xref: /openbmc/u-boot/drivers/qe/uec.c (revision a4145534)
1 /*
2  * Copyright (C) 2006-2009 Freescale Semiconductor, Inc.
3  *
4  * Dave Liu <daveliu@freescale.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of
9  * the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19  * MA 02111-1307 USA
20  */
21 
22 #include "common.h"
23 #include "net.h"
24 #include "malloc.h"
25 #include "asm/errno.h"
26 #include "asm/io.h"
27 #include "asm/immap_qe.h"
28 #include "qe.h"
29 #include "uccf.h"
30 #include "uec.h"
31 #include "uec_phy.h"
32 #include "miiphy.h"
33 
34 /* Default UTBIPAR SMI address */
35 #ifndef CONFIG_UTBIPAR_INIT_TBIPA
36 #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
37 #endif
38 
39 static uec_info_t uec_info[] = {
40 #ifdef CONFIG_UEC_ETH1
41 	STD_UEC_INFO(1),	/* UEC1 */
42 #endif
43 #ifdef CONFIG_UEC_ETH2
44 	STD_UEC_INFO(2),	/* UEC2 */
45 #endif
46 #ifdef CONFIG_UEC_ETH3
47 	STD_UEC_INFO(3),	/* UEC3 */
48 #endif
49 #ifdef CONFIG_UEC_ETH4
50 	STD_UEC_INFO(4),	/* UEC4 */
51 #endif
52 #ifdef CONFIG_UEC_ETH5
53 	STD_UEC_INFO(5),	/* UEC5 */
54 #endif
55 #ifdef CONFIG_UEC_ETH6
56 	STD_UEC_INFO(6),	/* UEC6 */
57 #endif
58 #ifdef CONFIG_UEC_ETH7
59 	STD_UEC_INFO(7),	/* UEC7 */
60 #endif
61 #ifdef CONFIG_UEC_ETH8
62 	STD_UEC_INFO(8),	/* UEC8 */
63 #endif
64 };
65 
66 #define MAXCONTROLLERS	(8)
67 
68 static struct eth_device *devlist[MAXCONTROLLERS];
69 
70 u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
71 void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
72 
73 static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
74 {
75 	uec_t		*uec_regs;
76 	u32		maccfg1;
77 
78 	if (!uec) {
79 		printf("%s: uec not initial\n", __FUNCTION__);
80 		return -EINVAL;
81 	}
82 	uec_regs = uec->uec_regs;
83 
84 	maccfg1 = in_be32(&uec_regs->maccfg1);
85 
86 	if (mode & COMM_DIR_TX)	{
87 		maccfg1 |= MACCFG1_ENABLE_TX;
88 		out_be32(&uec_regs->maccfg1, maccfg1);
89 		uec->mac_tx_enabled = 1;
90 	}
91 
92 	if (mode & COMM_DIR_RX)	{
93 		maccfg1 |= MACCFG1_ENABLE_RX;
94 		out_be32(&uec_regs->maccfg1, maccfg1);
95 		uec->mac_rx_enabled = 1;
96 	}
97 
98 	return 0;
99 }
100 
101 static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
102 {
103 	uec_t		*uec_regs;
104 	u32		maccfg1;
105 
106 	if (!uec) {
107 		printf("%s: uec not initial\n", __FUNCTION__);
108 		return -EINVAL;
109 	}
110 	uec_regs = uec->uec_regs;
111 
112 	maccfg1 = in_be32(&uec_regs->maccfg1);
113 
114 	if (mode & COMM_DIR_TX)	{
115 		maccfg1 &= ~MACCFG1_ENABLE_TX;
116 		out_be32(&uec_regs->maccfg1, maccfg1);
117 		uec->mac_tx_enabled = 0;
118 	}
119 
120 	if (mode & COMM_DIR_RX)	{
121 		maccfg1 &= ~MACCFG1_ENABLE_RX;
122 		out_be32(&uec_regs->maccfg1, maccfg1);
123 		uec->mac_rx_enabled = 0;
124 	}
125 
126 	return 0;
127 }
128 
129 static int uec_graceful_stop_tx(uec_private_t *uec)
130 {
131 	ucc_fast_t		*uf_regs;
132 	u32			cecr_subblock;
133 	u32			ucce;
134 
135 	if (!uec || !uec->uccf) {
136 		printf("%s: No handle passed.\n", __FUNCTION__);
137 		return -EINVAL;
138 	}
139 
140 	uf_regs = uec->uccf->uf_regs;
141 
142 	/* Clear the grace stop event */
143 	out_be32(&uf_regs->ucce, UCCE_GRA);
144 
145 	/* Issue host command */
146 	cecr_subblock =
147 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
148 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
149 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
150 
151 	/* Wait for command to complete */
152 	do {
153 		ucce = in_be32(&uf_regs->ucce);
154 	} while (! (ucce & UCCE_GRA));
155 
156 	uec->grace_stopped_tx = 1;
157 
158 	return 0;
159 }
160 
161 static int uec_graceful_stop_rx(uec_private_t *uec)
162 {
163 	u32		cecr_subblock;
164 	u8		ack;
165 
166 	if (!uec) {
167 		printf("%s: No handle passed.\n", __FUNCTION__);
168 		return -EINVAL;
169 	}
170 
171 	if (!uec->p_rx_glbl_pram) {
172 		printf("%s: No init rx global parameter\n", __FUNCTION__);
173 		return -EINVAL;
174 	}
175 
176 	/* Clear acknowledge bit */
177 	ack = uec->p_rx_glbl_pram->rxgstpack;
178 	ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
179 	uec->p_rx_glbl_pram->rxgstpack = ack;
180 
181 	/* Keep issuing cmd and checking ack bit until it is asserted */
182 	do {
183 		/* Issue host command */
184 		cecr_subblock =
185 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
186 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
