1 /* 2 * Copyright (C) 2006-2009 Freescale Semiconductor, Inc. 3 * 4 * Dave Liu <daveliu@freescale.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of 9 * the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 19 * MA 02111-1307 USA 20 */ 21 22 #include "common.h" 23 #include "net.h" 24 #include "malloc.h" 25 #include "asm/errno.h" 26 #include "asm/io.h" 27 #include "asm/immap_qe.h" 28 #include "qe.h" 29 #include "uccf.h" 30 #include "uec.h" 31 #include "uec_phy.h" 32 #include "miiphy.h" 33 34 /* Default UTBIPAR SMI address */ 35 #ifndef CONFIG_UTBIPAR_INIT_TBIPA 36 #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F 37 #endif 38 39 static uec_info_t uec_info[] = { 40 #ifdef CONFIG_UEC_ETH1 41 STD_UEC_INFO(1), /* UEC1 */ 42 #endif 43 #ifdef CONFIG_UEC_ETH2 44 STD_UEC_INFO(2), /* UEC2 */ 45 #endif 46 #ifdef CONFIG_UEC_ETH3 47 STD_UEC_INFO(3), /* UEC3 */ 48 #endif 49 #ifdef CONFIG_UEC_ETH4 50 STD_UEC_INFO(4), /* UEC4 */ 51 #endif 52 #ifdef CONFIG_UEC_ETH5 53 STD_UEC_INFO(5), /* UEC5 */ 54 #endif 55 #ifdef CONFIG_UEC_ETH6 56 STD_UEC_INFO(6), /* UEC6 */ 57 #endif 58 #ifdef CONFIG_UEC_ETH7 59 STD_UEC_INFO(7), /* UEC7 */ 60 #endif 61 #ifdef CONFIG_UEC_ETH8 62 STD_UEC_INFO(8), /* UEC8 */ 63 #endif 64 }; 65 66 #define MAXCONTROLLERS (8) 67 68 static struct eth_device *devlist[MAXCONTROLLERS]; 69 70 u16 phy_read (struct uec_mii_info *mii_info, u16 regnum); 71 void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val); 72 73 static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode) 74 { 75 uec_t *uec_regs; 76 u32 maccfg1; 77 78 if (!uec) { 79 printf("%s: uec not initial\n", __FUNCTION__); 80 return -EINVAL; 81 } 82 uec_regs = uec->uec_regs; 83 84 maccfg1 = in_be32(&uec_regs->maccfg1); 85 86 if (mode & COMM_DIR_TX) { 87 maccfg1 |= MACCFG1_ENABLE_TX; 88 out_be32(&uec_regs->maccfg1, maccfg1); 89 uec->mac_tx_enabled = 1; 90 } 91 92 if (mode & COMM_DIR_RX) { 93 maccfg1 |= MACCFG1_ENABLE_RX; 94 out_be32(&uec_regs->maccfg1, maccfg1); 95 uec->mac_rx_enabled = 1; 96 } 97 98 return 0; 99 } 100 101 static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode) 102 { 103 uec_t *uec_regs; 104 u32 maccfg1; 105 106 if (!uec) { 107 printf("%s: uec not initial\n", __FUNCTION__); 108 return -EINVAL; 109 } 110 uec_regs = uec->uec_regs; 111 112 maccfg1 = in_be32(&uec_regs->maccfg1); 113 114 if (mode & COMM_DIR_TX) { 115 maccfg1 &= ~MACCFG1_ENABLE_TX; 116 out_be32(&uec_regs->maccfg1, maccfg1); 117 uec->mac_tx_enabled = 0; 118 } 119 120 if (mode & COMM_DIR_RX) { 121 maccfg1 &= ~MACCFG1_ENABLE_RX; 122 out_be32(&uec_regs->maccfg1, maccfg1); 123 uec->mac_rx_enabled = 0; 124 } 125 126 return 0; 127 } 128 129 static int uec_graceful_stop_tx(uec_private_t *uec) 130 { 131 ucc_fast_t *uf_regs; 132 u32 cecr_subblock; 133 u32 ucce; 134 135 if (!uec || !uec->uccf) { 136 printf("%s: No handle passed.\n", __FUNCTION__); 137 return -EINVAL; 138 } 139 140 uf_regs = uec->uccf->uf_regs; 141 142 /* Clear the grace stop event */ 143 out_be32(&uf_regs->ucce, UCCE_GRA); 144 145 /* Issue host command */ 146 cecr_subblock = 147 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); 148 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 149 (u8)QE_CR_PROTOCOL_ETHERNET, 0); 150 151 /* Wait for command to complete */ 152 do { 153 ucce = in_be32(&uf_regs->ucce); 154 } while (! (ucce & UCCE_GRA)); 155 156 uec->grace_stopped_tx = 1; 157 158 return 0; 159 } 160 161 static int uec_graceful_stop_rx(uec_private_t *uec) 162 { 163 u32 cecr_subblock; 164 u8 ack; 165 166 if (!uec) { 167 printf("%s: No handle passed.\n", __FUNCTION__); 168 return -EINVAL; 169 } 170 171 if (!uec->p_rx_glbl_pram) { 172 printf("%s: No init rx global parameter\n", __FUNCTION__); 173 return -EINVAL; 174 } 175 176 /* Clear acknowledge bit */ 177 ack = uec->p_rx_glbl_pram->rxgstpack; 178 ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX; 179 uec->p_rx_glbl_pram->rxgstpack = ack; 180 181 /* Keep issuing cmd and checking ack bit until it is asserted */ 182 do { 183 /* Issue host command */ 184 cecr_subblock = 185 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); 186 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock, 187 (u8)QE_CR_PROTOCOL_ETHERNET, 0); 188 ack = uec->p_rx_glbl_pram->rxgstpack; 189 } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX )); 190 191 uec->grace_stopped_rx = 1; 192 193 return 0; 194 } 195 196 static int uec_restart_tx(uec_private_t *uec) 197 { 198 u32 cecr_subblock; 199 200 if (!uec || !uec->uec_info) { 201 printf("%s: No handle passed.