
363 
364 	/* Check that we don't grow into the cached region */
365 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
366 	if ((void *)hdr + alloc_size >= cached) {
367 		dev_err(smem->dev, "Out of memory\n");
368 		return -ENOSPC;
369 	}
370 
371 	hdr->canary = SMEM_PRIVATE_CANARY;
372 	hdr->item = cpu_to_le16(item);
373 	hdr->size = cpu_to_le32(ALIGN(size, 8));
374 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
375 	hdr->padding_hdr = 0;
376 
377 	/*
378 	 * Ensure the header is written before we advance the free offset, so
379 	 * that remote processors that does not take the remote spinlock still
380 	 * gets a consistent view of the linked list.
381 	 */
382 	dmb();
383 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
384 
385 	return 0;
386 }
387 
388 static int qcom_smem_alloc_global(struct qcom_smem *smem,
389 				  unsigned int item,
390 				  size_t size)
391 {
392 	struct smem_global_entry *entry;
393 	struct smem_header *header;
394 
395 	header = smem->regions[0].virt_base;
396 	entry = &header->toc[item];
397 	if (entry->allocated)
398 		return -EEXIST;
399 
400 	size = ALIGN(size, 8);
401 	if (WARN_ON(size > le32_to_cpu(header->available)))
402 		return -ENOMEM;
403 
404 	entry->offset = header->free_offset;
405 	entry->size = cpu_to_le32(size);
406 
407 	/*
408 	 * Ensure the header is consistent before we mark the item allocated,
409 	 * so that remote processors will get a consistent view of the item
410 	 * even though they do not take the spinlock on read.
411 	 */
412 	dmb();
413 	entry->allocated = cpu_to_le32(1);
414 
415 	le32_add_cpu(&header->free_offset, size);
416 	le32_add_cpu(&header->available, -size);
417 
418 	return 0;
419 }
420 
421 /**
422  * qcom_smem_alloc() - allocate space for a smem item
423  * @host:	remote processor id, or -1
424  * @item:	smem item handle
425  * @size:	number of bytes to be allocated
426  *
427  * Allocate space for a given smem item of size @size, given that the item is
428  * not yet allocated.
429  */
430 static int qcom_smem_alloc(unsigned int host, unsigned int item, size_t size)
431 {
432 	struct smem_partition_header *phdr;
433 	int ret;
434 
435 	if (!__smem)
436 		return -EPROBE_DEFER;
437 
438 	if (item < SMEM_ITEM_LAST_FIXED) {
439 		dev_err(__smem->dev,
440 			"Rejecting allocation of static entry %d\n", item);
441 		return -EINVAL;
442 	}
443 
444 	if (WARN_ON(item >= __smem->item_count))
445 		return -EINVAL;
446 
447 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
448 		phdr = __smem->partitions[host];
449 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
450 	} else if (__smem->global_partition) {
451 		phdr = __smem->global_partition;
452 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
453 	} else {
454 		ret = qcom_smem_alloc_global(__smem, item, size);
455 	}
456 
457 	return ret;
458 }
459 
460 static void *qcom_smem_get_global(struct qcom_smem *smem,
461 				  unsigned int item,
462 				  size_t *size)
463 {
464 	struct smem_header *header;
465 	struct smem_region *area;
466 	struct smem_global_entry *entry;
467 	u32 aux_base;
468 	unsigned int i;
469 
470 	header = smem->regions[0].virt_base;
471 	entry = &header->toc[item];
472 	if (!entry->allocated)
473 		return ERR_PTR(-ENXIO);
474 
475 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
476 
477 	for (i = 0; i < smem->num_regions; i++) {
478 		area = &smem->regions[i];
479 
480 		if (area->aux_base == aux_base || !aux_base) {
481 			if (size != NULL)
482 				*size = le32_to_cpu(entry->size);
483 			return area->virt_base + le32_to_cpu(entry->offset);
484 		}
485 	}
486 
487 	return ERR_PTR(-ENOENT);
488 }
489 
490 static void *qcom_smem_get_private(struct qcom_smem *smem,
491 				   struct smem_partition_header *phdr,
492 				   size_t cacheline,
493 				   unsigned int item,
494 				   size_t *size)
495 {
496 	struct smem_private_entry *e, *end;
497 
498 	e = phdr_to_first_uncached_entry(phdr);
499 	end = phdr_to_last_uncached_entry(phdr);
