xref: /openbmc/u-boot/drivers/qe/uec.c (revision a380279b)
1 /*
2  * Copyright (C) 2006-2009 Freescale Semiconductor, Inc.
3  *
4  * Dave Liu <daveliu@freescale.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of
9  * the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19  * MA 02111-1307 USA
20  */
21 
22 #include "common.h"
23 #include "net.h"
24 #include "malloc.h"
25 #include "asm/errno.h"
26 #include "asm/io.h"
27 #include "asm/immap_qe.h"
28 #include "qe.h"
29 #include "uccf.h"
30 #include "uec.h"
31 #include "uec_phy.h"
32 #include "miiphy.h"
33 
34 /* Default UTBIPAR SMI address */
35 #ifndef CONFIG_UTBIPAR_INIT_TBIPA
36 #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
37 #endif
38 
39 static uec_info_t uec_info[] = {
40 #ifdef CONFIG_UEC_ETH1
41 	STD_UEC_INFO(1),	/* UEC1 */
42 #endif
43 #ifdef CONFIG_UEC_ETH2
44 	STD_UEC_INFO(2),	/* UEC2 */
45 #endif
46 #ifdef CONFIG_UEC_ETH3
47 	STD_UEC_INFO(3),	/* UEC3 */
48 #endif
49 #ifdef CONFIG_UEC_ETH4
50 	STD_UEC_INFO(4),	/* UEC4 */
51 #endif
52 #ifdef CONFIG_UEC_ETH5
53 	STD_UEC_INFO(5),	/* UEC5 */
54 #endif
55 #ifdef CONFIG_UEC_ETH6
56 	STD_UEC_INFO(6),	/* UEC6 */
57 #endif
58 #ifdef CONFIG_UEC_ETH7
59 	STD_UEC_INFO(7),	/* UEC7 */
60 #endif
61 #ifdef CONFIG_UEC_ETH8
62 	STD_UEC_INFO(8),	/* UEC8 */
63 #endif
64 };
65 
66 #define MAXCONTROLLERS	(8)
67 
68 static struct eth_device *devlist[MAXCONTROLLERS];
69 
70 u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
71 void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
72 
73 static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
74 {
75 	uec_t		*uec_regs;
76 	u32		maccfg1;
77 
78 	if (!uec) {
79 		printf("%s: uec not initial\n", __FUNCTION__);
80 		return -EINVAL;
81 	}
82 	uec_regs = uec->uec_regs;
83 
84 	maccfg1 = in_be32(&uec_regs->maccfg1);
85 
86 	if (mode & COMM_DIR_TX)	{
87 		maccfg1 |= MACCFG1_ENABLE_TX;
88 		out_be32(&uec_regs->maccfg1, maccfg1);
89 		uec->mac_tx_enabled = 1;
90 	}
91 
92 	if (mode & COMM_DIR_RX)	{
93 		maccfg1 |= MACCFG1_ENABLE_RX;
94 		out_be32(&uec_regs->maccfg1, maccfg1);
95 		uec->mac_rx_enabled = 1;
96 	}
97 
98 	return 0;
99 }
100 
101 static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
102 {
103 	uec_t		*uec_regs;
104 	u32		maccfg1;
105 
106 	if (!uec) {
107 		printf("%s: uec not initial\n", __FUNCTION__);
108 		return -EINVAL;
109 	}
110 	uec_regs = uec->uec_regs;
111 
112 	maccfg1 = in_be32(&uec_regs->maccfg1);
113 
114 	if (mode & COMM_DIR_TX)	{
115 		maccfg1 &= ~MACCFG1_ENABLE_TX;
116 		out_be32(&uec_regs->maccfg1, maccfg1);
117 		uec->mac_tx_enabled = 0;
118 	}
119 
120 	if (mode & COMM_DIR_RX)	{
121 		maccfg1 &= ~MACCFG1_ENABLE_RX;
122 		out_be32(&uec_regs->maccfg1, maccfg1);
123 		uec->mac_rx_enabled = 0;
124 	}
125 
126 	return 0;
127 }
128 
129 static int uec_graceful_stop_tx(uec_private_t *uec)
130 {
131 	ucc_fast_t		*uf_regs;
132 	u32			cecr_subblock;
133 	u32			ucce;
134 
135 	if (!uec || !uec->uccf) {
136 		printf("%s: No handle passed.\n", __FUNCTION__);
137 		return -EINVAL;
138 	}
139 
140 	uf_regs = uec->uccf->uf_regs;
141 
142 	/* Clear the grace stop event */
143 	out_be32(&uf_regs->ucce, UCCE_GRA);
144 
145 	/* Issue host command */
146 	cecr_subblock =
147 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
148 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
149 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
150 
151 	/* Wait for command to complete */
152 	do {
153 		ucce = in_be32(&uf_regs->ucce);
154 	} while (! (ucce & UCCE_GRA));
155 
156 	uec->grace_stopped_tx = 1;
157 
158 	return 0;
159 }
160 
161 static int uec_graceful_stop_rx(uec_private_t *uec)
162 {
163 	u32		cecr_subblock;
164 	u8		ack;
165 
166 	if (!uec) {
167 		printf("%s: No handle passed.\n", __FUNCTION__);
168 		return -EINVAL;
169 	}
170 
171 	if (!uec->p_rx_glbl_pram) {
172 		printf("%s: No init rx global parameter\n", __FUNCTION__);
173 		return -EINVAL;
174 	}
175 
176 	/* Clear acknowledge bit */