\n", __FUNCTION__); 202 return -EINVAL; 203 } 204 205 cecr_subblock = 206 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); 207 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, 208 (u8)QE_CR_PROTOCOL_ETHERNET, 0); 209 210 uec->grace_stopped_tx = 0; 211 212 return 0; 213 } 214 215 static int uec_restart_rx(uec_private_t *uec) 216 { 217 u32 cecr_subblock; 218 219 if (!uec || !uec->uec_info) { 220 printf("%s: No handle passed.\n", __FUNCTION__); 221 return -EINVAL; 222 } 223 224 cecr_subblock = 225 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); 226 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, 227 (u8)QE_CR_PROTOCOL_ETHERNET, 0); 228 229 uec->grace_stopped_rx = 0; 230 231 return 0; 232 } 233 234 static int uec_open(uec_private_t *uec, comm_dir_e mode) 235 { 236 ucc_fast_private_t *uccf; 237 238 if (!uec || !uec->uccf) { 239 printf("%s: No handle passed.\n", __FUNCTION__); 240 return -EINVAL; 241 } 242 uccf = uec->uccf; 243 244 /* check if the UCC number is in range. */ 245 if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) { 246 printf("%s: ucc_num out of range.\n", __FUNCTION__); 247 return -EINVAL; 248 } 249 250 /* Enable MAC */ 251 uec_mac_enable(uec, mode); 252 253 /* Enable UCC fast */ 254 ucc_fast_enable(uccf, mode); 255 256 /* RISC microcode start */ 257 if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) { 258 uec_restart_tx(uec); 259 } 260 if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) { 261 uec_restart_rx(uec); 262 } 263 264 return 0; 265 } 266 267 static int uec_stop(uec_private_t *uec, comm_dir_e mode) 268 { 269 ucc_fast_private_t *uccf; 270 271 if (!uec || !uec->uccf) { 272 printf("%s: No handle passed.\n", __FUNCTION__); 273 return -EINVAL; 274 } 275 uccf = uec->uccf; 276 277 /* check if the UCC number is in range. */ 278 if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) { 279 printf("%s: ucc_num out of range.\n", __FUNCTION__); 280 return -EINVAL; 281 } 282 /* Stop any transmissions */ 283 if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) { 284 uec_graceful_stop_tx(uec); 285 } 286 /* Stop any receptions */ 287 if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) { 288 uec_graceful_stop_rx(uec); 289 } 290 291 /* Disable the UCC fast */ 292 ucc_fast_disable(uec->uccf, mode); 293 294 /* Disable the MAC */ 295 uec_mac_disable(uec, mode); 296 297 return 0; 298 } 299 300 static int uec_set_mac_duplex(uec_private_t *uec, int duplex) 301 { 302 uec_t *uec_regs; 303 u32 maccfg2; 304 305 if (!uec) { 306 printf("%s: uec not initial\n", __FUNCTION__); 307 return -EINVAL; 308 } 309 uec_regs = uec->uec_regs; 310 311 if (duplex == DUPLEX_HALF) { 312 maccfg2 = in_be32(&uec_regs->maccfg2); 313 maccfg2 &= ~MACCFG2_FDX; 314 out_be32(&uec_regs->maccfg2, maccfg2); 315 } 316 317 if (duplex == DUPLEX_FULL) { 318 maccfg2 = in_be32(&uec_regs->maccfg2); 319 maccfg2 |= MACCFG2_FDX; 320 out_be32(&uec_regs->maccfg2, maccfg2); 321 } 322 323 return 0; 324 } 325 326 static int uec_set_mac_if_mode(uec_private_t *uec, 327 enet_interface_type_e if_mode, int speed) 328 { 329 enet_interface_type_e enet_if_mode; 330 uec_info_t *uec_info; 331 uec_t *uec_regs; 332 u32 upsmr; 333 u32 maccfg2; 334 335 if (!uec) { 336 printf("%s: uec not initial\n", __FUNCTION__); 337 return -EINVAL; 338 } 339 340 uec_info = uec->uec_info; 341 uec_regs = uec->uec_regs; 342 enet_if_mode = if_mode; 343 344 maccfg2 = in_be32(&uec_regs->maccfg2); 345 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK; 346 347 upsmr = in_be32(&uec->uccf->uf_regs->upsmr); 348 upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM); 349 350 switch (speed) { 351 case 10: 352 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; 353 switch (enet_if_mode) { 354 case MII: 355 break; 356 case RGMII: 357 upsmr |= (UPSMR_RPM | UPSMR_R10M); 358 break; 359 case RMII: 360 upsmr |= (UPSMR_R10M | UPSMR_RMM); 361 break; 362 default: 363 return -EINVAL; 364 break; 365 } 366 break; 367 case 100: 368 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; 369 switch (enet_if_mode) { 370 case MII: 371 break; 372 case RGMII: 373 upsmr |= UPSMR_RPM; 374 break; 375 case RMII: 376 upsmr |= UPSMR_RMM; 377 break; 378 default: 379 return -EINVAL; 380 break; 381 } 382 break; 383 case 1000: 384 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; 385 switch (enet_if_mode) { 386 case GMII: 387 break; 388 case TBI: 389 upsmr |= UPSMR_TBIM; 390 break; 391 case RTBI: 392 upsmr |= (UPSMR_RPM | UPSMR_TBIM); 393 break; 394 case RGMII_RXID: 395 case RGMII_ID: 396 case RGMII: 397 upsmr |= UPSMR_RPM; 398 break; 399 case SGMII: 400 upsmr |= UPSMR_SGMM; 401 break; 402 default: 403 return -EINVAL; 404 break; 405 } 406 break; 407 default: 408 return -EINVAL; 409 break; 410 } 411 412 out_be32(&uec_regs->maccfg2, maccfg2); 413 out_be32(&uec->uccf->uf_regs->upsmr, upsmr); 414 415 return 0; 416 } 417 418 static int