187 				 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
188 		ack = uec->p_rx_glbl_pram->rxgstpack;
189 	} while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
190 
191 	uec->grace_stopped_rx = 1;
192 
193 	return 0;
194 }
195 
196 static int uec_restart_tx(uec_private_t *uec)
197 {
198 	u32		cecr_subblock;
199 
200 	if (!uec || !uec->uec_info) {
201 		printf("%s: No handle passed.\n", __FUNCTION__);
202 		return -EINVAL;
203 	}
204 
205 	cecr_subblock =
206 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
207 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
208 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
209 
210 	uec->grace_stopped_tx = 0;
211 
212 	return 0;
213 }
214 
215 static int uec_restart_rx(uec_private_t *uec)
216 {
217 	u32		cecr_subblock;
218 
219 	if (!uec || !uec->uec_info) {
220 		printf("%s: No handle passed.\n", __FUNCTION__);
221 		return -EINVAL;
222 	}
223 
224 	cecr_subblock =
225 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
226 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
227 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
228 
229 	uec->grace_stopped_rx = 0;
230 
231 	return 0;
232 }
233 
234 static int uec_open(uec_private_t *uec, comm_dir_e mode)
235 {
236 	ucc_fast_private_t	*uccf;
237 
238 	if (!uec || !uec->uccf) {
239 		printf("%s: No handle passed.\n", __FUNCTION__);
240 		return -EINVAL;
241 	}
242 	uccf = uec->uccf;
243 
244 	/* check if the UCC number is in range. */
245 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
246 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
247 		return -EINVAL;
248 	}
249 
250 	/* Enable MAC */
251 	uec_mac_enable(uec, mode);
252 
253 	/* Enable UCC fast */
254 	ucc_fast_enable(uccf, mode);
255 
256 	/* RISC microcode start */
257 	if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
258 		uec_restart_tx(uec);
259 	}
260 	if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
261 		uec_restart_rx(uec);
262 	}
263 
264 	return 0;
265 }
266 
267 static int uec_stop(uec_private_t *uec, comm_dir_e mode)
268 {
269 	ucc_fast_private_t	*uccf;
270 
271 	if (!uec || !uec->uccf) {
272 		printf("%s: No handle passed.\n", __FUNCTION__);
273 		return -EINVAL;
274 	}
275 	uccf = uec->uccf;
276 
277 	/* check if the UCC number is in range. */
278 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
279 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
280 		return -EINVAL;
281 	}
282 	/* Stop any transmissions */
283 	if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
284 		uec_graceful_stop_tx(uec);
285 	}
286 	/* Stop any receptions */
287 	if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
288 		uec_graceful_stop_rx(uec);
289 	}
290 
291 	/* Disable the UCC fast */
292 	ucc_fast_disable(uec->uccf, mode);
293 
294 	/* Disable the MAC */
295 	uec_mac_disable(uec, mode);
296 
297 	return 0;
298 }
299 
300 static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
301 {
302 	uec_t		*uec_regs;
303 	u32		maccfg2;
304 
305 	if (!uec) {
306 		printf("%s: uec not initial\n", __FUNCTION__);
307 		return -EINVAL;
308 	}
309 	uec_regs = uec->uec_regs;
310 
311 	if (duplex == DUPLEX_HALF) {
312 		maccfg2 = in_be32(&uec_regs->maccfg2);
313 		maccfg2 &= ~MACCFG2_FDX;
314 		out_be32(&uec_regs->maccfg2, maccfg2);
315 	}
316 
317 	if (duplex == DUPLEX_FULL) {
318 		maccfg2 = in_be32(&uec_regs->maccfg2);
319 		maccfg2 |= MACCFG2_FDX;
320 		out_be32(&uec_regs->maccfg2, maccfg2);
321 	}
322 
323 	return 0;
324 }
325 
326 static int uec_set_mac_if_mode(uec_private_t *uec,
327 		enet_interface_type_e if_mode, int speed)
328 {
329 	enet_interface_type_e	enet_if_mode;
330 	uec_info_t		*uec_info;
331 	uec_t			*uec_regs;
332 	u32			upsmr;
333 	u32			maccfg2;
334 
335 	if (!uec) {
336 		printf("%s: uec not initial\n", __FUNCTION__);
337 		return -EINVAL;
338 	}
339 
340 	uec_info = uec->uec_info;
341 	uec_regs = uec->uec_regs;
342 	enet_if_mode = if_mode;
343 
344 	maccfg2 = in_be32(&uec_regs->maccfg2);
345 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
346 
347 	upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
348 	upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
349 
350 	switch (speed) {
351 		case 10:
352 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
353 			switch (enet_if_mode) {