177 	ack = uec->p_rx_glbl_pram->rxgstpack;
178 	ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
179 	uec->p_rx_glbl_pram->rxgstpack = ack;
180 
181 	/* Keep issuing cmd and checking ack bit until it is asserted */
182 	do {
183 		/* Issue host command */
184 		cecr_subblock =
185 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
186 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
187 				 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
188 		ack = uec->p_rx_glbl_pram->rxgstpack;
189 	} while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
190 
191 	uec->grace_stopped_rx = 1;
192 
193 	return 0;
194 }
195 
196 static int uec_restart_tx(uec_private_t *uec)
197 {
198 	u32		cecr_subblock;
199 
200 	if (!uec || !uec->uec_info) {
201 		printf("%s: No handle passed.\n", __FUNCTION__);
202 		return -EINVAL;
203 	}
204 
205 	cecr_subblock =
206 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
207 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
208 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
209 
210 	uec->grace_stopped_tx = 0;
211 
212 	return 0;
213 }
214 
215 static int uec_restart_rx(uec_private_t *uec)
216 {
217 	u32		cecr_subblock;
218 
219 	if (!uec || !uec->uec_info) {
220 		printf("%s: No handle passed.\n", __FUNCTION__);
221 		return -EINVAL;
222 	}
223 
224 	cecr_subblock =
225 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
226 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
227 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
228 
229 	uec->grace_stopped_rx = 0;
230 
231 	return 0;
232 }
233 
234 static int uec_open(uec_private_t *uec, comm_dir_e mode)
235 {
236 	ucc_fast_private_t	*uccf;
237 
238 	if (!uec || !uec->uccf) {
239 		printf("%s: No handle passed.\n", __FUNCTION__);
240 		return -EINVAL;
241 	}
242 	uccf = uec->uccf;
243 
244 	/* check if the UCC number is in range. */
245 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
246 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
247 		return -EINVAL;
248 	}
249 
250 	/* Enable MAC */
251 	uec_mac_enable(uec, mode);
252 
253 	/* Enable UCC fast */
254 	ucc_fast_enable(uccf, mode);
255 
256 	/* RISC microcode start */
257 	if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
258 		uec_restart_tx(uec);
259 	}
260 	if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
261 		uec_restart_rx(uec);
262 	}
263 
264 	return 0;
265 }
266 
267 static int uec_stop(uec_private_t *uec, comm_dir_e mode)
268 {
269 	ucc_fast_private_t	*uccf;
270 
271 	if (!uec || !uec->uccf) {
272 		printf("%s: No handle passed.\n", __FUNCTION__);
273 		return -EINVAL;
274 	}
275 	uccf = uec->uccf;
276 
277 	/* check if the UCC number is in range. */
278 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
279 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
280 		return -EINVAL;
281 	}
282 	/* Stop any transmissions */
283 	if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
284 		uec_graceful_stop_tx(uec);
285 	}
286 	/* Stop any receptions */
287 	if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
288 		uec_graceful_stop_rx(uec);
289 	}
290 
291 	/* Disable the UCC fast */
292 	ucc_fast_disable(uec->uccf, mode);
293 
294 	/* Disable the MAC */
295 	uec_mac_disable(uec, mode);
296 
297 	return 0;
298 }
299 
300 static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
301 {
302 	uec_t		*uec_regs;
303 	u32		maccfg2;
304 
305 	if (!uec) {
306 		printf("%s: uec not initial\n", __FUNCTION__);
307 		return -EINVAL;
308 	}
309 	uec_regs = uec->uec_regs;
310 
311 	if (duplex == DUPLEX_HALF) {
312 		maccfg2 = in_be32(&uec_regs->maccfg2);
313 		maccfg2 &= ~MACCFG2_FDX;
314 		out_be32(&uec_regs->maccfg2, maccfg2);
315 	}
316 
317 	if (duplex == DUPLEX_FULL) {
318 		maccfg2 = in_be32(&uec_regs->maccfg2);
319 		maccfg2 |= MACCFG2_FDX;
320 		out_be32(&uec_regs->maccfg2, maccfg2);
321 	}
322 
323 	return 0;
324 }
325 
