xref: /openbmc/u-boot/drivers/rtc/date.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * (C) Copyright 2001
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 /*
9  * Date & Time support for Philips PCF8563 RTC
10  */
11 
12 #include <common.h>
13 #include <command.h>
14 #include <errno.h>
15 #include <rtc.h>
16 
17 #if defined(CONFIG_CMD_DATE) || defined(CONFIG_TIMESTAMP)
18 
19 #define FEBRUARY		2
20 #define	STARTOFTIME		1970
21 #define SECDAY			86400L
22 #define SECYR			(SECDAY * 365)
23 #define	leapyear(year)		((year) % 4 == 0)
24 #define	days_in_year(a)		(leapyear(a) ? 366 : 365)
25 #define	days_in_month(a)	(month_days[(a) - 1])
26 
27 static int month_days[12] = {
28 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
29 };
30 
31 /*
32  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
33  */
34 int rtc_calc_weekday(struct rtc_time *tm)
35 {
36 	int leapsToDate;
37 	int lastYear;
38 	int day;
39 	int MonthOffset[] = { 0,31,59,90,120,151,181,212,243,273,304,334 };
40 
41 	if (tm->tm_year < 1753)
42 		return -EINVAL;
43 	lastYear=tm->tm_year-1;
44 
45 	/*
46 	 * Number of leap corrections to apply up to end of last year
47 	 */
48 	leapsToDate = lastYear/4 - lastYear/100 + lastYear/400;
49 
50 	/*
51 	 * This year is a leap year if it is divisible by 4 except when it is
52 	 * divisible by 100 unless it is divisible by 400
53 	 *
54 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be
55 	 */
56 	if((tm->tm_year%4==0) &&
57 	   ((tm->tm_year%100!=0) || (tm->tm_year%400==0)) &&
58 	   (tm->tm_mon>2)) {
59 		/*
60 		 * We are past Feb. 29 in a leap year
61 		 */
62 		day=1;
63 	} else {
64 		day=0;
65 	}
66 
67 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday;
68 
69 	tm->tm_wday=day%7;
70 
71 	return 0;
72 }
73 
74 int rtc_to_tm(int tim, struct rtc_time *tm)
75 {
76 	register int    i;
77 	register long   hms, day;
78 
79 	day = tim / SECDAY;
80 	hms = tim % SECDAY;
81 
82 	/* Hours, minutes, seconds are easy */
83 	tm->tm_hour = hms / 3600;
84 	tm->tm_min = (hms % 3600) / 60;
85 	tm->tm_sec = (hms % 3600) % 60;
86 
87 	/* Number of years in days */
88 	for (i = STARTOFTIME; day >= days_in_year(i); i++) {
89 		day -= days_in_year(i);
90 	}
91 	tm->tm_year = i;
92 
93 	/* Number of months in days left */
94 	if (leapyear(tm->tm_year)) {
95 		days_in_month(FEBRUARY) = 29;
96 	}
97 	for (i = 1; day >= days_in_month(i); i++) {
98 		day -= days_in_month(i);
99 	}
100 	days_in_month(FEBRUARY) = 28;
101 	tm->tm_mon = i;
102 
103 	/* Days are what is left over (+1) from all that. */
104 	tm->tm_mday = day + 1;
105 
106 	/* Zero unused fields */
107 	tm->tm_yday = 0;
108 	tm->tm_isdst = 0;
109 
110 	/*
111 	 * Determine the day of week
112 	 */
113 	return rtc_calc_weekday(tm);
114 }
115 
116 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
117  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
118  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
119  *
120  * [For the Julian calendar (which was used in Russia before 1917,
121  * Britain & colonies before 1752, anywhere else before 1582,
122  * and is still in use by some communities) leave out the
123  * -year/100+year/400 terms, and add 10.]
124  *
125  * This algorithm was first published by Gauss (I think).
126  *
127  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
128  * machines were long is 32-bit! (However, as time_t is signed, we
129  * will already get problems at other places on 2038-01-19 03:14:08)
130  */
131 unsigned long rtc_mktime(const struct rtc_time *tm)
132 {
133 	int mon = tm->tm_mon;
134 	int year = tm->tm_year;
135 	int days, hours;
136 
137 	mon -= 2;
138 	if (0 >= (int)mon) {	/* 1..12 -> 11,12,1..10 */
139 		mon += 12;		/* Puts Feb last since it has leap day */
140 		year -= 1;
141 	}
142 
143 	days = (unsigned long)(year / 4 - year / 100 + year / 400 +
144 			367 * mon / 12 + tm->tm_mday) +
145 			year * 365 - 719499;
146 	hours = days * 24 + tm->tm_hour;
147 	return (hours * 60 + tm->tm_min) * 60 + tm->tm_sec;
148 }
149 
150 #endif
151