354 				case MII:
355 					break;
356 				case RGMII:
357 					upsmr |= (UPSMR_RPM | UPSMR_R10M);
358 					break;
359 				case RMII:
360 					upsmr |= (UPSMR_R10M | UPSMR_RMM);
361 					break;
362 				default:
363 					return -EINVAL;
364 					break;
365 			}
366 			break;
367 		case 100:
368 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
369 			switch (enet_if_mode) {
370 				case MII:
371 					break;
372 				case RGMII:
373 					upsmr |= UPSMR_RPM;
374 					break;
375 				case RMII:
376 					upsmr |= UPSMR_RMM;
377 					break;
378 				default:
379 					return -EINVAL;
380 					break;
381 			}
382 			break;
383 		case 1000:
384 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
385 			switch (enet_if_mode) {
386 				case GMII:
387 					break;
388 				case TBI:
389 					upsmr |= UPSMR_TBIM;
390 					break;
391 				case RTBI:
392 					upsmr |= (UPSMR_RPM | UPSMR_TBIM);
393 					break;
394 				case RGMII_RXID:
395 				case RGMII_ID:
396 				case RGMII:
397 					upsmr |= UPSMR_RPM;
398 					break;
399 				case SGMII:
400 					upsmr |= UPSMR_SGMM;
401 					break;
402 				default:
403 					return -EINVAL;
404 					break;
405 			}
406 			break;
407 		default:
408 			return -EINVAL;
409 			break;
410 	}
411 
412 	out_be32(&uec_regs->maccfg2, maccfg2);
413 	out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
414 
415 	return 0;
416 }
417 
418 static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
419 {
420 	uint		timeout = 0x1000;
421 	u32		miimcfg = 0;
422 
423 	miimcfg = in_be32(&uec_mii_regs->miimcfg);
424 	miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
425 	out_be32(&uec_mii_regs->miimcfg, miimcfg);
426 
427 	/* Wait until the bus is free */
428 	while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
429 	if (timeout <= 0) {
430 		printf("%s: The MII Bus is stuck!", __FUNCTION__);
431 		return -ETIMEDOUT;
432 	}
433 
434 	return 0;
435 }
436 
437 static int init_phy(struct eth_device *dev)
438 {
439 	uec_private_t		*uec;
440 	uec_mii_t		*umii_regs;
441 	struct uec_mii_info	*mii_info;
442 	struct phy_info		*curphy;
443 	int			err;
444 
445 	uec = (uec_private_t *)dev->priv;
446 	umii_regs = uec->uec_mii_regs;
447 
448 	uec->oldlink = 0;
449 	uec->oldspeed = 0;
450 	uec->oldduplex = -1;
451 
452 	mii_info = malloc(sizeof(*mii_info));
453 	if (!mii_info) {
454 		printf("%s: Could not allocate mii_info", dev->name);
455 		return -ENOMEM;
456 	}
457 	memset(mii_info, 0, sizeof(*mii_info));
458 
459 	if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
460 		mii_info->speed = SPEED_1000;
461 	} else {
462 		mii_info->speed = SPEED_100;
463 	}
464 
465 	mii_info->duplex = DUPLEX_FULL;
466 	mii_info->pause = 0;
467 	mii_info->link = 1;
468 
469 	mii_info->advertising = (ADVERTISED_10baseT_Half |
470 				ADVERTISED_10baseT_Full |
471 				ADVERTISED_100baseT_Half |
472 				ADVERTISED_100baseT_Full |
473 				ADVERTISED_1000baseT_Full);
474 	mii_info->autoneg = 1;
475 	mii_info->mii_id = uec->uec_info->phy_address;
476 	mii_info->dev = dev;
477 
478 	mii_info->mdio_read = &uec_read_phy_reg;
479 	mii_info->mdio_write = &uec_write_phy_reg;
480 
481 	uec->mii_info = mii_info;
482 
483 	qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
484 
485 	if (init_mii_management_configuration(umii_regs)) {
486 		printf("%s: The MII Bus is stuck!", dev->name);
487 		err = -1;
488 		goto bus_fail;
489 	}
490 
491 	/* get info for this PHY */
492 	curphy = uec_get_phy_info(uec->mii_info);
493 	if (!curphy) {
494 		printf("%s: No PHY found", dev->name);
495 		err = -1;
496 		goto no_phy;
497 	}
498 
499 	mii_info->phyinfo = curphy;
500 
501 	/* Run the commands which initialize the PHY */
502 	if (curphy->init) {
503 		err = curphy->init(uec->mii_info);
504 		if (err)
505 			goto phy_init_fail;
506 	}
507 
508 	return 0;
509 
510 phy_init_fail:
511 no_phy:
512 bus_fail:
513 	free(mii_info);
514 	return err;
515 }
516 
517 static void adjust_link(struct eth_device *dev)
518 {
519 	uec_private_t		*uec = (uec_private_t *)dev->priv;
520 	uec_t			*uec_regs;
521 	struct uec_mii_info	*mii_info = uec->mii_info;
522 
523 	extern void change_phy_interface_mode(struct eth_device *dev,
524 				 enet_interface_type_e mode, int speed);
525 	uec_regs = uec->uec_regs;
526 
527 	if (mii_info->link) {
528 		/* Now we make sure that we can be in full duplex mode.