326 static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
327 {
328 	enet_interface_e	enet_if_mode;
329 	uec_info_t		*uec_info;
330 	uec_t			*uec_regs;
331 	u32			upsmr;
332 	u32			maccfg2;
333 
334 	if (!uec) {
335 		printf("%s: uec not initial\n", __FUNCTION__);
336 		return -EINVAL;
337 	}
338 
339 	uec_info = uec->uec_info;
340 	uec_regs = uec->uec_regs;
341 	enet_if_mode = if_mode;
342 
343 	maccfg2 = in_be32(&uec_regs->maccfg2);
344 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
345 
346 	upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
347 	upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
348 
349 	switch (enet_if_mode) {
350 		case ENET_100_MII:
351 		case ENET_10_MII:
352 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
353 			break;
354 		case ENET_1000_GMII:
355 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
356 			break;
357 		case ENET_1000_TBI:
358 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
359 			upsmr |= UPSMR_TBIM;
360 			break;
361 		case ENET_1000_RTBI:
362 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
363 			upsmr |= (UPSMR_RPM | UPSMR_TBIM);
364 			break;
365 		case ENET_1000_RGMII_RXID:
366 		case ENET_1000_RGMII_ID:
367 		case ENET_1000_RGMII:
368 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
369 			upsmr |= UPSMR_RPM;
370 			break;
371 		case ENET_100_RGMII:
372 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
373 			upsmr |= UPSMR_RPM;
374 			break;
375 		case ENET_10_RGMII:
376 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
377 			upsmr |= (UPSMR_RPM | UPSMR_R10M);
378 			break;
379 		case ENET_100_RMII:
380 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
381 			upsmr |= UPSMR_RMM;
382 			break;
383 		case ENET_10_RMII:
384 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
385 			upsmr |= (UPSMR_R10M | UPSMR_RMM);
386 			break;
387 		case ENET_1000_SGMII:
388 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
389 			upsmr |= UPSMR_SGMM;
390 			break;
391 		default:
392 			return -EINVAL;
393 			break;
394 	}
395 	out_be32(&uec_regs->maccfg2, maccfg2);
396 	out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
397 
398 	return 0;
399 }
400 
401 static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
402 {
403 	uint		timeout = 0x1000;
404 	u32		miimcfg = 0;
405 
406 	miimcfg = in_be32(&uec_mii_regs->miimcfg);
407 	miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
408 	out_be32(&uec_mii_regs->miimcfg, miimcfg);
409 
410 	/* Wait until the bus is free */
411 	while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
412 	if (timeout <= 0) {
413 		printf("%s: The MII Bus is stuck!", __FUNCTION__);
414 		return -ETIMEDOUT;
415 	}
416 
417 	return 0;
418 }
419 
420 static int init_phy(struct eth_device *dev)
421 {
422 	uec_private_t		*uec;
423 	uec_mii_t		*umii_regs;
424 	struct uec_mii_info	*mii_info;
425 	struct phy_info		*curphy;
426 	int			err;
427 
428 	uec = (uec_private_t *)dev->priv;
429 	umii_regs = uec->uec_mii_regs;
430 
431 	uec->oldlink = 0;
432 	uec->oldspeed = 0;
433 	uec->oldduplex = -1;
434 
435 	mii_info = malloc(sizeof(*mii_info));
436 	if (!mii_info) {
437 		printf("%s: Could not allocate mii_info", dev->name);
438 		return -ENOMEM;
439 	}
440 	memset(mii_info, 0, sizeof(*mii_info));
441 
442 	if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
443 		mii_info->speed = SPEED_1000;
444 	} else {
445 		mii_info->speed = SPEED_100;
446 	}
447 
448 	mii_info->duplex = DUPLEX_FULL;
449 	mii_info->pause = 0;
450 	mii_info->link = 1;
451 
452 	mii_info->advertising = (ADVERTISED_10baseT_Half |
453 				ADVERTISED_10baseT_Full |
454 				ADVERTISED_100baseT_Half |
455 				ADVERTISED_100baseT_Full |
456 				ADVERTISED_1000baseT_Full);
457 	mii_info->autoneg = 1;
458 	mii_info->mii_id = uec->uec_info->phy_address;
459 	mii_info->dev = dev;
460 
461 	mii_info->mdio_read = &uec_read_phy_reg;
462 	mii_info->mdio_write = &uec_write_phy_reg;
463 
