1 /* 2 * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH 3 * 4 * SPDX-License-Identifier: GPL-2.0 5 */ 6 7 #include <common.h> 8 #include <clk.h> 9 #include <dm.h> 10 #include <dt-bindings/memory/rk3368-dmc.h> 11 #include <dt-structs.h> 12 #include <ram.h> 13 #include <regmap.h> 14 #include <syscon.h> 15 #include <asm/io.h> 16 #include <asm/arch/clock.h> 17 #include <asm/arch/cru_rk3368.h> 18 #include <asm/arch/grf_rk3368.h> 19 #include <asm/arch/ddr_rk3368.h> 20 #include <asm/arch/sdram.h> 21 #include <asm/arch/sdram_common.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 struct dram_info { 26 struct ram_info info; 27 struct clk ddr_clk; 28 struct rk3368_cru *cru; 29 struct rk3368_grf *grf; 30 struct rk3368_ddr_pctl *pctl; 31 struct rk3368_ddrphy *phy; 32 struct rk3368_pmu_grf *pmugrf; 33 struct rk3368_msch *msch; 34 }; 35 36 struct rk3368_sdram_params { 37 #if CONFIG_IS_ENABLED(OF_PLATDATA) 38 struct dtd_rockchip_rk3368_dmc of_plat; 39 #endif 40 struct rk3288_sdram_pctl_timing pctl_timing; 41 u32 trefi_mem_ddr3; 42 struct rk3288_sdram_channel chan; 43 struct regmap *map; 44 u32 ddr_freq; 45 u32 memory_schedule; 46 u32 ddr_speed_bin; 47 u32 tfaw_mult; 48 }; 49 50 /* PTCL bits */ 51 enum { 52 /* PCTL_DFISTCFG0 */ 53 DFI_INIT_START = BIT(0), 54 DFI_DATA_BYTE_DISABLE_EN = BIT(2), 55 56 /* PCTL_DFISTCFG1 */ 57 DFI_DRAM_CLK_SR_EN = BIT(0), 58 DFI_DRAM_CLK_DPD_EN = BIT(1), 59 ODT_LEN_BL8_W_SHIFT = 16, 60 61 /* PCTL_DFISTCFG2 */ 62 DFI_PARITY_INTR_EN = BIT(0), 63 DFI_PARITY_EN = BIT(1), 64 65 /* PCTL_DFILPCFG0 */ 66 TLP_RESP_TIME_SHIFT = 16, 67 LP_SR_EN = BIT(8), 68 LP_PD_EN = BIT(0), 69 70 /* PCTL_DFIODTCFG */ 71 RANK0_ODT_WRITE_SEL = BIT(3), 72 RANK1_ODT_WRITE_SEL = BIT(11), 73 74 /* PCTL_SCFG */ 75 HW_LOW_POWER_EN = BIT(0), 76 77 /* PCTL_MCMD */ 78 START_CMD = BIT(31), 79 MCMD_RANK0 = BIT(20), 80 MCMD_RANK1 = BIT(21), 81 DESELECT_CMD = 0, 82 PREA_CMD, 83 REF_CMD, 84 MRS_CMD, 85 ZQCS_CMD, 86 ZQCL_CMD, 87 RSTL_CMD, 88 MRR_CMD = 8, 89 DPDE_CMD, 90 91 /* PCTL_POWCTL */ 92 POWER_UP_START = BIT(0), 93 94 /* PCTL_POWSTAT */ 95 POWER_UP_DONE = BIT(0), 96 97 /* PCTL_SCTL */ 98 INIT_STATE = 0, 99 CFG_STATE, 100 GO_STATE, 101 SLEEP_STATE, 102 WAKEUP_STATE, 103 104 /* PCTL_STAT */ 105 LP_TRIG_SHIFT = 4, 106 LP_TRIG_MASK = 7, 107 PCTL_STAT_MSK = 7, 108 INIT_MEM = 0, 109 CONFIG, 110 CONFIG_REQ, 111 ACCESS, 112 ACCESS_REQ, 113 LOW_POWER, 114 LOW_POWER_ENTRY_REQ, 115 LOW_POWER_EXIT_REQ, 116 117 /* PCTL_MCFG */ 118 DDR2_DDR3_BL_8 = BIT(0), 119 DDR3_EN = BIT(5), 120 TFAW_TRRD_MULT4 = (0 << 18), 121 TFAW_TRRD_MULT5 = (1 << 18), 122 TFAW_TRRD_MULT6 = (2 << 18), 123 }; 124 125 #define DDR3_MR0_WR(n) \ 126 ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9)) 127 #define DDR3_MR0_CL(n) \ 128 ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2)) 129 #define DDR3_MR0_BL8 \ 130 (0 << 0) 131 #define DDR3_MR0_DLL_RESET \ 132 (1 << 8) 133 #define DDR3_MR1_RTT120OHM \ 134 ((0 << 9) | (1 << 6) | (0 << 2)) 135 #define DDR3_MR2_TWL(n) \ 136 (((n - 5) & 0x7) << 3) 137 138 139 #ifdef CONFIG_TPL_BUILD 140 141 static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable) 142 { 143 if (enable) 144 rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); 145 else 146 rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); 147 } 148 149 static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode) 150 { 151 if (ddr3_mode) 152 rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); 153 else 154 rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); 155 } 156 157 static void ddrphy_config(struct rk3368_ddrphy *phy, 158 u32 tcl, u32 tal, u32 tcwl) 159 { 160 int i; 161 162 /* Set to DDR3 mode */ 163 clrsetbits_le32(&phy->reg[1], 0x3, 0x0); 164 165 /* DDRPHY_REGB: CL, AL */ 166 clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal); 167 /* DDRPHY_REGC: CWL */ 168 clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl); 169 170 /* Update drive-strength */ 171 writel(0xcc, &phy->reg[0x11]); 172 writel(0xaa, &phy->reg[0x16]); 173 /* 174 * Update NRCOMP/PRCOMP for all 4 channels (for details of all 175 * affected registers refer to the documentation of DDRPHY_REG20 176 * and DDRPHY_REG21 in the RK3368 TRM. 177 */ 178 for (i = 0; i < 4; ++i) { 179 writel(0xcc, &phy->reg[0x20 + i * 0x10]); 180 writel(0x44, &phy->reg[0x21 + i * 0x10]); 181 } 182 183 /* Enable write-leveling calibration bypass */ 184 setbits_le32(&phy->reg[2], BIT(3)); 185 } 186 187 static void copy_to_reg(u32 *dest, const u32 *src, u32 n) 188 { 189 int i; 190 191 for (i = 0; i < n / sizeof(u32); i++) 192 writel(*src++, dest++); 193 } 194 195 static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd) 196 { 197 u32 mcmd = START_CMD | cmd | rank; 198 199 debug("%s: writing %x to MCMD\n", __func__, mcmd); 200 writel(mcmd, &pctl->mcmd); 201 while (readl(&pctl->mcmd) & START_CMD) 202 /* spin */; 203 } 204 205 static void send_mrs(struct rk3368_ddr_pctl *pctl, 206 u32 rank, u32 mr_num, u32 mr_data) 207 { 208 u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4); 209 210 debug("%s: writing %x to MCMD\n", __func__, mcmd); 211 writel(mcmd, &pctl->mcmd); 212 while (readl(&pctl->mcmd) & START_CMD) 213 /* spin */; 214 } 215 216 static int memory_init(struct rk3368_ddr_pctl *pctl, 217 struct rk3368_sdram_params *params) 218 { 219 u32 mr[4]; 220 const ulong timeout_ms = 500; 221 ulong tmp; 222 223 /* 224 * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and 225 * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register 226 * of PCTL. 227 */ 228 writel(POWER_UP_START, &pctl->powctl); 229 230 tmp = get_timer(0); 231 do { 232 if (get_timer(tmp) > timeout_ms) { 233 error("%s: POWER_UP_START did not complete in %ld ms\n", 234 __func__, timeout_ms); 235 return -ETIME; 236 } 237 } while (!(readl(&pctl->powstat) & POWER_UP_DONE)); 238 239 /* Configure MR0 through MR3 */ 240 mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) | 241 DDR3_MR0_CL(params->pctl_timing.tcl) | 242 DDR3_MR0_DLL_RESET; 243 mr[1] = DDR3_MR1_RTT120OHM; 244 mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl); 245 mr[3] = 0; 246 247 /* 248 * Also see RK3368 Technical Reference Manual: 249 * "16.6.2 Initialization (DDR3 Initialization Sequence)" 250 */ 251 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD); 252 udelay(1); 253 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); 254 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]); 255 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]); 256 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]); 257 send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]); 258 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD); 259 260 return 0; 261 } 262 263 static void move_to_config_state(struct rk3368_ddr_pctl *pctl) 264 { 265 /* 266 * Also see RK3368 Technical Reference Manual: 267 * "16.6.1 State transition of PCTL (Moving to Config State)" 268 */ 269 u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; 270 271 switch (state) { 272 case LOW_POWER: 273 writel(WAKEUP_STATE, &pctl->sctl); 274 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) 275 /* spin */; 276 277 /* fall-through */ 278 case ACCESS: 279 case INIT_MEM: 280 writel(CFG_STATE, &pctl->sctl); 281 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) 282 /* spin */; 283 break; 284 285 case CONFIG: 286 return; 287 288 default: 289 break; 290 } 291 } 292 293 static void move_to_access_state(struct rk3368_ddr_pctl *pctl) 294 { 295 /* 296 * Also see RK3368 Technical Reference Manual: 297 * "16.6.1 State transition of PCTL (Moving to Access State)" 298 */ 299 u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; 300 301 switch (state) { 302 case LOW_POWER: 303 if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) & 304 LP_TRIG_MASK) == 1) 305 return; 306 307 writel(WAKEUP_STATE, &pctl->sctl); 308 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) 309 /* spin */; 310 311 /* fall-through */ 312 case INIT_MEM: 313 writel(CFG_STATE, &pctl->sctl); 314 while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) 315 /* spin */; 316 317 /* fall-through */ 318 case CONFIG: 319 writel(GO_STATE, &pctl->sctl); 320 while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG) 321 /* spin */; 322 break; 323 324 case ACCESS: 325 return; 326 327 default: 328 break; 329 } 330 } 331 332 static void ddrctl_reset(struct rk3368_cru *cru) 333 { 334 const u32 ctl_reset = BIT(3) | BIT(2); 335 const u32 phy_reset = BIT(1) | BIT(0); 336 337 /* 338 * The PHY reset should be released before the PCTL reset. 339 * 340 * Note that the following sequence (including the number of 341 * us to delay between releasing the PHY and PCTL reset) has 342 * been adapted per feedback received from Rockchips, so do 343 * not try to optimise. 344 */ 345 rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset); 346 udelay(1); 347 rk_clrreg(&cru->softrst_con[10], phy_reset); 348 udelay(5); 349 rk_clrreg(&cru->softrst_con[10], ctl_reset); 350 } 351 352 static void ddrphy_reset(struct rk3368_ddrphy *ddrphy) 353 { 354 /* 355 * The analog part of the PHY should be release at least 1000 356 * DRAM cycles before the digital part of the PHY (waiting for 357 * 5us will ensure this for a DRAM clock as low as 200MHz). 358 */ 359 clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2)); 360 udelay(1); 361 setbits_le32(&ddrphy->reg[0], BIT(2)); 362 udelay(5); 363 setbits_le32(&ddrphy->reg[0], BIT(3)); 364 } 365 366 static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq) 367 { 368 u32 dqs_dll_delay; 369 370 setbits_le32(&ddrphy->reg[0x13], BIT(4)); 371 clrbits_le32(&ddrphy->reg[0x14], BIT(3)); 372 373 setbits_le32(&ddrphy->reg[0x26], BIT(4)); 374 clrbits_le32(&ddrphy->reg[0x27], BIT(3)); 375 376 setbits_le32(&ddrphy->reg[0x36], BIT(4)); 377 clrbits_le32(&ddrphy->reg[0x37], BIT(3)); 378 379 setbits_le32(&ddrphy->reg[0x46], BIT(4)); 380 clrbits_le32(&ddrphy->reg[0x47], BIT(3)); 381 382 setbits_le32(&ddrphy->reg[0x56], BIT(4)); 383 clrbits_le32(&ddrphy->reg[0x57], BIT(3)); 384 385 if (freq <= 400000000) 386 setbits_le32(&ddrphy->reg[0xa4], 0x1f); 387 else 388 clrbits_le32(&ddrphy->reg[0xa4], 0x1f); 389 390 if (freq < 681000000) 391 dqs_dll_delay = 3; /* 67.5 degree delay */ 392 else 393 dqs_dll_delay = 2; /* 45 degree delay */ 394 395 writel(dqs_dll_delay, &ddrphy->reg[0x28]); 396 writel(dqs_dll_delay, &ddrphy->reg[0x38]); 397 writel(dqs_dll_delay, &ddrphy->reg[0x48]); 398 writel(dqs_dll_delay, &ddrphy->reg[0x58]); 399 } 400 401 static int dfi_cfg(struct rk3368_ddr_pctl *pctl) 402 { 403 const ulong timeout_ms = 200; 404 ulong tmp; 405 406 writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0); 407 408 writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN, 409 &pctl->dfistcfg1); 410 writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2); 411 writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN, 412 &pctl->dfilpcfg0); 413 414 writel(1, &pctl->dfitphyupdtype0); 415 416 writel(0x1f, &pctl->dfitphyrdlat); 417 writel(0, &pctl->dfitphywrdata); 418 writel(0, &pctl->dfiupdcfg); /* phyupd and ctrlupd disabled */ 419 420 setbits_le32(&pctl->dfistcfg0, DFI_INIT_START); 421 422 tmp = get_timer(0); 423 do { 424 if (get_timer(tmp) > timeout_ms) { 425 error("%s: DFI init did not complete within %ld ms\n", 426 __func__, timeout_ms); 427 return -ETIME; 428 } 429 } while ((readl(&pctl->dfiststat0) & 1) == 0); 430 431 return 0; 432 } 433 434 static inline u32 ps_to_tCK(const u32 ps, const ulong freq) 435 { 436 const ulong MHz = 1000000; 437 return DIV_ROUND_UP(ps * freq, 1000000 * MHz); 438 } 439 440 static inline u32 ns_to_tCK(const u32 ns, const ulong freq) 441 { 442 return ps_to_tCK(ns * 1000, freq); 443 } 444 445 static inline u32 tCK_to_ps(const ulong tCK, const ulong freq) 446 { 447 const ulong MHz = 1000000; 448 return DIV_ROUND_UP(tCK * 1000000 * MHz, freq); 449 } 450 451 static int pctl_calc_timings(struct rk3368_sdram_params *params, 452 ulong freq) 453 { 454 struct rk3288_sdram_pctl_timing *pctl_timing = ¶ms->pctl_timing; 455 const ulong MHz = 1000000; 456 u32 tccd; 457 u32 tfaw_as_ps; 458 459 if (params->ddr_speed_bin != DDR3_1600K) { 460 error("%s: unimplemented DDR3 speed bin %d\n", 461 __func__, params->ddr_speed_bin); 462 return -1; 463 } 464 465 /* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */ 466 pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz); 467 pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz); 468 469 pctl_timing->tinit = 200; /* 200 usec */ 470 pctl_timing->trsth = 500; /* 500 usec */ 471 pctl_timing->trefi = 78; /* 7.8usec = 78 * 100ns */ 472 params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq); 473 474 if (freq <= (400 * MHz)) { 475 pctl_timing->tcl = 6; 476 pctl_timing->tcwl = 10; 477 } else if (freq <= (533 * MHz)) { 478 pctl_timing->tcl = 8; 479 pctl_timing->tcwl = 6; 480 } else if (freq <= (666 * MHz)) { 481 pctl_timing->tcl = 10; 482 pctl_timing->tcwl = 7; 483 } else { 484 pctl_timing->tcl = 11; 485 pctl_timing->tcwl = 8; 486 } 487 488 pctl_timing->tmrd = 4; /* 4 tCK (all speed bins) */ 489 pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */ 490 pctl_timing->trp = max(4u, ps_to_tCK(13750, freq)); 491 /* 492 * JESD-79: 493 * READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL 494 */ 495 tccd = 4; 496 pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl; 497 pctl_timing->tal = 0; 498 pctl_timing->tras = ps_to_tCK(35000, freq); 499 pctl_timing->trc = ps_to_tCK(48750, freq); 500 pctl_timing->trcd = ps_to_tCK(13750, freq); 501 pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq)); 502 pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq)); 503 pctl_timing->twr = ps_to_tCK(15000, freq); 504 /* The DDR3 mode-register does only support even values for tWR > 8. */ 505 if (pctl_timing->twr > 8) 506 pctl_timing->twr = (pctl_timing->twr + 1) & ~1; 507 pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq)); 508 pctl_timing->texsr = 512; /* tEXSR(max) is tDLLLK */ 509 pctl_timing->txp = max(3u, ps_to_tCK(6000, freq)); 510 pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq)); 511 pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq)); 512 pctl_timing->tzqcsi = 10000; /* as used by Rockchip */ 513 pctl_timing->tdqs = 1; /* fixed for DDR3 */ 514 pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq)); 515 pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq)); 516 pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq)); 517 pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq)); 518 pctl_timing->trstl = ns_to_tCK(100, freq); 519 pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq)); /* tZQoper */ 520 pctl_timing->tmrr = 0; 521 pctl_timing->tckesr = pctl_timing->tcke + 1; /* JESD-79: tCKE + 1tCK */ 522 pctl_timing->tdpd = 0; /* RK3368 TRM: "allowed values for DDR3: 0" */ 523 524 525 /* 526 * The controller can represent tFAW as 4x, 5x or 6x tRRD only. 527 * We want to use the smallest multiplier that satisfies the tFAW 528 * requirements of the given speed-bin. If necessary, we stretch out 529 * tRRD to allow us to operate on a 6x