529 		* If not, we operate in half-duplex mode. */
530 		if (mii_info->duplex != uec->oldduplex) {
531 			if (!(mii_info->duplex)) {
532 				uec_set_mac_duplex(uec, DUPLEX_HALF);
533 				printf("%s: Half Duplex\n", dev->name);
534 			} else {
535 				uec_set_mac_duplex(uec, DUPLEX_FULL);
536 				printf("%s: Full Duplex\n", dev->name);
537 			}
538 			uec->oldduplex = mii_info->duplex;
539 		}
540 
541 		if (mii_info->speed != uec->oldspeed) {
542 			enet_interface_type_e	mode = \
543 				uec->uec_info->enet_interface_type;
544 			if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
545 				switch (mii_info->speed) {
546 				case 1000:
547 					break;
548 				case 100:
549 					printf ("switching to rgmii 100\n");
550 					mode = RGMII;
551 					break;
552 				case 10:
553 					printf ("switching to rgmii 10\n");
554 					mode = RGMII;
555 					break;
556 				default:
557 					printf("%s: Ack,Speed(%d)is illegal\n",
558 						dev->name, mii_info->speed);
559 					break;
560 				}
561 			}
562 
563 			/* change phy */
564 			change_phy_interface_mode(dev, mode, mii_info->speed);
565 			/* change the MAC interface mode */
566 			uec_set_mac_if_mode(uec, mode, mii_info->speed);
567 
568 			printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
569 			uec->oldspeed = mii_info->speed;
570 		}
571 
572 		if (!uec->oldlink) {
573 			printf("%s: Link is up\n", dev->name);
574 			uec->oldlink = 1;
575 		}
576 
577 	} else { /* if (mii_info->link) */
578 		if (uec->oldlink) {
579 			printf("%s: Link is down\n", dev->name);
580 			uec->oldlink = 0;
581 			uec->oldspeed = 0;
582 			uec->oldduplex = -1;
583 		}
584 	}
585 }
586 
587 static void phy_change(struct eth_device *dev)
588 {
589 	uec_private_t	*uec = (uec_private_t *)dev->priv;
590 
591 	/* Update the link, speed, duplex */
592 	uec->mii_info->phyinfo->read_status(uec->mii_info);
593 
594 	/* Adjust the interface according to speed */
595 	adjust_link(dev);
596 }
597 
598 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
599 	&& !defined(BITBANGMII)
600 
601 /*
602  * Find a device index from the devlist by name
603  *
604  * Returns:
605  *  The index where the device is located, -1 on error
606  */
607 static int uec_miiphy_find_dev_by_name(char *devname)
608 {
609 	int i;
610 
611 	for (i = 0; i < MAXCONTROLLERS; i++) {
612 		if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
613 			break;
614 		}
615 	}
616 
617 	/* If device cannot be found, returns -1 */
618 	if (i == MAXCONTROLLERS) {
619 		debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
620 		i = -1;
621 	}
622 
623 	return i;
624 }
625 
626 /*
627  * Read a MII PHY register.
628  *
629  * Returns:
630  *  0 on success
631  */
632 static int uec_miiphy_read(char *devname, unsigned char addr,
633 			    unsigned char reg, unsigned short *value)
634 {
635 	int devindex = 0;
636 
637 	if (devname == NULL || value == NULL) {
638 		debug("%s: NULL pointer given\n", __FUNCTION__);
639 	} else {
640 		devindex = uec_miiphy_find_dev_by_name(devname);
641 		if (devindex >= 0) {
642 			*value = uec_read_phy_reg(devlist[devindex], addr, reg);
643 		}
644 	}
645 	return 0;
646 }
647 
648 /*
649  * Write a MII PHY register.
650  *
651  * Returns:
652  *  0 on success
653  */
654 static int uec_miiphy_write(char *devname, unsigned char addr,
655 			     unsigned char reg, unsigned short value)
656 {
657 	int devindex = 0;
658 
659 	if (devname == NULL) {
660 		debug("%s: NULL pointer given\n", __FUNCTION__);
661 	} else {
662 		devindex = uec_miiphy_find_dev_by_name(devname);
663 		if (devindex >= 0) {
664 			uec_write_phy_reg(devlist[devindex], addr, reg, value);
665 		}
666 	}
667 	return 0;
668 }
669 #endif
670 
671 static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
672 {
673 	uec_t		*uec_regs;
674 	u32		mac_addr1;
675 	u32		mac_addr2;
676 
677 	if (!uec) {
678 		printf("%s: uec not initial\n", __FUNCTION__);
679 		return -EINVAL;
680 	}
681 
682 	uec_regs = uec->uec_regs;
683 
684 	/* if a station address of 0x12345678ABCD, perform a write to
685 	MACSTNADDR1 of 0xCDAB7856,
686 	MACSTNADDR2 of 0x34120000 */
687 
688 	mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
689 			(mac_addr[3] << 8)  | (mac_addr[2]);
690 	out_be32(&uec_regs->macstnaddr1, mac_addr1);
691 
692 	mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
693 	out_be32(&uec_regs->macstnaddr2, mac_addr2);
694 
695 	return 0;
696 }
697 
698 static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
699 					 int *threads_num_ret)
700 {
701 	int	num_threads_numerica;
702 
703 	switch (threads_num) {
704 		case UEC_NUM_OF_THREADS_1:
705 			num_threads_numerica = 1;
706 			break;
707 		case UEC_NUM_OF_THREADS_2:
708 			num_threads_numerica = 2;
709 			break;
710 		case UEC_NUM_OF_THREADS_4:
711 			num_threads_numerica = 4;
712 			break;
713 		case UEC_NUM_OF_THREADS_6:
714 			num_threads_numerica = 6;
715 			break;
716 		case UEC_NUM_OF_THREADS_8:
717 			num_threads_numerica = 8;
718 			break;
719 		default:
720 			printf("%s: Bad number of threads value.",
721 				 __FUNCTION__);
722 			return -EINVAL;
723 	}
724 
725 	*threads_num_ret = num_threads_numerica;
726 
727 	return 0;
728 }
729 
730 static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
731 {
732 	uec_info_t	*uec_info;
733 	u32		end_bd;
734 	u8		bmrx = 0;
735 	int		i;
736 
737 	uec_info = uec->uec_info;
738 
739 	/* Alloc global Tx parameter RAM page */
740 	uec->tx_glbl_pram_offset = qe_muram_alloc(
741 				sizeof(uec_tx_global_pram_t),
742 				 UEC_TX_GLOBAL_PRAM_ALIGNMENT);
743 	uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
744 				qe_muram_addr(uec->tx_glbl_pram_offset);
745 
746 	/* Zero the global Tx prameter RAM */
747 	memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
748 
749 	/* Init global Tx parameter RAM */
750 
751 	/* TEMODER, RMON statistics disable, one Tx queue */
752 	out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