464 	uec->mii_info = mii_info;
465 
466 	qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
467 
468 	if (init_mii_management_configuration(umii_regs)) {
469 		printf("%s: The MII Bus is stuck!", dev->name);
470 		err = -1;
471 		goto bus_fail;
472 	}
473 
474 	/* get info for this PHY */
475 	curphy = uec_get_phy_info(uec->mii_info);
476 	if (!curphy) {
477 		printf("%s: No PHY found", dev->name);
478 		err = -1;
479 		goto no_phy;
480 	}
481 
482 	mii_info->phyinfo = curphy;
483 
484 	/* Run the commands which initialize the PHY */
485 	if (curphy->init) {
486 		err = curphy->init(uec->mii_info);
487 		if (err)
488 			goto phy_init_fail;
489 	}
490 
491 	return 0;
492 
493 phy_init_fail:
494 no_phy:
495 bus_fail:
496 	free(mii_info);
497 	return err;
498 }
499 
500 static void adjust_link(struct eth_device *dev)
501 {
502 	uec_private_t		*uec = (uec_private_t *)dev->priv;
503 	uec_t			*uec_regs;
504 	struct uec_mii_info	*mii_info = uec->mii_info;
505 
506 	extern void change_phy_interface_mode(struct eth_device *dev,
507 					 enet_interface_e mode);
508 	uec_regs = uec->uec_regs;
509 
510 	if (mii_info->link) {
511 		/* Now we make sure that we can be in full duplex mode.
512 		* If not, we operate in half-duplex mode. */
513 		if (mii_info->duplex != uec->oldduplex) {
514 			if (!(mii_info->duplex)) {
515 				uec_set_mac_duplex(uec, DUPLEX_HALF);
516 				printf("%s: Half Duplex\n", dev->name);
517 			} else {
518 				uec_set_mac_duplex(uec, DUPLEX_FULL);
519 				printf("%s: Full Duplex\n", dev->name);
520 			}
521 			uec->oldduplex = mii_info->duplex;
522 		}
523 
524 		if (mii_info->speed != uec->oldspeed) {
525 			if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
526 				switch (mii_info->speed) {
527 				case 1000:
528 					break;
529 				case 100:
530 					printf ("switching to rgmii 100\n");
531 					/* change phy to rgmii 100 */
532 					change_phy_interface_mode(dev,
533 								ENET_100_RGMII);
534 					/* change the MAC interface mode */
535 					uec_set_mac_if_mode(uec,ENET_100_RGMII);
536 					break;
537 				case 10:
538 					printf ("switching to rgmii 10\n");
539 					/* change phy to rgmii 10 */
540 					change_phy_interface_mode(dev,
541 								ENET_10_RGMII);
542 					/* change the MAC interface mode */
543 					uec_set_mac_if_mode(uec,ENET_10_RGMII);
544 					break;
545 				default:
546 					printf("%s: Ack,Speed(%d)is illegal\n",
547 						dev->name, mii_info->speed);
548 					break;
549 				}
550 			}
551 
552 			printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
553 			uec->oldspeed = mii_info->speed;
554 		}
555 
556 		if (!uec->oldlink) {
557 			printf("%s: Link is up\n", dev->name);
558 			uec->oldlink = 1;
559 		}
560 
561 	} else { /* if (mii_info->link) */
562 		if (uec->oldlink) {
563 			printf("%s: Link is down\n", dev->name);
564 			uec->oldlink = 0;
565 			uec->oldspeed = 0;
566 			uec->oldduplex = -1;
567 		}
568 	}
569 }
570 
571 static void phy_change(struct eth_device *dev)
572 {
573 	uec_private_t	*uec = (uec_private_t *)dev->priv;
574 
575 	/* Update the link, speed, duplex */
576 	uec->mii_info->phyinfo->read_status(uec->mii_info);
577 
578 	/* Adjust the interface according to speed */
579 	adjust_link(dev);
580 }
581 
582 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
583 	&& !defined(BITBANGMII)
584 
585 /*
586  * Find a device index from the devlist by name
587  *
588  * Returns:
589  *  The index where the device is located, -1 on error
590  */
591 static int uec_miiphy_find_dev_by_name(char *devname)
592 {
593 	int i;
594 
595 	for (i = 0; i < MAXCONTROLLERS; i++) {
596 		if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
597 			break;
598 		}
599 	}
600 
601 	/* If device cannot be found, returns -1 */
602 	if (i == MAXCONTROLLERS) {
603 		debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
604 		i = -1;
605 	}
606 
607 	return i;
608 }
609 
610 /*
611  * Read a MII PHY register.