init_mii_management_configuration(uec_mii_t *uec_mii_regs) 419 { 420 uint timeout = 0x1000; 421 u32 miimcfg = 0; 422 423 miimcfg = in_be32(&uec_mii_regs->miimcfg); 424 miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE; 425 out_be32(&uec_mii_regs->miimcfg, miimcfg); 426 427 /* Wait until the bus is free */ 428 while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--); 429 if (timeout <= 0) { 430 printf("%s: The MII Bus is stuck!", __FUNCTION__); 431 return -ETIMEDOUT; 432 } 433 434 return 0; 435 } 436 437 static int init_phy(struct eth_device *dev) 438 { 439 uec_private_t *uec; 440 uec_mii_t *umii_regs; 441 struct uec_mii_info *mii_info; 442 struct phy_info *curphy; 443 int err; 444 445 uec = (uec_private_t *)dev->priv; 446 umii_regs = uec->uec_mii_regs; 447 448 uec->oldlink = 0; 449 uec->oldspeed = 0; 450 uec->oldduplex = -1; 451 452 mii_info = malloc(sizeof(*mii_info)); 453 if (!mii_info) { 454 printf("%s: Could not allocate mii_info", dev->name); 455 return -ENOMEM; 456 } 457 memset(mii_info, 0, sizeof(*mii_info)); 458 459 if (uec->uec_info->uf_info.eth_type == GIGA_ETH) { 460 mii_info->speed = SPEED_1000; 461 } else { 462 mii_info->speed = SPEED_100; 463 } 464 465 mii_info->duplex = DUPLEX_FULL; 466 mii_info->pause = 0; 467 mii_info->link = 1; 468 469 mii_info->advertising = (ADVERTISED_10baseT_Half | 470 ADVERTISED_10baseT_Full | 471 ADVERTISED_100baseT_Half | 472 ADVERTISED_100baseT_Full | 473 ADVERTISED_1000baseT_Full); 474 mii_info->autoneg = 1; 475 mii_info->mii_id = uec->uec_info->phy_address; 476 mii_info->dev = dev; 477 478 mii_info->mdio_read = &uec_read_phy_reg; 479 mii_info->mdio_write = &uec_write_phy_reg; 480 481 uec->mii_info = mii_info; 482 483 qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num); 484 485 if (init_mii_management_configuration(umii_regs)) { 486 printf("%s: The MII Bus is stuck!", dev->name); 487 err = -1; 488 goto bus_fail; 489 } 490 491 /* get info for this PHY */ 492 curphy = uec_get_phy_info(uec->mii_info); 493 if (!curphy) { 494 printf("%s: No PHY found", dev->name); 495 err = -1; 496 goto no_phy; 497 } 498 499 mii_info->phyinfo = curphy; 500 501 /* Run the commands which initialize the PHY */ 502 if (curphy->init) { 503 err = curphy->init(uec->mii_info); 504 if (err) 505 goto phy_init_fail; 506 } 507 508 return 0; 509 510 phy_init_fail: 511 no_phy: 512 bus_fail: 513 free(mii_info); 514 return err; 515 } 516 517 static void adjust_link(struct eth_device *dev) 518 { 519 uec_private_t *uec = (uec_private_t *)dev->priv; 520 uec_t *uec_regs; 521 struct uec_mii_info *mii_info = uec->mii_info; 522 523 extern void change_phy_interface_mode(struct eth_device *dev, 524 enet_interface_type_e mode, int speed); 525 uec_regs = uec->uec_regs; 526 527 if (mii_info->link) { 528 /* Now we make sure that we can be in full duplex mode. 529 * If not, we operate in half-duplex mode. */ 530 if (mii_info->duplex != uec->oldduplex) { 531 if (!(mii_info->duplex)) { 532 uec_set_mac_duplex(uec, DUPLEX_HALF); 533 printf("%s: Half Duplex\n", dev->name); 534 } else { 535 uec_set_mac_duplex(uec, DUPLEX_FULL); 536 printf("%s: Full Duplex\n", dev->name); 537 } 538 uec->oldduplex = mii_info->duplex; 539 } 540 541 if (mii_info->speed != uec->oldspeed) { 542 enet_interface_type_e mode = \ 543 uec->uec_info->enet_interface_type; 544 if (uec->uec_info->uf_info.eth_type == GIGA_ETH) { 545 switch (mii_info->speed) { 546 case 1000: 547 break; 548 case 100: 549 printf ("switching to rgmii 100\n"); 550 mode = RGMII; 551 break; 552 case 10: 553 printf ("switching to rgmii 10\n"); 554 mode = RGMII; 555 break; 556 default: 557 printf("%s: Ack,Speed(%d)is illegal\n", 558 dev->name, mii_info->speed); 559 break; 560 } 561 } 562 563 /* change phy */ 564 change_phy_interface_mode(dev, mode, mii_info->speed); 565 /* change the MAC interface mode */ 566 uec_set_mac_if_mode(uec, mode, mii_info->speed); 567 568 printf("%s: Speed %dBT\n", dev->name, mii_info->speed); 569 uec->oldspeed = mii_info->speed; 570 } 571 572 if (!uec->oldlink) { 573 printf("%s: Link is up\n", dev->name); 574 uec->oldlink = 1; 575 } 576 577 } else { /* if (mii_info->link) */ 578 if (uec->oldlink) { 579 printf("%s: Link is down\n", dev->name); 580 uec->oldlink = 0; 581 uec->oldspeed = 0; 582 uec->oldduplex = -1; 583 } 584 } 585 } 586 587 static void phy_change(struct eth_device *dev) 588 { 589 uec_private_t *uec = (uec_private_t *)dev->priv; 590 591 /* Update the link, speed, duplex */ 592 uec->mii_info->phyinfo->read_status(uec->mii_info); 593 594 /* Adjust the interface according to speed */ 595 adjust_link(dev); 596 } 597 598 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 599 600 /* 601 * Find a device index from the devlist by name 602 * 603 * Returns: 604 * The index where the device is located, -1 on error 605 */ 606 static int uec_miiphy_find_dev_by_name(const char *devname) 607 { 608 int i; 609 610 for (i = 0; i < MAXCONTROLLERS; i++) { 611 if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) { 612 break; 613 } 614 } 615 616 /* If device cannot be found, returns -1 */ 617 if (i == MAXCONTROLLERS) { 618 debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname); 619 i = -1; 620 } 621 622 return i; 623 } 624 625 /* 626 * Read a MII PHY register. 