753 
754 	/* SQPTR */
755 	uec->send_q_mem_reg_offset = qe_muram_alloc(
756 				sizeof(uec_send_queue_qd_t),
757 				 UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
758 	uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
759 				qe_muram_addr(uec->send_q_mem_reg_offset);
760 	out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
761 
762 	/* Setup the table with TxBDs ring */
763 	end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
764 					 * SIZEOFBD;
765 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
766 				 (u32)(uec->p_tx_bd_ring));
767 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
768 						 end_bd);
769 
770 	/* Scheduler Base Pointer, we have only one Tx queue, no need it */
771 	out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
772 
773 	/* TxRMON Base Pointer, TxRMON disable, we don't need it */
774 	out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
775 
776 	/* TSTATE, global snooping, big endian, the CSB bus selected */
777 	bmrx = BMR_INIT_VALUE;
778 	out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
779 
780 	/* IPH_Offset */
781 	for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
782 		out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
783 	}
784 
785 	/* VTAG table */
786 	for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
787 		out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
788 	}
789 
790 	/* TQPTR */
791 	uec->thread_dat_tx_offset = qe_muram_alloc(
792 		num_threads_tx * sizeof(uec_thread_data_tx_t) +
793 		 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
794 
795 	uec->p_thread_data_tx = (uec_thread_data_tx_t *)
796 				qe_muram_addr(uec->thread_dat_tx_offset);
797 	out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
798 }
799 
800 static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
801 {
802 	u8	bmrx = 0;
803 	int	i;
804 	uec_82xx_address_filtering_pram_t	*p_af_pram;
805 
806 	/* Allocate global Rx parameter RAM page */
807 	uec->rx_glbl_pram_offset = qe_muram_alloc(
808 		sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
809 	uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
810 				qe_muram_addr(uec->rx_glbl_pram_offset);
811 
812 	/* Zero Global Rx parameter RAM */
813 	memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
814 
815 	/* Init global Rx parameter RAM */
816 	/* REMODER, Extended feature mode disable, VLAN disable,
817 	 LossLess flow control disable, Receive firmware statisic disable,
818 	 Extended address parsing mode disable, One Rx queues,
819 	 Dynamic maximum/minimum frame length disable, IP checksum check
820 	 disable, IP address alignment disable
821 	*/
822 	out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
823 
824 	/* RQPTR */
825 	uec->thread_dat_rx_offset = qe_muram_alloc(
826 			num_threads_rx * sizeof(uec_thread_data_rx_t),
827 			 UEC_THREAD_DATA_ALIGNMENT);
828 	uec->p_thread_data_rx = (uec_thread_data_rx_t *)
829 				qe_muram_addr(uec->thread_dat_rx_offset);
830 	out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
831 
832 	/* Type_or_Len */
833 	out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
834 
835 	/* RxRMON base pointer, we don't need it */
836 	out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
837 
838 	/* IntCoalescingPTR, we don't need it, no interrupt */
839 	out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
840 
841 	/* RSTATE, global snooping, big endian, the CSB bus selected */
842 	bmrx = BMR_INIT_VALUE;
843 	out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
844 
845 	/* MRBLR */
846 	out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
847 
848 	/* RBDQPTR */
849 	uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
850 				sizeof(uec_rx_bd_queues_entry_t) + \
851 				sizeof(uec_rx_prefetched_bds_t),
852 				 UEC_RX_BD_QUEUES_ALIGNMENT);
853 	uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
854 				qe_muram_addr(uec->rx_bd_qs_tbl_offset);
855 
856 	/* Zero it */
857 	memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
858 					sizeof(uec_rx_prefetched_bds_t));
859 	out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
860 	out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
861 		 (u32)uec->p_rx_bd_ring);
862 
863 	/* MFLR */
864 	out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
865 	/* MINFLR */
866 	out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
867 	/* MAXD1 */
868 	out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
869 	/* MAXD2 */
870 	out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
871 	/* ECAM_PTR */
872 	out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
873 	/* L2QT */
874 	out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
875 	/* L3QT */
876 	for (i = 0; i < 8; i++)	{
877 		out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
878 	}
879 
880 	/* VLAN_TYPE */
881 	out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
882 	/* TCI */
883 	out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
884 
885 	/* Clear PQ2 style address filtering hash table */
886 	p_af_pram = (uec_82xx_address_filtering_pram_t *) \
887 			uec->p_rx_glbl_pram->addressfiltering;
888 
889 	p_af_pram->iaddr_h = 0;
890 	p_af_pram->iaddr_l = 0;
891 	p_af_pram->gaddr_h = 0;
892 	p_af_pram->gaddr_l = 0;
893 }
894 
895 static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
896 					 int thread_tx, int thread_rx)
897 {
898 	uec_init_cmd_pram_t		*p_init_enet_param;
899 	u32				init_enet_param_offset;
900 	uec_info_t			*uec_info;
901 	int				i;
902 	int				snum;
903 	u32				init_enet_offset;
904 	u32				entry_val;
905 	u32				command;
906 	u32				cecr_subblock;
907 
908 	uec_info = uec->uec_info;
909 
910 	/* Allocate init enet command parameter */
911 	uec->init_enet_param_offset = qe_muram_alloc(
912 					sizeof(uec_init_cmd_pram_t), 4);
913 	init_enet_param_offset = uec->init_enet_param_offset;