612  *
613  * Returns:
614  *  0 on success
615  */
616 static int uec_miiphy_read(char *devname, unsigned char addr,
617 			    unsigned char reg, unsigned short *value)
618 {
619 	int devindex = 0;
620 
621 	if (devname == NULL || value == NULL) {
622 		debug("%s: NULL pointer given\n", __FUNCTION__);
623 	} else {
624 		devindex = uec_miiphy_find_dev_by_name(devname);
625 		if (devindex >= 0) {
626 			*value = uec_read_phy_reg(devlist[devindex], addr, reg);
627 		}
628 	}
629 	return 0;
630 }
631 
632 /*
633  * Write a MII PHY register.
634  *
635  * Returns:
636  *  0 on success
637  */
638 static int uec_miiphy_write(char *devname, unsigned char addr,
639 			     unsigned char reg, unsigned short value)
640 {
641 	int devindex = 0;
642 
643 	if (devname == NULL) {
644 		debug("%s: NULL pointer given\n", __FUNCTION__);
645 	} else {
646 		devindex = uec_miiphy_find_dev_by_name(devname);
647 		if (devindex >= 0) {
648 			uec_write_phy_reg(devlist[devindex], addr, reg, value);
649 		}
650 	}
651 	return 0;
652 }
653 #endif
654 
655 static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
656 {
657 	uec_t		*uec_regs;
658 	u32		mac_addr1;
659 	u32		mac_addr2;
660 
661 	if (!uec) {
662 		printf("%s: uec not initial\n", __FUNCTION__);
663 		return -EINVAL;
664 	}
665 
666 	uec_regs = uec->uec_regs;
667 
668 	/* if a station address of 0x12345678ABCD, perform a write to
669 	MACSTNADDR1 of 0xCDAB7856,
670 	MACSTNADDR2 of 0x34120000 */
671 
672 	mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
673 			(mac_addr[3] << 8)  | (mac_addr[2]);
674 	out_be32(&uec_regs->macstnaddr1, mac_addr1);
675 
676 	mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
677 	out_be32(&uec_regs->macstnaddr2, mac_addr2);
678 
679 	return 0;
680 }
681 
682 static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
683 					 int *threads_num_ret)
684 {
685 	int	num_threads_numerica;
686 
687 	switch (threads_num) {
688 		case UEC_NUM_OF_THREADS_1:
689 			num_threads_numerica = 1;
690 			break;
691 		case UEC_NUM_OF_THREADS_2:
692 			num_threads_numerica = 2;
693 			break;
694 		case UEC_NUM_OF_THREADS_4:
695 			num_threads_numerica = 4;
696 			break;
697 		case UEC_NUM_OF_THREADS_6:
698 			num_threads_numerica = 6;
699 			break;
700 		case UEC_NUM_OF_THREADS_8:
701 			num_threads_numerica = 8;
702 			break;
703 		default:
704 			printf("%s: Bad number of threads value.",
705 				 __FUNCTION__);
706 			return -EINVAL;
707 	}
708 
709 	*threads_num_ret = num_threads_numerica;
710 
711 	return 0;
712 }
713 
714 static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
715 {
716 	uec_info_t	*uec_info;
717 	u32		end_bd;
718 	u8		bmrx = 0;
719 	int		i;
720 
721 	uec_info = uec->uec_info;
722 
723 	/* Alloc global Tx parameter RAM page */
724 	uec->tx_glbl_pram_offset = qe_muram_alloc(
725 				sizeof(uec_tx_global_pram_t),
726 				 UEC_TX_GLOBAL_PRAM_ALIGNMENT);
727 	uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
728 				qe_muram_addr(uec->tx_glbl_pram_offset);
729 
730 	/* Zero the global Tx prameter RAM */
731 	memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
732 
733 	/* Init global Tx parameter RAM */
734 
735 	/* TEMODER, RMON statistics disable, one Tx queue */
736 	out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
737 
738 	/* SQPTR */
739 	uec->send_q_mem_reg_offset = qe_muram_alloc(
740 				sizeof(uec_send_queue_qd_t),
741 				 UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
742 	uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
743 				qe_muram_addr(uec->send_q_mem_reg_offset);
744 	out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
745 
746 	/* Setup the table with TxBDs ring */
747 	end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
748 					 * SIZEOFBD;
749 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
750 				 (u32)(uec->p_tx_bd_ring));
751 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
752 						 end_bd);
753 
754 	/* Scheduler Base Pointer, we have only one Tx queue, no need it */
755 	out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