627 * 628 * Returns: 629 * 0 on success 630 */ 631 static int uec_miiphy_read(const char *devname, unsigned char addr, 632 unsigned char reg, unsigned short *value) 633 { 634 int devindex = 0; 635 636 if (devname == NULL || value == NULL) { 637 debug("%s: NULL pointer given\n", __FUNCTION__); 638 } else { 639 devindex = uec_miiphy_find_dev_by_name(devname); 640 if (devindex >= 0) { 641 *value = uec_read_phy_reg(devlist[devindex], addr, reg); 642 } 643 } 644 return 0; 645 } 646 647 /* 648 * Write a MII PHY register. 649 * 650 * Returns: 651 * 0 on success 652 */ 653 static int uec_miiphy_write(const char *devname, unsigned char addr, 654 unsigned char reg, unsigned short value) 655 { 656 int devindex = 0; 657 658 if (devname == NULL) { 659 debug("%s: NULL pointer given\n", __FUNCTION__); 660 } else { 661 devindex = uec_miiphy_find_dev_by_name(devname); 662 if (devindex >= 0) { 663 uec_write_phy_reg(devlist[devindex], addr, reg, value); 664 } 665 } 666 return 0; 667 } 668 #endif 669 670 static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr) 671 { 672 uec_t *uec_regs; 673 u32 mac_addr1; 674 u32 mac_addr2; 675 676 if (!uec) { 677 printf("%s: uec not initial\n", __FUNCTION__); 678 return -EINVAL; 679 } 680 681 uec_regs = uec->uec_regs; 682 683 /* if a station address of 0x12345678ABCD, perform a write to 684 MACSTNADDR1 of 0xCDAB7856, 685 MACSTNADDR2 of 0x34120000 */ 686 687 mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \ 688 (mac_addr[3] << 8) | (mac_addr[2]); 689 out_be32(&uec_regs->macstnaddr1, mac_addr1); 690 691 mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000; 692 out_be32(&uec_regs->macstnaddr2, mac_addr2); 693 694 return 0; 695 } 696 697 static int uec_convert_threads_num(uec_num_of_threads_e threads_num, 698 int *threads_num_ret) 699 { 700 int num_threads_numerica; 701 702 switch (threads_num) { 703 case UEC_NUM_OF_THREADS_1: 704 num_threads_numerica = 1; 705 break; 706 case UEC_NUM_OF_THREADS_2: 707 num_threads_numerica = 2; 708 break; 709 case UEC_NUM_OF_THREADS_4: 710 num_threads_numerica = 4; 711 break; 712 case UEC_NUM_OF_THREADS_6: 713 num_threads_numerica = 6; 714 break; 715 case UEC_NUM_OF_THREADS_8: 716 num_threads_numerica = 8; 717 break; 718 default: 719 printf("%s: Bad number of threads value.", 720 __FUNCTION__); 721 return -EINVAL; 722 } 723 724 *threads_num_ret = num_threads_numerica; 725 726 return 0; 727 } 728 729 static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx) 730 { 731 uec_info_t *uec_info; 732 u32 end_bd; 733 u8 bmrx = 0; 734 int i; 735 736 uec_info = uec->uec_info; 737 738 /* Alloc global Tx parameter RAM page */ 739 uec->tx_glbl_pram_offset = qe_muram_alloc( 740 sizeof(uec_tx_global_pram_t), 741 UEC_TX_GLOBAL_PRAM_ALIGNMENT); 742 uec->p_tx_glbl_pram = (uec_tx_global_pram_t *) 743 qe_muram_addr(uec->tx_glbl_pram_offset); 744 745 /* Zero the global Tx prameter RAM */ 746 memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t)); 747 748 /* Init global Tx parameter RAM */ 749 750 /* TEMODER, RMON statistics disable, one Tx queue */ 751 out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE); 752 753 /* SQPTR */ 754 uec->send_q_mem_reg_offset = qe_muram_alloc( 755 sizeof(uec_send_queue_qd_t), 756 UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT); 757 uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *) 758 qe_muram_addr(uec->send_q_mem_reg_offset); 759 out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset); 760 761 /* Setup the table with TxBDs ring */ 762 end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1) 763 * SIZEOFBD; 764 out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base, 765 (u32)(uec->p_tx_bd_ring)); 766 out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address, 767 end_bd); 768 769 /* Scheduler Base Pointer, we have only one Tx queue, no need it */ 770 out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0); 771 772 /* TxRMON Base Pointer, TxRMON disable, we don't need it */ 773 out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0); 774 775 /* TSTATE, global snooping, big endian, the CSB bus selected */ 776 bmrx = BMR_INIT_VALUE; 777 