914 	uec->p_init_enet_param = (uec_init_cmd_pram_t *)
915 				qe_muram_addr(uec->init_enet_param_offset);
916 
917 	/* Zero init enet command struct */
918 	memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
919 
920 	/* Init the command struct */
921 	p_init_enet_param = uec->p_init_enet_param;
922 	p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
923 	p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
924 	p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
925 	p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
926 	p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
927 	p_init_enet_param->largestexternallookupkeysize = 0;
928 
929 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
930 					 << ENET_INIT_PARAM_RGF_SHIFT;
931 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
932 					 << ENET_INIT_PARAM_TGF_SHIFT;
933 
934 	/* Init Rx global parameter pointer */
935 	p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
936 						 (u32)uec_info->risc_rx;
937 
938 	/* Init Rx threads */
939 	for (i = 0; i < (thread_rx + 1); i++) {
940 		if ((snum = qe_get_snum()) < 0) {
941 			printf("%s can not get snum\n", __FUNCTION__);
942 			return -ENOMEM;
943 		}
944 
945 		if (i==0) {
946 			init_enet_offset = 0;
947 		} else {
948 			init_enet_offset = qe_muram_alloc(
949 					sizeof(uec_thread_rx_pram_t),
950 					 UEC_THREAD_RX_PRAM_ALIGNMENT);
951 		}
952 
953 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
954 				 init_enet_offset | (u32)uec_info->risc_rx;
955 		p_init_enet_param->rxthread[i] = entry_val;
956 	}
957 
958 	/* Init Tx global parameter pointer */
959 	p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
960 					 (u32)uec_info->risc_tx;
961 
962 	/* Init Tx threads */
963 	for (i = 0; i < thread_tx; i++) {
964 		if ((snum = qe_get_snum()) < 0)	{
965 			printf("%s can not get snum\n", __FUNCTION__);
966 			return -ENOMEM;
967 		}
968 
969 		init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
970 						 UEC_THREAD_TX_PRAM_ALIGNMENT);
971 
972 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
973 				 init_enet_offset | (u32)uec_info->risc_tx;
974 		p_init_enet_param->txthread[i] = entry_val;
975 	}
976 
977 	__asm__ __volatile__("sync");
978 
979 	/* Issue QE command */
980 	command = QE_INIT_TX_RX;
981 	cecr_subblock =	ucc_fast_get_qe_cr_subblock(
982 				uec->uec_info->uf_info.ucc_num);
983 	qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
984 						 init_enet_param_offset);
985 
986 	return 0;
987 }
988 
989 static int uec_startup(uec_private_t *uec)
990 {
991 	uec_info_t			*uec_info;
992 	ucc_fast_info_t			*uf_info;
993 	ucc_fast_private_t		*uccf;
994 	ucc_fast_t			*uf_regs;
995 	uec_t				*uec_regs;
996 	int				num_threads_tx;
997 	int				num_threads_rx;
998 	u32				utbipar;
999 	u32				length;
1000 	u32				align;
1001 	qe_bd_t				*bd;
1002 	u8				*buf;
1003 	int				i;
1004 
1005 	if (!uec || !uec->uec_info) {
1006 		printf("%s: uec or uec_info not initial\n", __FUNCTION__);
1007 		return -EINVAL;
1008 	}
1009 
1010 	uec_info = uec->uec_info;
1011 	uf_info = &(uec_info->uf_info);
1012 
1013 	/* Check if Rx BD ring len is illegal */
1014 	if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
1015 		(uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
1016 		printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
1017 			 __FUNCTION__);
1018 		return -EINVAL;
1019 	}
1020 
1021 	/* Check if Tx BD ring len is illegal */
1022 	if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
1023 		printf("%s: Tx BD ring length must not be smaller than 2.\n",
1024 			 __FUNCTION__);
1025 		return -EINVAL;
1026 	}
1027 
1028 	/* Check if MRBLR is illegal */
1029 	if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN  % UEC_MRBLR_ALIGNMENT)) {
1030 		printf("%s: max rx buffer length must be mutliple of 128.\n",
1031 			 __FUNCTION__);
1032 		return -EINVAL;
1033 	}
1034 
1035 	/* Both Rx and Tx are stopped */
1036 	uec->grace_stopped_rx = 1;
1037 	uec->grace_stopped_tx = 1;
1038 
1039 	/* Init UCC fast */
1040 	if (ucc_fast_init(uf_info, &uccf)) {
1041 		printf("%s: failed to init ucc fast\n", __FUNCTION__);
1042 		return -ENOMEM;
1043 	}
1044 
1045 	/* Save uccf */
1046 	uec->uccf = uccf;
1047 
1048 	/* Convert the Tx threads number */
1049 	if (uec_convert_threads_num(uec_info->num_threads_tx,
1050 					 &num_threads_tx)) {
1051 		return -EINVAL;
1052 	}
1053 
1054 	/* Convert the Rx threads number */
1055 	if (uec_convert_threads_num(uec_info->num_threads_rx,
1056 					 &num_threads_rx)) {
1057 		return -EINVAL;
1058 	}
1059 
1060 	uf_regs = uccf->uf_regs;
1061 
1062 	/* UEC register is following UCC fast registers */
1063 	uec_regs = (uec_t *)(&uf_regs->ucc_eth);
1064 
1065 	/* Save the UEC register pointer to UEC private struct */
1066 	uec->uec_regs = uec_regs;
1067 
1068 	/* Init UPSMR, enable hardware statistics (UCC) */
1069 	out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
1070 
1071 	/* Init MACCFG1, flow control disable, disable Tx and Rx */
1072 	out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
1073 
1074 	/* Init MACCFG2, length check, MAC PAD and CRC enable */
1075 	out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
1076 
1077 	/* Setup MAC interface mode */
1078 	uec_set_mac_if_mode(uec, uec_info->enet_interface_type, uec_info->speed);
1079 
1080 	/* Setup MII management base */
1081 #ifndef CONFIG_eTSEC_MDIO_BUS
1082 	uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
1083 #else
1084 	uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
1085 #endif
1086 
1087 	/* Setup MII master clock source */
1088 	qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
1089 
1090 	/* Setup UTBIPAR */
1091 	utbipar = in_be32(&uec_regs->utbipar);
1092 	utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
1093 
1094 	/* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
1095 	 * This frees up the remaining SMI addresses for use.