756 
757 	/* TxRMON Base Pointer, TxRMON disable, we don't need it */
758 	out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
759 
760 	/* TSTATE, global snooping, big endian, the CSB bus selected */
761 	bmrx = BMR_INIT_VALUE;
762 	out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
763 
764 	/* IPH_Offset */
765 	for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
766 		out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
767 	}
768 
769 	/* VTAG table */
770 	for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
771 		out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
772 	}
773 
774 	/* TQPTR */
775 	uec->thread_dat_tx_offset = qe_muram_alloc(
776 		num_threads_tx * sizeof(uec_thread_data_tx_t) +
777 		 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
778 
779 	uec->p_thread_data_tx = (uec_thread_data_tx_t *)
780 				qe_muram_addr(uec->thread_dat_tx_offset);
781 	out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
782 }
783 
784 static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
785 {
786 	u8	bmrx = 0;
787 	int	i;
788 	uec_82xx_address_filtering_pram_t	*p_af_pram;
789 
790 	/* Allocate global Rx parameter RAM page */
791 	uec->rx_glbl_pram_offset = qe_muram_alloc(
792 		sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
793 	uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
794 				qe_muram_addr(uec->rx_glbl_pram_offset);
795 
796 	/* Zero Global Rx parameter RAM */
797 	memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
798 
799 	/* Init global Rx parameter RAM */
800 	/* REMODER, Extended feature mode disable, VLAN disable,
801 	 LossLess flow control disable, Receive firmware statisic disable,
802 	 Extended address parsing mode disable, One Rx queues,
803 	 Dynamic maximum/minimum frame length disable, IP checksum check
804 	 disable, IP address alignment disable
805 	*/
806 	out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
807 
808 	/* RQPTR */
809 	uec->thread_dat_rx_offset = qe_muram_alloc(
810 			num_threads_rx * sizeof(uec_thread_data_rx_t),
811 			 UEC_THREAD_DATA_ALIGNMENT);
812 	uec->p_thread_data_rx = (uec_thread_data_rx_t *)
813 				qe_muram_addr(uec->thread_dat_rx_offset);
814 	out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
815 
816 	/* Type_or_Len */
817 	out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
818 
819 	/* RxRMON base pointer, we don't need it */
820 	out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
821 
822 	/* IntCoalescingPTR, we don't need it, no interrupt */
823 	out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
824 
825 	/* RSTATE, global snooping, big endian, the CSB bus selected */
826 	bmrx = BMR_INIT_VALUE;
827 	out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
828 
829 	/* MRBLR */
830 	out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
831 
832 	/* RBDQPTR */
833 	uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
834 				sizeof(uec_rx_bd_queues_entry_t) + \
835 				sizeof(uec_rx_prefetched_bds_t),
836 				 UEC_RX_BD_QUEUES_ALIGNMENT);
837 	uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
838 				qe_muram_addr(uec->rx_bd_qs_tbl_offset);
839 
840 	/* Zero it */
841 	memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
842 					sizeof(uec_rx_prefetched_bds_t));
843 	out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
844 	out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
845 		 (u32)uec->p_rx_bd_ring);
846 
847 	/* MFLR */
848 	out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
849 	/* MINFLR */
850 	out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
851 	/* MAXD1 */
852 	out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
853 	/* MAXD2 */
854 	out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
855 	/* ECAM_PTR */
856 	out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
857 	/* L2QT */
858 	out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
859 	/* L3QT */
860 	for (i = 0; i < 8; i++)	{
861 		out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
862 	}
863 
864 	/* VLAN_TYPE */