out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT)); 778 779 /* IPH_Offset */ 780 for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) { 781 out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0); 782 } 783 784 /* VTAG table */ 785 for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) { 786 out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0); 787 } 788 789 /* TQPTR */ 790 uec->thread_dat_tx_offset = qe_muram_alloc( 791 num_threads_tx * sizeof(uec_thread_data_tx_t) + 792 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT); 793 794 uec->p_thread_data_tx = (uec_thread_data_tx_t *) 795 qe_muram_addr(uec->thread_dat_tx_offset); 796 out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset); 797 } 798 799 static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx) 800 { 801 u8 bmrx = 0; 802 int i; 803 uec_82xx_address_filtering_pram_t *p_af_pram; 804 805 /* Allocate global Rx parameter RAM page */ 806 uec->rx_glbl_pram_offset = qe_muram_alloc( 807 sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT); 808 uec->p_rx_glbl_pram = (uec_rx_global_pram_t *) 809 qe_muram_addr(uec->rx_glbl_pram_offset); 810 811 /* Zero Global Rx parameter RAM */ 812 memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t)); 813 814 /* Init global Rx parameter RAM */ 815 /* REMODER, Extended feature mode disable, VLAN disable, 816 LossLess flow control disable, Receive firmware statisic disable, 817 Extended address parsing mode disable, One Rx queues, 818 Dynamic maximum/minimum frame length disable, IP checksum check 819 disable, IP address alignment disable 820 */ 821 out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE); 822 823 /* RQPTR */ 824 uec->thread_dat_rx_offset = qe_muram_alloc( 825 num_threads_rx * sizeof(uec_thread_data_rx_t), 826 UEC_THREAD_DATA_ALIGNMENT); 827 uec->p_thread_data_rx = (uec_thread_data_rx_t *) 828 qe_muram_addr(uec->thread_dat_rx_offset); 829 out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset); 830 831 /* Type_or_Len */ 832 out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072); 833 834 /* RxRMON base pointer, we don't need it */ 835 out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0); 836 837 /* IntCoalescingPTR, we don't need it, no interrupt */ 838 out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0); 839 840 /* RSTATE, global snooping, big endian, the CSB bus selected */ 841 bmrx = BMR_INIT_VALUE; 842 out_8(&uec->p_rx_glbl_pram->rstate, bmrx); 843 844 /* MRBLR */ 845 out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN); 846 847 /* RBDQPTR */ 848 uec->rx_bd_qs_tbl_offset = qe_muram_alloc( 849 sizeof(uec_rx_bd_queues_entry_t) + \ 850 sizeof(uec_rx_prefetched_bds_t), 851 UEC_RX_BD_QUEUES_ALIGNMENT); 852 uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *) 853 qe_muram_addr(uec->rx_bd_qs_tbl_offset); 854 855 /* Zero it */ 856 memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \ 857 sizeof(uec_rx_prefetched_bds_t)); 858 out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset); 859 out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr, 860 (u32)uec->p_rx_bd_ring); 861 862 /* MFLR */ 863 out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN); 864 /* MINFLR */ 865 out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN); 866 /* MAXD1 */ 867 out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN); 868 /* MAXD2 */ 869 out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN); 870 /* ECAM_PTR */ 871 out_be32(&uec->p_rx_glbl_pram->ecamptr, 0); 872 /* L2QT */ 873 out_be32(&uec->p_rx_glbl_pram->l2qt, 0); 874 /* L3QT */ 875 for (i = 0; i < 8; i++) { 876 out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0); 877 } 878 879 /* VLAN_TYPE */ 880 out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100); 881 /* TCI */ 882 out_be16(&uec->p_rx_glbl_pram->vlantci, 0); 883 884 /* Clear PQ2 style address filtering hash table */ 885 p_af_pram = (uec_82xx_address_filtering_pram_t *) \ 886 uec->p_rx_glbl_pram->addressfiltering; 887 888 p_af_pram->iaddr_h = 0; 889 p_af_pram->iaddr_l = 0; 890 p_af_pram->gaddr_h = 0; 891 p_af_pram->gaddr_l = 0; 892 } 893 894 static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec, 895 int thread_tx, int thread_rx) 896 { 897 uec_init_cmd_pram_t *p_init_enet_param; 898 u32 init_enet_param_offset; 899 uec_info_t *uec_info; 900 int i; 901 int snum; 902 u32 init_enet_offset; 903 u32 entry_val; 904 u32 command; 905 u32 cecr_subblock; 906 907 uec_info = uec->uec_info; 908 909 /* Allocate init enet command parameter */ 910 uec->init_enet_param_offset = qe_muram_alloc( 911 sizeof(uec_init_cmd_pram_t), 4); 912 init_enet_param_offset = uec->init_enet_param_offset; 913 uec->p_init_enet_param = (uec_init_cmd_pram_t *) 