500 
501 	while (e < end) {
502 		if (e->canary != SMEM_PRIVATE_CANARY)
503 			goto invalid_canary;
504 
505 		if (le16_to_cpu(e->item) == item) {
506 			if (size != NULL)
507 				*size = le32_to_cpu(e->size) -
508 					le16_to_cpu(e->padding_data);
509 
510 			return uncached_entry_to_item(e);
511 		}
512 
513 		e = uncached_entry_next(e);
514 	}
515 
516 	/* Item was not found in the uncached list, search the cached list */
517 
518 	e = phdr_to_first_cached_entry(phdr, cacheline);
519 	end = phdr_to_last_cached_entry(phdr);
520 
521 	while (e > end) {
522 		if (e->canary != SMEM_PRIVATE_CANARY)
523 			goto invalid_canary;
524 
525 		if (le16_to_cpu(e->item) == item) {
526 			if (size != NULL)
527 				*size = le32_to_cpu(e->size) -
528 					le16_to_cpu(e->padding_data);
529 
530 			return cached_entry_to_item(e);
531 		}
532 
533 		e = cached_entry_next(e, cacheline);
534 	}
535 
536 	return ERR_PTR(-ENOENT);
537 
538 invalid_canary:
539 	dev_err(smem->dev, "Found invalid canary in hosts %d:%d partition\n",
540 			phdr->host0, phdr->host1);
541 
542 	return ERR_PTR(-EINVAL);
543 }
544 
545 /**
546  * qcom_smem_get() - resolve ptr of size of a smem item
547  * @host:	the remote processor, or -1
548  * @item:	smem item handle
549  * @size:	pointer to be filled out with size of the item
550  *
551  * Looks up smem item and returns pointer to it. Size of smem
552  * item is returned in @size.
553  */
554 static void *qcom_smem_get(unsigned int host, unsigned int item, size_t *size)
555 {
556 	struct smem_partition_header *phdr;
557 	size_t cacheln;
558 	void *ptr = ERR_PTR(-EPROBE_DEFER);
559 
560 	if (!__smem)
561 		return ptr;
562 
563 	if (WARN_ON(item >= __smem->item_count))
564 		return ERR_PTR(-EINVAL);
565 
566 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
567 		phdr = __smem->partitions[host];
568 		cacheln = __smem->cacheline[host];
569 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
570 	} else if (__smem->global_partition) {
571 		phdr = __smem->global_partition;
572 		cacheln = __smem->global_cacheline;
573 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
574 	} else {
575 		ptr = qcom_smem_get_global(__smem, item, size);
576 	}
577 
578 	return ptr;
579 
580 }
581 
582 /**
583  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
584  * @host:	the remote processor identifying a partition, or -1
585  *
586  * To be used by smem clients as a quick way to determine if any new
587  * allocations has been made.
588  */
589 static int qcom_smem_get_free_space(unsigned int host)
590 {
591 	struct smem_partition_header *phdr;
592 	struct smem_header *header;
593 	unsigned int ret;
594 
595 	if (!__smem)
596 		return -EPROBE_DEFER;
597 
598 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
599 		phdr = __smem->partitions[host];
600 		ret = le32_to_cpu(phdr->offset_free_cached) -
601 		      le32_to_cpu(phdr->offset_free_uncached);
602 	} else if (__smem->global_partition) {
603 		phdr = __smem->global_partition;
604 		ret = le32_to_cpu(phdr->offset_free_cached) -
605 		      le32_to_cpu(phdr->offset_free_uncached);
606 	} else {
607 		header = __smem->regions[0].virt_base;
608 		ret = le32_to_cpu(header->available);
609 	}
610 
611 	return ret;
612 }
613 
614 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
615 {
616 	struct smem_header *header;
617 	__le32 *versions;
618 
619 	header = smem->regions[0].virt_base;
620 	versions = header->version;
621 
622 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
623 }
624 
625 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
626 {
627 	struct smem_ptable *ptable;
628 	u32 version;
629 
630 	ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
631 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
632 		return ERR_PTR(-ENOENT);
633 
634 	version = le32_to_cpu(ptable->version);
635 	if (version != 1) {
636 		dev_err(smem->dev,
637 			"Unsupported partition header version %d\n", version);
638 		return ERR_PTR(-EINVAL);