865 	out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
866 	/* TCI */
867 	out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
868 
869 	/* Clear PQ2 style address filtering hash table */
870 	p_af_pram = (uec_82xx_address_filtering_pram_t *) \
871 			uec->p_rx_glbl_pram->addressfiltering;
872 
873 	p_af_pram->iaddr_h = 0;
874 	p_af_pram->iaddr_l = 0;
875 	p_af_pram->gaddr_h = 0;
876 	p_af_pram->gaddr_l = 0;
877 }
878 
879 static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
880 					 int thread_tx, int thread_rx)
881 {
882 	uec_init_cmd_pram_t		*p_init_enet_param;
883 	u32				init_enet_param_offset;
884 	uec_info_t			*uec_info;
885 	int				i;
886 	int				snum;
887 	u32				init_enet_offset;
888 	u32				entry_val;
889 	u32				command;
890 	u32				cecr_subblock;
891 
892 	uec_info = uec->uec_info;
893 
894 	/* Allocate init enet command parameter */
895 	uec->init_enet_param_offset = qe_muram_alloc(
896 					sizeof(uec_init_cmd_pram_t), 4);
897 	init_enet_param_offset = uec->init_enet_param_offset;
898 	uec->p_init_enet_param = (uec_init_cmd_pram_t *)
899 				qe_muram_addr(uec->init_enet_param_offset);
900 
901 	/* Zero init enet command struct */
902 	memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
903 
904 	/* Init the command struct */
905 	p_init_enet_param = uec->p_init_enet_param;
906 	p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
907 	p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
908 	p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
909 	p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
910 	p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
911 	p_init_enet_param->largestexternallookupkeysize = 0;
912 
913 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
914 					 << ENET_INIT_PARAM_RGF_SHIFT;
915 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
916 					 << ENET_INIT_PARAM_TGF_SHIFT;
917 
918 	/* Init Rx global parameter pointer */
919 	p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
920 						 (u32)uec_info->risc_rx;
921 
922 	/* Init Rx threads */
923 	for (i = 0; i < (thread_rx + 1); i++) {
924 		if ((snum = qe_get_snum()) < 0) {
925 			printf("%s can not get snum\n", __FUNCTION__);
926 			return -ENOMEM;
927 		}
928 
929 		if (i==0) {
930 			init_enet_offset = 0;
931 		} else {
932 			init_enet_offset = qe_muram_alloc(
933 					sizeof(uec_thread_rx_pram_t),
934 					 UEC_THREAD_RX_PRAM_ALIGNMENT);
935 		}
936 
937 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
938 				 init_enet_offset | (u32)uec_info->risc_rx;
939 		p_init_enet_param->rxthread[i] = entry_val;
940 	}
941 
942 	/* Init Tx global parameter pointer */
943 	p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
944 					 (u32)uec_info->risc_tx;
945 
946 	/* Init Tx threads */
947 	for (i = 0; i < thread_tx; i++) {
948 		if ((snum = qe_get_snum()) < 0)	{
949 			printf("%s can not get snum\n", __FUNCTION__);
950 			return -ENOMEM;
951 		}
952 
953 		init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
954 						 UEC_THREAD_TX_PRAM_ALIGNMENT);
955 
956 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
957 				 init_enet_offset | (u32)uec_info->risc_tx;
958 		p_init_enet_param->txthread[i] = entry_val;
959 	}
960 
961 	__asm__ __volatile__("sync");
962 
963 	/* Issue QE command */
964 	command = QE_INIT_TX_RX;
965 	cecr_subblock =	ucc_fast_get_qe_cr_subblock(
966 				uec->uec_info->uf_info.ucc_num);
967 	qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
968 						 init_enet_param_offset);
969 
970 	return 0;
971 }
972 
973 static int uec_startup(uec_private_t *uec)
974 {
975 	uec_info_t			*uec_info;
976 	ucc_fast_info_t			*uf_info;
977 	ucc_fast_private_t		*uccf;
978 	ucc_fast_t			*uf_regs;
979 	uec_t				*uec_regs;
980 	int				num_threads_tx;
981 	int				num_threads_rx;
982 	u32				utbipar;
983 	enet_interface_e		enet_interface;
984 	u32				length;
985 	u32				align;
986 	qe_bd_t				*bd;
987 	u8				*buf;
988 	int				i;
989 
990 	if (!uec || !uec->uec_info) {
991 		printf("%s: uec or uec_info not initial\n", __FUNCTION__);
992 		return -EINVAL;