914 qe_muram_addr(uec->init_enet_param_offset); 915 916 /* Zero init enet command struct */ 917 memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t)); 918 919 /* Init the command struct */ 920 p_init_enet_param = uec->p_init_enet_param; 921 p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0; 922 p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1; 923 p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2; 924 p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3; 925 p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4; 926 p_init_enet_param->largestexternallookupkeysize = 0; 927 928 p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx) 929 << ENET_INIT_PARAM_RGF_SHIFT; 930 p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx) 931 << ENET_INIT_PARAM_TGF_SHIFT; 932 933 /* Init Rx global parameter pointer */ 934 p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset | 935 (u32)uec_info->risc_rx; 936 937 /* Init Rx threads */ 938 for (i = 0; i < (thread_rx + 1); i++) { 939 if ((snum = qe_get_snum()) < 0) { 940 printf("%s can not get snum\n", __FUNCTION__); 941 return -ENOMEM; 942 } 943 944 if (i==0) { 945 init_enet_offset = 0; 946 } else { 947 init_enet_offset = qe_muram_alloc( 948 sizeof(uec_thread_rx_pram_t), 949 UEC_THREAD_RX_PRAM_ALIGNMENT); 950 } 951 952 entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) | 953 init_enet_offset | (u32)uec_info->risc_rx; 954 p_init_enet_param->rxthread[i] = entry_val; 955 } 956 957 /* Init Tx global parameter pointer */ 958 p_init_enet_param->txglobal = uec->tx_glbl_pram_offset | 959 (u32)uec_info->risc_tx; 960 961 /* Init Tx threads */ 962 for (i = 0; i < thread_tx; i++) { 963 if ((snum = qe_get_snum()) < 0) { 964 printf("%s can not get snum\n", __FUNCTION__); 965 return -ENOMEM; 966 } 967 968 init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t), 969 UEC_THREAD_TX_PRAM_ALIGNMENT); 970 971 entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) | 972 init_enet_offset | (u32)uec_info->risc_tx; 973 p_init_enet_param->txthread[i] = entry_val; 974 } 975 976 __asm__ __volatile__("sync"); 977 978 /* Issue QE command */ 979 command = QE_INIT_TX_RX; 980 cecr_subblock = ucc_fast_get_qe_cr_subblock( 981 uec->uec_info->uf_info.ucc_num); 982 qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET, 983 init_enet_param_offset); 984 985 return 0; 986 } 987 988 static int uec_startup(uec_private_t *uec) 989 { 990 uec_info_t *uec_info; 991 ucc_fast_info_t *uf_info; 992 ucc_fast_private_t *uccf; 993 ucc_fast_t *uf_regs; 994 uec_t *uec_regs; 995 int num_threads_tx; 996 int num_threads_rx; 997 u32 utbipar; 998 u32 length; 999 u32 align; 1000 qe_bd_t *bd; 1001 u8 *buf; 1002 int i; 1003 1004 if (!uec || !uec->uec_info) { 1005 printf("%s: uec or uec_info not initial\n", __FUNCTION__); 1006 return -EINVAL; 1007 } 1008 1009 uec_info = uec->uec_info; 1010 uf_info = &(uec_info->uf_info); 1011 1012 /* Check if Rx BD ring len is illegal */ 1013 if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \ 1014 (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) { 1015 printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n", 1016 __FUNCTION__); 1017 return -EINVAL; 1018 } 1019 1020 /* Check if Tx BD ring len is illegal */ 1021 if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) { 1022 printf("%s: Tx BD ring length must not be smaller than 2.\n", 1023 __FUNCTION__); 1024 return -EINVAL; 1025 } 1026 1027 /* Check if MRBLR is illegal */ 1028 if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) { 1029 printf("%s: max rx buffer length must be mutliple of 128.\n", 1030 __FUNCTION__); 1031 return -EINVAL; 1032 } 1033 1034 /* Both Rx and Tx are stopped */ 1035 uec->grace_stopped_rx = 1; 1036 uec->grace_stopped_tx = 1; 1037 1038 /* Init UCC fast */ 1039 if (ucc_fast_init(uf_info, &uccf)) { 1040 printf("%s: failed to init ucc fast\n", __FUNCTION__); 1041 return -ENOMEM; 1042 } 1043 1044 /* Save uccf */ 1045 uec->uccf = uccf; 1046 1047 /* Convert the Tx threads number */ 1048 if (uec_convert_threads_num(uec_info->num_threads_tx, 1049 &num_threads_tx)) { 1050 return -EINVAL; 1051 } 1052 1053 /* Convert the Rx threads number */ 1054 if (uec_convert_threads_num(uec_info->num_threads_rx, 1055 &num_threads_rx)) { 1056 return -EINVAL; 1057 } 1058 1059 uf_regs = uccf->uf_regs; 1060 1061 /* UEC register is following UCC fast registers */ 1062 uec_regs = (uec_t *)(&uf_regs->ucc_eth); 1063 1064 /* Save the UEC register pointer to UEC private struct */ 1065 uec->uec_regs = uec_regs; 1066 1067 /* Init UPSMR, enable hardware statistics (UCC) */ 1068 out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE); 1069 1070 /* Init MACCFG1, flow control disable, disable