1096 	 */
1097 	utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
1098 	out_be32(&uec_regs->utbipar, utbipar);
1099 
1100 	/* Configure the TBI for SGMII operation */
1101 	if ((uec->uec_info->enet_interface_type == SGMII) &&
1102 	   (uec->uec_info->speed == 1000)) {
1103 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1104 			ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1105 
1106 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1107 			ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1108 
1109 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1110 			ENET_TBI_MII_CR, TBICR_SETTINGS);
1111 	}
1112 
1113 	/* Allocate Tx BDs */
1114 	length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
1115 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
1116 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1117 	if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
1118 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
1119 		length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1120 	}
1121 
1122 	align = UEC_TX_BD_RING_ALIGNMENT;
1123 	uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
1124 	if (uec->tx_bd_ring_offset != 0) {
1125 		uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
1126 						 & ~(align - 1));
1127 	}
1128 
1129 	/* Zero all of Tx BDs */
1130 	memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
1131 
1132 	/* Allocate Rx BDs */
1133 	length = uec_info->rx_bd_ring_len * SIZEOFBD;
1134 	align = UEC_RX_BD_RING_ALIGNMENT;
1135 	uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
1136 	if (uec->rx_bd_ring_offset != 0) {
1137 		uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
1138 							 & ~(align - 1));
1139 	}
1140 
1141 	/* Zero all of Rx BDs */
1142 	memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
1143 
1144 	/* Allocate Rx buffer */
1145 	length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
1146 	align = UEC_RX_DATA_BUF_ALIGNMENT;
1147 	uec->rx_buf_offset = (u32)malloc(length + align);
1148 	if (uec->rx_buf_offset != 0) {
1149 		uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
1150 						 & ~(align - 1));
1151 	}
1152 
1153 	/* Zero all of the Rx buffer */
1154 	memset((void *)(uec->rx_buf_offset), 0, length + align);
1155 
1156 	/* Init TxBD ring */
1157 	bd = (qe_bd_t *)uec->p_tx_bd_ring;
1158 	uec->txBd = bd;
1159 
1160 	for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
1161 		BD_DATA_CLEAR(bd);
1162 		BD_STATUS_SET(bd, 0);
1163 		BD_LENGTH_SET(bd, 0);
1164 		bd ++;
1165 	}
1166 	BD_STATUS_SET((--bd), TxBD_WRAP);
1167 
1168 	/* Init RxBD ring */
1169 	bd = (qe_bd_t *)uec->p_rx_bd_ring;
1170 	uec->rxBd = bd;
1171 	buf = uec->p_rx_buf;
1172 	for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
1173 		BD_DATA_SET(bd, buf);
1174 		BD_LENGTH_SET(bd, 0);
1175 		BD_STATUS_SET(bd, RxBD_EMPTY);
1176 		buf += MAX_RXBUF_LEN;
1177 		bd ++;
1178 	}
1179 	BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
1180 
1181 	/* Init global Tx parameter RAM */
1182 	uec_init_tx_parameter(uec, num_threads_tx);
1183 
1184 	/* Init global Rx parameter RAM */
1185 	uec_init_rx_parameter(uec, num_threads_rx);
1186 
1187 	/* Init ethernet Tx and Rx parameter command */
1188 	if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
1189 					 num_threads_rx)) {
1190 		printf("%s issue init enet cmd failed\n", __FUNCTION__);
1191 		return -ENOMEM;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static int uec_init(struct eth_device* dev, bd_t *bd)
1198 {
1199 	uec_private_t		*uec;
1200 	int			err, i;
1201 	struct phy_info         *curphy;
1202 
1203 	uec = (uec_private_t *)dev->priv;
1204 
1205 	if (uec->the_first_run == 0) {
1206 		err = init_phy(dev);
1207 		if (err) {
1208 			printf("%s: Cannot initialize PHY, aborting.\n",
1209 			       dev->name);
1210 			return err;
1211 		}
1212 
1213 		curphy = uec->mii_info->phyinfo;
1214 
1215 		if (curphy->config_aneg) {
1216 			err = curphy->config_aneg(uec->mii_info);
1217 			if (err) {
1218 				printf("%s: Can't negotiate PHY\n", dev->name);
1219 				return err;
1220 			}
1221 		}
1222 
1223 		/* Give PHYs up to 5 sec to report a link */
1224 		i = 50;
1225 		do {
1226 			err = curphy->read_status(uec->mii_info);
1227 			udelay(100000);
1228 		} while (((i-- > 0) && !uec->mii_info->link) || err);
1229 
1230 		if (err || i <= 0)
1231 			printf("warning: %s: timeout on PHY link\n", dev->name);
1232 
1233 		adjust_link(dev);
1234 		uec->the_first_run = 1;
1235 	}