639 	}
640 	return ptable;
641 }
642 
643 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
644 {
645 	struct smem_ptable *ptable;
646 	struct smem_info *info;
647 
648 	ptable = qcom_smem_get_ptable(smem);
649 	if (IS_ERR_OR_NULL(ptable))
650 		return SMEM_ITEM_COUNT;
651 
652 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
653 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
654 		return SMEM_ITEM_COUNT;
655 
656 	return le16_to_cpu(info->num_items);
657 }
658 
659 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
660 {
661 	struct smem_partition_header *header;
662 	struct smem_ptable_entry *entry = NULL;
663 	struct smem_ptable *ptable;
664 	u32 host0, host1, size;
665 	int i;
666 
667 	ptable = qcom_smem_get_ptable(smem);
668 	if (IS_ERR(ptable))
669 		return PTR_ERR(ptable);
670 
671 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
672 		entry = &ptable->entry[i];
673 		host0 = le16_to_cpu(entry->host0);
674 		host1 = le16_to_cpu(entry->host1);
675 
676 		if (host0 == SMEM_GLOBAL_HOST && host0 == host1)
677 			break;
678 	}
679 
680 	if (!entry) {
681 		dev_err(smem->dev, "Missing entry for global partition\n");
682 		return -EINVAL;
683 	}
684 
685 	if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) {
686 		dev_err(smem->dev, "Invalid entry for global partition\n");
687 		return -EINVAL;
688 	}
689 
690 	if (smem->global_partition) {
691 		dev_err(smem->dev, "Already found the global partition\n");
692 		return -EINVAL;
693 	}
694 
695 	header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
696 	host0 = le16_to_cpu(header->host0);
697 	host1 = le16_to_cpu(header->host1);
698 
699 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
700 		dev_err(smem->dev, "Global partition has invalid magic\n");
701 		return -EINVAL;
702 	}
703 
704 	if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) {
705 		dev_err(smem->dev, "Global partition hosts are invalid\n");
706 		return -EINVAL;
707 	}
708 
709 	if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
710 		dev_err(smem->dev, "Global partition has invalid size\n");
711 		return -EINVAL;
712 	}
713 
714 	size = le32_to_cpu(header->offset_free_uncached);
715 	if (size > le32_to_cpu(header->size)) {
716 		dev_err(smem->dev,
717 			"Global partition has invalid free pointer\n");
718 		return -EINVAL;
719 	}
720 
721 	smem->global_partition = header;
722 	smem->global_cacheline = le32_to_cpu(entry->cacheline);
723 
724 	return 0;
725 }
726 
727 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
728 					  unsigned int local_host)
729 {
730 	struct smem_partition_header *header;
731 	struct smem_ptable_entry *entry;
732 	struct smem_ptable *ptable;
733 	unsigned int remote_host;
734 	u32 host0, host1;
735 	int i;
736 
737 	ptable = qcom_smem_get_ptable(smem);
738 	if (IS_ERR(ptable))
739 		return PTR_ERR(ptable);
740 
741 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
742 		entry = &ptable->entry[i];
743 		host0 = le16_to_cpu(entry->host0);
744 		host1 = le16_to_cpu(entry->host1);
745 
746 		if (host0 != local_host && host1 != local_host)
747 			continue;
748 
749 		if (!le32_to_cpu(entry->offset))
750 			continue;
751 
752 		if (!le32_to_cpu(entry->size))
753 			continue;
754 
755 		if (host0 == local_host)
756 			remote_host = host1;
757 		else
758 			remote_host = host0;
759 
760 		if (remote_host >= SMEM_HOST_COUNT) {
761 			dev_err(smem->dev,
762 				"Invalid remote host %d\n",
763 				remote_host);
764 			return -EINVAL;
765 		}
766 
767 		if (smem->partitions[remote_host]) {
768 			dev_err(smem->dev,
769 				"Already found a partition for host %d\n",
770 				remote_host);
771 			return -EINVAL;
772 		}
773 
774 		header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
775 		host0 = le16_to_cpu(header->host0);
776 		host1 = le16_to_cpu(header->host1);
777 
778 		if (memcmp(header->magic, SMEM_PART_MAGIC,
779 			    sizeof(header->magic))) {
780 			dev_err(smem->dev,