Tx and Rx */ 1071 out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE); 1072 1073 /* Init MACCFG2, length check, MAC PAD and CRC enable */ 1074 out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE); 1075 1076 /* Setup MAC interface mode */ 1077 uec_set_mac_if_mode(uec, uec_info->enet_interface_type, uec_info->speed); 1078 1079 /* Setup MII management base */ 1080 #ifndef CONFIG_eTSEC_MDIO_BUS 1081 uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg); 1082 #else 1083 uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS; 1084 #endif 1085 1086 /* Setup MII master clock source */ 1087 qe_set_mii_clk_src(uec_info->uf_info.ucc_num); 1088 1089 /* Setup UTBIPAR */ 1090 utbipar = in_be32(&uec_regs->utbipar); 1091 utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK; 1092 1093 /* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC. 1094 * This frees up the remaining SMI addresses for use. 1095 */ 1096 utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT; 1097 out_be32(&uec_regs->utbipar, utbipar); 1098 1099 /* Configure the TBI for SGMII operation */ 1100 if ((uec->uec_info->enet_interface_type == SGMII) && 1101 (uec->uec_info->speed == 1000)) { 1102 uec_write_phy_reg(uec->dev, uec_regs->utbipar, 1103 ENET_TBI_MII_ANA, TBIANA_SETTINGS); 1104 1105 uec_write_phy_reg(uec->dev, uec_regs->utbipar, 1106 ENET_TBI_MII_TBICON, TBICON_CLK_SELECT); 1107 1108 uec_write_phy_reg(uec->dev, uec_regs->utbipar, 1109 ENET_TBI_MII_CR, TBICR_SETTINGS); 1110 } 1111 1112 /* Allocate Tx BDs */ 1113 length = ((uec_info->tx_bd_ring_len * SIZEOFBD) / 1114 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) * 1115 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 1116 if ((uec_info->tx_bd_ring_len * SIZEOFBD) % 1117 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) { 1118 length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 1119 } 1120 1121 align = UEC_TX_BD_RING_ALIGNMENT; 1122 uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align)); 1123 if (uec->tx_bd_ring_offset != 0) { 1124 uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align) 1125 & ~(align - 1)); 1126 } 1127 1128 /* Zero all of Tx BDs */ 1129 memset((void *)(uec->tx_bd_ring_offset), 0, length + align); 1130 1131 /* Allocate Rx BDs */ 1132 length = uec_info->rx_bd_ring_len * SIZEOFBD; 1133 align = UEC_RX_BD_RING_ALIGNMENT; 1134 uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align))); 1135 if (uec->rx_bd_ring_offset != 0) { 1136 uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align) 1137 & ~(align - 1)); 1138 } 1139 1140 /* Zero all of Rx BDs */ 1141 memset((void *)(uec->rx_bd_ring_offset), 0, length + align); 1142 1143 /* Allocate Rx buffer */ 1144 length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN; 1145 align = UEC_RX_DATA_BUF_ALIGNMENT; 1146 uec->rx_buf_offset = (u32)malloc(length + align); 1147 if (uec->rx_buf_offset != 0) { 1148 uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align) 1149 & ~(align - 1)); 1150 } 1151 1152 /* Zero all of the Rx buffer */ 1153 memset((void *)(uec->rx_buf_offset), 0, length + align); 1154 1155 /* Init TxBD ring */ 1156 bd = (qe_bd_t *)uec->p_tx_bd_ring; 1157 uec->txBd = bd; 1158 1159 for (i = 0; i < uec_info->tx_bd_ring_len; i++) { 1160 BD_DATA_CLEAR(bd); 1161 BD_STATUS_SET(bd, 0); 1162 BD_LENGTH_SET(bd, 0); 1163 bd ++; 1164 } 1165 BD_STATUS_SET((--bd), TxBD_WRAP); 1166 1167 /* Init RxBD ring */ 1168 bd = (qe_bd_t *)uec->p_rx_bd_ring; 1169 uec->rxBd = bd; 1170 buf = uec->p_rx_buf; 1171 for (i = 0; i < uec_info->rx_bd_ring_len; i++) { 1172 BD_DATA_SET(bd, buf); 1173 BD_LENGTH_SET(bd, 0); 1174 BD_STATUS_SET(bd, RxBD_EMPTY); 1175 buf += MAX_RXBUF_LEN; 1176 bd ++; 1177 } 1178 BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY); 1179 1180 /* Init global Tx parameter RAM */ 1181 uec_init_tx_parameter(uec, num_threads_tx); 1182 1183 /* Init global Rx parameter RAM */ 1184 uec_init_rx_parameter(uec, num_threads_rx); 1185 1186 /* Init ethernet Tx and Rx parameter command */ 1187 if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx, 1188 num_threads_rx)) { 1189 printf("%s issue init enet cmd failed\n", __FUNCTION__); 1190 return -ENOMEM; 1191 } 1192 1193 return 0; 1194 } 1195 1196 static int uec_init(struct eth_device* dev, bd_t *bd) 1197 { 1198 uec_private_t *uec; 1199 int err, i; 1200 struct phy_info *curphy; 1201 1202 uec = (uec_private_t *)dev->priv; 1203 1204 if (uec->the_first_run == 0) { 1205 err = init_phy(dev); 1206 if (err) { 1207 printf("%s: Cannot initialize PHY, aborting.