multiplier for tFAW. 530 */ 531 tfaw_as_ps = 40000; /* 40ns: tFAW for DDR3-1600K, 2KB page-size */ 532 if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) { 533 /* If tFAW is > 6 x tRRD, we need to stretch tRRD */ 534 pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq); 535 params->tfaw_mult = TFAW_TRRD_MULT6; 536 } else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) { 537 params->tfaw_mult = TFAW_TRRD_MULT6; 538 } else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) { 539 params->tfaw_mult = TFAW_TRRD_MULT5; 540 } else { 541 params->tfaw_mult = TFAW_TRRD_MULT4; 542 } 543 544 return 0; 545 } 546 547 static void pctl_cfg(struct rk3368_ddr_pctl *pctl, 548 struct rk3368_sdram_params *params, 549 struct rk3368_grf *grf) 550 { 551 /* Configure PCTL timing registers */ 552 params->pctl_timing.trefi |= BIT(31); /* see PCTL_TREFI */ 553 copy_to_reg(&pctl->togcnt1u, ¶ms->pctl_timing.togcnt1u, 554 sizeof(params->pctl_timing)); 555 writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3); 556 557 /* Set up ODT write selector and ODT write length */ 558 writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg); 559 writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1); 560 561 /* Set up the CL/CWL-dependent timings of DFI */ 562 writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen); 563 writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat); 564 565 /* DDR3 */ 566 writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg); 567 writel(0x001c0004, &grf->ddrc0_con0); 568 569 setbits_le32(&pctl->scfg, HW_LOW_POWER_EN); 570 } 571 572 static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl, 573 struct rk3368_ddrphy *ddrphy) 574 { 575 const u32 trefi = readl(&pctl->trefi); 576 const ulong timeout_ms = 500; 577 ulong tmp; 578 579 /* disable auto-refresh */ 580 writel(0 | BIT(31), &pctl->trefi); 581 582 clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); 583 clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21); 584 585 tmp = get_timer(0); 586 do { 587 if (get_timer(tmp) > timeout_ms) { 588 error("%s: did not complete within %ld ms\n", 589 __func__, timeout_ms); 590 return -ETIME; 591 } 592 } while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf); 593 594 send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); 595 clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); 596 /* resume auto-refresh */ 597 writel(trefi | BIT(31), &pctl->trefi); 598 599 return 0; 600 } 601 602 static int sdram_col_row_detect(struct udevice *dev) 603 { 604 struct dram_info *priv = dev_get_priv(dev); 605 struct rk3368_sdram_params *params = dev_get_platdata(dev); 606 struct rk3368_ddr_pctl *pctl = priv->pctl; 607 struct rk3368_msch *msch = priv->msch; 608 const u32 test_pattern = 0x5aa5f00f; 609 int row, col; 610 uintptr_t addr; 611 612 move_to_config_state(pctl); 613 writel(6, &msch->ddrconf); 614 move_to_access_state(pctl); 615 616 /* Detect col */ 617 for (col = 11; col >= 9; col--) { 618 writel(0, CONFIG_SYS_SDRAM_BASE); 619 addr = CONFIG_SYS_SDRAM_BASE + 620 (1 << (col + params->chan.bw - 1)); 621 writel(test_pattern, addr); 622 if ((readl(addr) == test_pattern) && 623 (readl(CONFIG_SYS_SDRAM_BASE) == 0)) 624 break; 625 } 626 627 if (col == 8) { 628 error("%s: col detect error\n", __func__); 629 return -EINVAL; 630 } 631 632 move_to_config_state(pctl); 633 writel(15, &msch->ddrconf); 634 move_to_access_state(pctl); 635 636 /* Detect row*/ 637 for (row = 16; row >= 12; row--) { 638 writel(0, CONFIG_SYS_SDRAM_BASE); 639 addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1)); 640 writel(test_pattern, addr); 641 if ((readl(addr) == test_pattern) && 642 (readl(CONFIG_SYS_SDRAM_BASE) == 0)) 643 break; 644 } 645 646 if (row == 11) { 647 error("%s: row