781 				"Partition %d has invalid magic\n", i);
782 			return -EINVAL;
783 		}
784 
785 		if (host0 != local_host && host1 != local_host) {
786 			dev_err(smem->dev,
787 				"Partition %d hosts are invalid\n", i);
788 			return -EINVAL;
789 		}
790 
791 		if (host0 != remote_host && host1 != remote_host) {
792 			dev_err(smem->dev,
793 				"Partition %d hosts are invalid\n", i);
794 			return -EINVAL;
795 		}
796 
797 		if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
798 			dev_err(smem->dev,
799 				"Partition %d has invalid size\n", i);
800 			return -EINVAL;
801 		}
802 
803 		if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
804 			dev_err(smem->dev,
805 				"Partition %d has invalid free pointer\n", i);
806 			return -EINVAL;
807 		}
808 
809 		smem->partitions[remote_host] = header;
810 		smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
811 	}
812 
813 	return 0;
814 }
815 
816 static int qcom_smem_map_memory(struct qcom_smem *smem, struct udevice *dev,
817 				const char *name, int i)
818 {
819 	struct fdt_resource r;
820 	int ret;
821 	int node = dev_of_offset(dev);
822 
823 	ret = fdtdec_lookup_phandle(gd->fdt_blob, node, name);
824 	if (ret < 0) {
825 		dev_err(dev, "No %s specified\n", name);
826 		return -EINVAL;
827 	}
828 
829 	ret = fdt_get_resource(gd->fdt_blob, ret, "reg", 0, &r);
830 	if (ret)
831 		return ret;
832 
833 	smem->regions[i].aux_base = (u32)r.start;
834 	smem->regions[i].size = fdt_resource_size(&r);
835 	smem->regions[i].virt_base = devm_ioremap(dev, r.start, fdt_resource_size(&r));
836 	if (!smem->regions[i].virt_base)
837 		return -ENOMEM;
838 
839 	return 0;
840 }
841 
842 static int qcom_smem_probe(struct udevice *dev)
843 {
844 	struct smem_header *header;
845 	struct qcom_smem *smem;
846 	size_t array_size;
847 	int num_regions;
848 	u32 version;
849 	int ret;
850 	int node = dev_of_offset(dev);
851 
852 	num_regions = 1;
853 	if (fdtdec_lookup_phandle(gd->fdt_blob, node, "qcomrpm-msg-ram") >= 0)
854 		num_regions++;
855 
856 	array_size = num_regions * sizeof(struct smem_region);
857 	smem = devm_kzalloc(dev, sizeof(*smem) + array_size, GFP_KERNEL);
858 	if (!smem)
859 		return -ENOMEM;
860 
861 	smem->dev = dev;
862 	smem->num_regions = num_regions;
863 
864 	ret = qcom_smem_map_memory(smem, dev, "memory-region", 0);
865 	if (ret)
866 		return ret;
867 
868 	if (num_regions > 1) {
869 		ret = qcom_smem_map_memory(smem, dev,
870 					"qcom,rpm-msg-ram", 1);
871 		if (ret)
872 			return ret;
873 	}
874 
875 	header = smem->regions[0].virt_base;
876 	if (le32_to_cpu(header->initialized) != 1 ||
877 	    le32_to_cpu(header->reserved)) {
878 		dev_err(&pdev->dev, "SMEM is not initialized by SBL\n");
879 		return -EINVAL;
880 	}
881 
882 	version = qcom_smem_get_sbl_version(smem);
883 	switch (version >> 16) {
884 	case SMEM_GLOBAL_PART_VERSION:
885 		ret = qcom_smem_set_global_partition(smem);
886 		if (ret < 0)
887 			return ret;
888 		smem->item_count = qcom_smem_get_item_count(smem);
889 		break;
890 	case SMEM_GLOBAL_HEAP_VERSION:
891 		smem->item_count = SMEM_ITEM_COUNT;
892 		break;
893 	default:
894 		dev_err(dev, "Unsupported SMEM version 0x%x\n", version);
895 		return -EINVAL;
896 	}
897 
898 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
899 	if (ret < 0 && ret != -ENOENT)
900 		return ret;
901 
902 	__smem = smem;
903 
904 	return 0;
905 }
906 
907 static int qcom_smem_remove(struct udevice *dev)
908 {
909 	__smem = NULL;
910 
911 	return 0;
912 }
913 
914 const struct udevice_id qcom_smem_of_match[] = {
915 	{ .compatible = "qcom,smem" },
916 	{ }
917 };
918 
919 static const struct smem_ops msm_smem_ops = {
920 	.alloc = qcom_smem_alloc,
921 	.get = qcom_smem_get,
922 	.get_free_space = qcom_smem_get_free_space,
923 };
924 
925 U_BOOT_DRIVER(qcom_smem) = {
926 	.name	= "qcom_smem",
927 	.id	= UCLASS_SMEM,
928 	.of_match = qcom_smem_of_match,
929 	.ops = &msm_smem_ops,
930 	.probe = qcom_smem_probe,
931 	.remove = qcom_smem_remove,
932 };
933