\n", 1208 dev->name); 1209 return err; 1210 } 1211 1212 curphy = uec->mii_info->phyinfo; 1213 1214 if (curphy->config_aneg) { 1215 err = curphy->config_aneg(uec->mii_info); 1216 if (err) { 1217 printf("%s: Can't negotiate PHY\n", dev->name); 1218 return err; 1219 } 1220 } 1221 1222 /* Give PHYs up to 5 sec to report a link */ 1223 i = 50; 1224 do { 1225 err = curphy->read_status(uec->mii_info); 1226 udelay(100000); 1227 } while (((i-- > 0) && !uec->mii_info->link) || err); 1228 1229 if (err || i <= 0) 1230 printf("warning: %s: timeout on PHY link\n", dev->name); 1231 1232 adjust_link(dev); 1233 uec->the_first_run = 1; 1234 } 1235 1236 /* Set up the MAC address */ 1237 if (dev->enetaddr[0] & 0x01) { 1238 printf("%s: MacAddress is multcast address\n", 1239 __FUNCTION__); 1240 return -1; 1241 } 1242 uec_set_mac_address(uec, dev->enetaddr); 1243 1244 1245 err = uec_open(uec, COMM_DIR_RX_AND_TX); 1246 if (err) { 1247 printf("%s: cannot enable UEC device\n", dev->name); 1248 return -1; 1249 } 1250 1251 phy_change(dev); 1252 1253 return (uec->mii_info->link ? 0 : -1); 1254 } 1255 1256 static void uec_halt(struct eth_device* dev) 1257 { 1258 uec_private_t *uec = (uec_private_t *)dev->priv; 1259 uec_stop(uec, COMM_DIR_RX_AND_TX); 1260 } 1261 1262 static int uec_send(struct eth_device* dev, volatile void *buf, int len) 1263 { 1264 uec_private_t *uec; 1265 ucc_fast_private_t *uccf; 1266 volatile qe_bd_t *bd; 1267 u16 status; 1268 int i; 1269 int result = 0; 1270 1271 uec = (uec_private_t *)dev->priv; 1272 uccf = uec->uccf; 1273 bd = uec->txBd; 1274 1275 /* Find an empty TxBD */ 1276 for (i = 0; bd->status & TxBD_READY; i++) { 1277 if (i > 0x100000) { 1278 printf("%s: tx buffer not ready\n", dev->name); 1279 return result; 1280 } 1281 } 1282 1283 /* Init TxBD */ 1284 BD_DATA_SET(bd, buf); 1285 BD_LENGTH_SET(bd, len); 1286 status = bd->status; 1287 status &= BD_WRAP; 1288 status |= (TxBD_READY | TxBD_LAST); 1289 BD_STATUS_SET(bd, status); 1290 1291 /* Tell UCC to transmit the buffer */ 1292 ucc_fast_transmit_on_demand(uccf); 1293 1294 /* Wait for buffer to be transmitted */ 1295 for (i = 0; bd->status & TxBD_READY; i++) { 1296 if (i > 0x100000) { 1297 printf("%s: tx error\n", dev->name); 1298 return result; 1299 } 1300 } 1301 1302 /* Ok, the buffer be transimitted */ 1303 BD_ADVANCE(bd, status, uec->p_tx_bd_ring); 1304 uec->txBd = bd; 1305 result = 1; 1306 1307 return result; 1308 } 1309 1310 static int uec_recv(struct eth_device* dev) 1311 { 1312 uec_private_t *uec = dev->priv; 1313 volatile qe_bd_t *bd; 1314 u16 status; 1315 u16 len; 1316 u8 *data; 1317 1318 bd = uec->rxBd; 1319 status = bd->status; 1320 1321 while (!(status & RxBD_EMPTY)) { 1322 if (!(status & RxBD_ERROR)) { 1323 data = BD_DATA(bd); 1324 len = BD_LENGTH(bd); 1325 NetReceive(data, len); 1326 } else { 1327 printf("%s: Rx error\n", dev->name); 1328 } 1329 status &= BD_CLEAN; 1330 BD_LENGTH_SET(bd, 0); 1331 BD_STATUS_SET(bd, status | RxBD_EMPTY); 1332 BD_ADVANCE(bd, status, uec->p_rx_bd_ring); 1333 status = bd->status; 1334 } 1335 uec->rxBd = bd; 1336 1337 return 1; 1338 } 1339 1340 int uec_initialize(bd_t *bis, uec_info_t *uec_info) 1341 { 1342 struct eth_device *dev; 1343 int i; 1344 uec_private_t *uec; 1345 int err; 1346 1347 dev = (struct eth_device *)malloc(sizeof(struct eth_device)); 1348 if (!dev) 1349 return 0; 1350 memset(dev, 0, sizeof(struct eth_device)); 1351 1352 /* Allocate the UEC private struct */ 1353 uec = (uec_private_t *)malloc(sizeof(uec_private_t)); 1354 if (!uec) { 1355 return -ENOMEM; 1356 } 1357 memset(uec, 0, sizeof(uec_private_t)); 1358 1359 /* Adjust uec_info */ 1360 #if (MAX_QE_RISC == 4) 1361 uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS; 1362 uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS; 1363 #endif 1364 1365 devlist[uec_info->uf_info.ucc_num] = dev; 1366 1367 uec->uec_info = uec_info; 1368 uec->dev = dev; 1369 1370 sprintf(dev->name, "UEC%d", uec_info->uf_info.ucc_num); 1371 dev->iobase = 0; 1372 dev->priv = (void *)uec; 1373 dev->init = uec_init; 1374 dev->halt = uec_halt; 1375 dev->send = uec_send; 1376 dev->recv = uec_recv; 1377 1378 /* Clear the ethnet address */ 1379 for (i = 0; i < 6; i++) 1380 dev->enetaddr[i] = 0; 1381 1382 eth_register(dev); 1383 1384 err = uec_startup(uec); 1385 if (err) { 1386 printf("%s: Cannot configure net device, aborting.",dev->name); 1387 return err; 1388 } 1389 1390 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 1391 miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write); 1392 #endif 1393 1394 return 1; 1395 } 1396 1397 int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num) 1398 { 1399 int i; 1400 1401 for (i = 0; i < num; i++) 1402 uec_initialize(bis, &uecs[i]); 1403 1404 return 0; 1405 } 1406 1407 int uec_standard_init(bd_t *bis) 1408 { 1409 return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info)); 1410 } 1411