detect error\n", __func__); 648 return -EINVAL; 649 } 650 651 /* Record results */ 652 debug("%s: col %d, row %d\n", __func__, col, row); 653 params->chan.col = col; 654 params->chan.cs0_row = row; 655 params->chan.cs1_row = row; 656 params->chan.row_3_4 = 0; 657 658 return 0; 659 } 660 661 static int msch_niu_config(struct rk3368_msch *msch, 662 struct rk3368_sdram_params *params) 663 { 664 int i; 665 const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1); 666 const u8 rows = params->chan.cs0_row; 667 668 /* 669 * The DDR address-translation table always assumes a 32bit 670 * bus and the comparison below takes care of adjusting for 671 * a 16bit bus (i.e. one column-address is consumed). 672 */ 673 const struct { 674 u8 rows; 675 u8 columns; 676 u8 type; 677 } ddrconf_table[] = { 678 /* 679 * C-B-R-D patterns are first. For these we require an 680 * exact match for the columns and rows (as there's 681 * one entry per possible configuration). 682 */ 683 [0] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD }, 684 [1] = { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD }, 685 [2] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD }, 686 [3] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD }, 687 [4] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD }, 688 [5] = { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD }, 689 [6] = { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD }, 690 [7] = { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD }, 691 [8] = { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD }, 692 [9] = { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD }, 693 [10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD }, 694 /* 695 * 11 through 13 are C-R-B-D patterns. These are 696 * matched for an exact number of columns and to 697 * ensure that the hardware uses at least as many rows 698 * as the pattern requires (i.e. we make sure that 699 * there's no gaps up until we hit the device/chip-select; 700 * however, these patterns can accept up to 16 rows, 701 * as the row-address continues right after the CS 702 * switching) 703 */ 704 [11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD }, 705 [12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD }, 706 [13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD }, 707 /* 708 * 14 and 15 are catch-all variants using a C-B-D-R 709 * scheme (i.e. alternating the chip-select every time 710 * C-B overflows) and stuffing the remaining C-bits 711 * into the top. Matching needs to make sure that the 712 * number of columns is either an exact match (i.e. we 713 * can use less the the maximum number of rows) -or- 714 * that the columns exceed what is given in this table 715 * and the rows are an exact match (in which case the 716 * remaining C-bits will be stuffed onto the top after 717 * the device/chip-select switches). 718 */ 719 [14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR }, 720 [15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR }, 721 }; 722 723 /* 724 * For C-B-R-D, we need an exact match (i.e. both for the number of 725 * columns and rows), while for C-B-D-R, only the the number of 726 * columns needs to match. 727 */ 728 for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) { 729 bool match = false; 730 731 /* If this entry if for a different matcher, then skip it */ 732 if (ddrconf_table[i].type != params->memory_schedule) 733 continue; 734 735 /* 736 * Match according to the rules (exact/inexact/at-least) 737 * documented in the ddrconf_table above. 