1236 
1237 	/* Set up the MAC address */
1238 	if (dev->enetaddr[0] & 0x01) {
1239 		printf("%s: MacAddress is multcast address\n",
1240 			 __FUNCTION__);
1241 		return -1;
1242 	}
1243 	uec_set_mac_address(uec, dev->enetaddr);
1244 
1245 
1246 	err = uec_open(uec, COMM_DIR_RX_AND_TX);
1247 	if (err) {
1248 		printf("%s: cannot enable UEC device\n", dev->name);
1249 		return -1;
1250 	}
1251 
1252 	phy_change(dev);
1253 
1254 	return (uec->mii_info->link ? 0 : -1);
1255 }
1256 
1257 static void uec_halt(struct eth_device* dev)
1258 {
1259 	uec_private_t	*uec = (uec_private_t *)dev->priv;
1260 	uec_stop(uec, COMM_DIR_RX_AND_TX);
1261 }
1262 
1263 static int uec_send(struct eth_device* dev, volatile void *buf, int len)
1264 {
1265 	uec_private_t		*uec;
1266 	ucc_fast_private_t	*uccf;
1267 	volatile qe_bd_t	*bd;
1268 	u16			status;
1269 	int			i;
1270 	int			result = 0;
1271 
1272 	uec = (uec_private_t *)dev->priv;
1273 	uccf = uec->uccf;
1274 	bd = uec->txBd;
1275 
1276 	/* Find an empty TxBD */
1277 	for (i = 0; bd->status & TxBD_READY; i++) {
1278 		if (i > 0x100000) {
1279 			printf("%s: tx buffer not ready\n", dev->name);
1280 			return result;
1281 		}
1282 	}
1283 
1284 	/* Init TxBD */
1285 	BD_DATA_SET(bd, buf);
1286 	BD_LENGTH_SET(bd, len);
1287 	status = bd->status;
1288 	status &= BD_WRAP;
1289 	status |= (TxBD_READY | TxBD_LAST);
1290 	BD_STATUS_SET(bd, status);
1291 
1292 	/* Tell UCC to transmit the buffer */
1293 	ucc_fast_transmit_on_demand(uccf);
1294 
1295 	/* Wait for buffer to be transmitted */
1296 	for (i = 0; bd->status & TxBD_READY; i++) {
1297 		if (i > 0x100000) {
1298 			printf("%s: tx error\n", dev->name);
1299 			return result;
1300 		}
1301 	}
1302 
1303 	/* Ok, the buffer be transimitted */
1304 	BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
1305 	uec->txBd = bd;
1306 	result = 1;
1307 
1308 	return result;
1309 }
1310 
1311 static int uec_recv(struct eth_device* dev)
1312 {
1313 	uec_private_t		*uec = dev->priv;
1314 	volatile qe_bd_t	*bd;
1315 	u16			status;
1316 	u16			len;
1317 	u8			*data;
1318 
1319 	bd = uec->rxBd;
1320 	status = bd->status;
1321 
1322 	while (!(status & RxBD_EMPTY)) {
1323 		if (!(status & RxBD_ERROR)) {
1324 			data = BD_DATA(bd);
1325 			len = BD_LENGTH(bd);
1326 			NetReceive(data, len);
1327 		} else {
1328 			printf("%s: Rx error\n", dev->name);
1329 		}
1330 		status &= BD_CLEAN;
1331 		BD_LENGTH_SET(bd, 0);
1332 		BD_STATUS_SET(bd, status | RxBD_EMPTY);
1333 		BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
1334 		status = bd->status;
1335 	}
1336 	uec->rxBd = bd;
1337 
1338 	return 1;
1339 }
1340 
1341 int uec_initialize(bd_t *bis, uec_info_t *uec_info)
1342 {
1343 	struct eth_device	*dev;
1344 	int			i;
1345 	uec_private_t		*uec;
1346 	int			err;
1347 
1348 	dev = (struct eth_device *)malloc(sizeof(struct eth_device));
1349 	if (!dev)
1350 		return 0;
1351 	memset(dev, 0, sizeof(struct eth_device));
1352 
1353 	/* Allocate the UEC private struct */
1354 	uec = (uec_private_t *)malloc(sizeof(uec_private_t));
1355 	if (!uec) {
1356 		return -ENOMEM;
1357 	}
1358 	memset(uec, 0, sizeof(uec_private_t));
1359 
1360 	/* Adjust uec_info */
1361 #if (MAX_QE_RISC == 4)
1362 	uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
1363 	uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
1364 #endif
1365 
1366 	devlist[uec_info->uf_info.ucc_num] = dev;
1367 
1368 	uec->uec_info = uec_info;
1369 	uec->dev = dev;
1370 
1371 	sprintf(dev->name, "FSL UEC%d", uec_info->uf_info.ucc_num);
1372 	dev->iobase = 0;
1373 	dev->priv = (void *)uec;
1374 	dev->init = uec_init;
1375 	dev->halt = uec_halt;
1376 	dev->send = uec_send;
1377 	dev->recv = uec_recv;
1378 
1379 	/* Clear the ethnet address */
1380 	for (i = 0; i < 6; i++)
1381 		dev->enetaddr[i] = 0;
1382 
1383 	eth_register(dev);
1384 
1385 	err = uec_startup(uec);
1386 	if (err) {
1387 		printf("%s: Cannot configure net device, aborting.",dev->name);
1388 		return err;
1389 	}
1390 
1391 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1392 	&& !defined(BITBANGMII)
1393 	miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
1394 #endif
1395 
1396 	return 1;
1397 }
1398 
1399 int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
1400 {
1401 	int i;
1402 
1403 	for (i = 0; i < num; i++)
1404 		uec_initialize(bis, &uecs[i]);
1405 
1406 	return 0;
1407 }
1408 
1409 int uec_standard_init(bd_t *bis)
1410 {
1411 	return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
1412 }
1413