738 */ 739 switch (params->memory_schedule) { 740 case DMC_MSCH_CBRD: 741 match = (ddrconf_table[i].columns == cols) && 742 (ddrconf_table[i].rows == rows); 743 break; 744 745 case DMC_MSCH_CRBD: 746 match = (ddrconf_table[i].columns == cols) && 747 (ddrconf_table[i].rows <= rows); 748 break; 749 750 case DMC_MSCH_CBDR: 751 match = (ddrconf_table[i].columns == cols) || 752 ((ddrconf_table[i].columns <= cols) && 753 (ddrconf_table[i].rows == rows)); 754 break; 755 756 default: 757 break; 758 } 759 760 if (match) { 761 debug("%s: setting ddrconf 0x%x\n", __func__, i); 762 writel(i, &msch->ddrconf); 763 return 0; 764 } 765 } 766 767 error("%s: ddrconf (NIU config) not found\n", __func__); 768 return -EINVAL; 769 } 770 771 static void dram_all_config(struct udevice *dev) 772 { 773 struct dram_info *priv = dev_get_priv(dev); 774 struct rk3368_pmu_grf *pmugrf = priv->pmugrf; 775 struct rk3368_sdram_params *params = dev_get_platdata(dev); 776 const struct rk3288_sdram_channel *info = ¶ms->chan; 777 u32 sys_reg = 0; 778 const int chan = 0; 779 780 sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT; 781 sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT; 782 783 sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan); 784 sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan); 785 sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan); 786 sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan); 787 sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan); 788 sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan); 789 sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan); 790 sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan); 791 sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan); 792 793 writel(sys_reg, &pmugrf->os_reg[2]); 794 } 795 796 static int setup_sdram(struct udevice *dev) 797 { 798 struct dram_info *priv = dev_get_priv(dev); 799 struct rk3368_sdram_params *params = dev_get_platdata(dev); 800 801 struct rk3368_ddr_pctl *pctl = priv->pctl; 802 struct rk3368_ddrphy *ddrphy = priv->phy; 803 struct rk3368_cru *cru = priv->cru; 804 struct rk3368_grf *grf = priv->grf; 805 struct rk3368_msch *msch = priv->msch; 806 807 int ret; 808 809 /* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */ 810 ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq); 811 if (ret < 0) { 812 debug("%s: could not set DDR clock: %d\n", __func__, ret); 813 return ret; 814 } 815 816 /* Update the read-latency for the RK3368 */ 817 writel(0x32, &msch->readlatency); 818 819 /* Initialise the DDR PCTL and DDR PHY */ 820 ddrctl_reset(cru); 821 ddrphy_reset(ddrphy); 822 ddrphy_config_delays(ddrphy, params->ddr_freq); 823 dfi_cfg(pctl); 824 /* Configure relative system information of grf_ddrc0_con0 register */ 825 ddr_set_ddr3_mode(grf, true); 826 ddr_set_noc_spr_err_stall(grf, true); 827 /* Calculate timings */ 828 pctl_calc_timings(params, params->ddr_freq); 829 /* Initialise the device timings in protocol controller */ 830 pctl_cfg(pctl, params, grf); 831 /* Configure AL, CL ... information of PHY registers */ 832 ddrphy_config(ddrphy, 833 params->pctl_timing.tcl, 834 params->pctl_timing.tal, 835 params->pctl_timing.tcwl); 836 837 /* Initialize DRAM and configure with mode-register values */ 838 ret = memory_init(pctl, params); 839 if (ret) 840 goto error; 841 842 move_to_config_state(pctl); 843 /* Perform data-training */ 844 ddrphy_data_training(pctl, ddrphy); 845 move_to_access_state(pctl); 846 847 /* TODO(prt): could detect rank in training... */ 848 params->chan.rank = 2; 849 /* TODO(prt): bus width is not auto-detected (yet)... */ 850 params->chan.bw = 2; /* 32bit wide bus */ 851 params->chan.dbw = params->chan.dbw; /* 32bit wide bus */ 852 853 /* DDR3 is always 8 bank */ 854 params->chan.bk = 3; 855 /* Detect col and row number */ 856 ret = sdram_col_row_detect(dev); 857 if (ret) 858 goto error; 859 860 /* Configure NIU DDR configuration */ 861 ret = msch_niu_config(msch, params); 862 if (ret) 863 goto error; 864 865 /* set up OS_REG to communicate w/ next stage and OS */ 866 dram_all_config(dev); 867 868 return 0; 869 870 error: 871 printf("DRAM init failed!\n"); 872 hang(); 873 } 874 #endif 875 876 static int rk3368_dmc_ofdata_to_platdata(struct udevice *dev) 877 { 878 int ret = 0; 879 880 #if !CONFIG_IS_ENABLED(OF_PLATDATA) 881 struct rk3368_sdram_params *plat = dev_get_platdata(dev); 882 883 ret = regmap_init_mem(dev, &plat->map); 884 if (ret) 885 return ret; 886 #endif 887 888 return ret; 889 } 890 891 #if CONFIG_IS_ENABLED(OF_PLATDATA) 892 static int conv_of_platdata(struct udevice *dev) 893 { 894 struct rk3368_sdram_params *plat = dev_get_platdata(dev); 895 struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat; 896 int ret; 897 898 plat->ddr_freq = of_plat->rockchip_ddr_frequency; 899 plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin; 900 plat->memory_schedule = of_plat->rockchip_memory_schedule; 901 902 ret = regmap_init_mem_platdata(dev, of_plat->reg, 903 ARRAY_SIZE(of_plat->reg) / 2, 904 &plat->map); 905 if (ret) 906 return ret; 907 908 return 0; 909 } 910 #endif 911 912 static int rk3368_dmc_probe(struct udevice *dev) 913 { 914 #ifdef CONFIG_TPL_BUILD 915 struct rk3368_sdram_params *plat = dev_get_platdata(dev); 916 struct rk3368_ddr_pctl *pctl; 917 struct rk3368_ddrphy *ddrphy; 918 struct rk3368_cru *cru; 919 struct rk3368_grf *grf; 920 struct rk3368_msch *msch; 921 int ret; 922 struct udevice *dev_clk; 923 #endif 924 struct dram_info *priv = dev_get_priv(dev); 925 926 #if CONFIG_IS_ENABLED(OF_PLATDATA) 927 ret = conv_of_platdata(dev); 928 if (ret) 929 return ret; 930 #endif 931 932 priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF); 933 debug("%s: pmugrf=%p\n", __func__, priv->pmugrf); 934 935 #ifdef CONFIG_TPL_BUILD 936 pctl = regmap_get_range(plat->map, 0); 937 ddrphy = regmap_get_range(plat->map, 1); 938 msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH); 939 grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); 940 941 priv->pctl = pctl; 942 priv->phy = ddrphy; 943 priv->msch = msch; 944 priv->grf = grf; 945 946 ret = rockchip_get_clk(&dev_clk); 947 if (ret) 948 return ret; 949 priv->ddr_clk.id = CLK_DDR; 950 ret = clk_request(dev_clk, &priv->ddr_clk); 951 if (ret) 952 return ret; 953 954 cru = rockchip_get_cru(); 955 priv->cru = cru; 956 if (IS_ERR(priv->cru)) 957 return PTR_ERR(priv->cru); 958 959 ret = setup_sdram(dev); 960 if (ret) 961 return ret; 962 #endif 963 964 priv->info.base = 0; 965 priv->info.size = 966 rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]); 967 968 /* 969 * we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff 970 * is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is 971 * inaccessible for some IP controller. 972 */ 973 priv->info.size = min(priv->info.size, (size_t)0xfe000000); 974 975 return 0; 976 } 977 978 static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info) 979 { 980 struct dram_info *priv = dev_get_priv(dev); 981 982 *info = priv->info; 983 return 0; 984 } 985 986 static struct ram_ops rk3368_dmc_ops = { 987 .get_info = rk3368_dmc_get_info, 988 }; 989 990 991 static const struct udevice_id rk3368_dmc_ids[] = { 992 { .compatible = "rockchip,rk3368-dmc" }, 993 { } 994 }; 995 996 U_BOOT_DRIVER(dmc_rk3368) = { 997 .name = "rockchip_rk3368_dmc", 998 .id = UCLASS_RAM, 999 .of_match = rk3368_dmc_ids, 1000 .ops = &rk3368_dmc_ops, 1001 .probe = rk3368_dmc_probe, 1002 .priv_auto_alloc_size = sizeof(struct dram_info), 1003 .ofdata_to_platdata = rk3368_dmc_ofdata_to_platdata, 1004 .probe = rk3368_dmc_probe, 1005 .priv_auto_alloc_size = sizeof(struct dram_info), 1006 .platdata_auto_alloc_size = sizeof(struct rk3368_sdram_params), 1007 }; 1008