993 	}
994 
995 	uec_info = uec->uec_info;
996 	uf_info = &(uec_info->uf_info);
997 
998 	/* Check if Rx BD ring len is illegal */
999 	if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
1000 		(uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
1001 		printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
1002 			 __FUNCTION__);
1003 		return -EINVAL;
1004 	}
1005 
1006 	/* Check if Tx BD ring len is illegal */
1007 	if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
1008 		printf("%s: Tx BD ring length must not be smaller than 2.\n",
1009 			 __FUNCTION__);
1010 		return -EINVAL;
1011 	}
1012 
1013 	/* Check if MRBLR is illegal */
1014 	if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN  % UEC_MRBLR_ALIGNMENT)) {
1015 		printf("%s: max rx buffer length must be mutliple of 128.\n",
1016 			 __FUNCTION__);
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Both Rx and Tx are stopped */
1021 	uec->grace_stopped_rx = 1;
1022 	uec->grace_stopped_tx = 1;
1023 
1024 	/* Init UCC fast */
1025 	if (ucc_fast_init(uf_info, &uccf)) {
1026 		printf("%s: failed to init ucc fast\n", __FUNCTION__);
1027 		return -ENOMEM;
1028 	}
1029 
1030 	/* Save uccf */
1031 	uec->uccf = uccf;
1032 
1033 	/* Convert the Tx threads number */
1034 	if (uec_convert_threads_num(uec_info->num_threads_tx,
1035 					 &num_threads_tx)) {
1036 		return -EINVAL;
1037 	}
1038 
1039 	/* Convert the Rx threads number */
1040 	if (uec_convert_threads_num(uec_info->num_threads_rx,
1041 					 &num_threads_rx)) {
1042 		return -EINVAL;
1043 	}
1044 
1045 	uf_regs = uccf->uf_regs;
1046 
1047 	/* UEC register is following UCC fast registers */
1048 	uec_regs = (uec_t *)(&uf_regs->ucc_eth);
1049 
1050 	/* Save the UEC register pointer to UEC private struct */
1051 	uec->uec_regs = uec_regs;
1052 
1053 	/* Init UPSMR, enable hardware statistics (UCC) */
1054 	out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
1055 
1056 	/* Init MACCFG1, flow control disable, disable Tx and Rx */
1057 	out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
1058 
1059 	/* Init MACCFG2, length check, MAC PAD and CRC enable */
1060 	out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
1061 
1062 	/* Setup MAC interface mode */
1063 	uec_set_mac_if_mode(uec, uec_info->enet_interface);
1064 
1065 	/* Setup MII management base */
1066 #ifndef CONFIG_eTSEC_MDIO_BUS
1067 	uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
1068 #else
1069 	uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
1070 #endif
1071 
1072 	/* Setup MII master clock source */
1073 	qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
1074 
1075 	/* Setup UTBIPAR */
1076 	utbipar = in_be32(&uec_regs->utbipar);
1077 	utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
1078 	enet_interface = uec->uec_info->enet_interface;
1079 
1080 	/* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
1081 	 * This frees up the remaining SMI addresses for use.
1082 	 */
1083 	utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
1084 	out_be32(&uec_regs->utbipar, utbipar);
1085 
1086 	/* Configure the TBI for SGMII operation */
1087 	if (uec->uec_info->enet_interface == ENET_1000_SGMII) {
1088 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1089 			ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1090 
1091 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1092 			ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1093 
1094 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1095 			ENET_TBI_MII_CR, TBICR_SETTINGS);
1096 	}
1097 
1098 	/* Allocate Tx BDs */
1099 	length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
1100 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
1101 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1102 	if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
1103 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
1104 		length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1105 	}
1106 
1107 	align = UEC_TX_BD_RING_ALIGNMENT;
1108 	uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
1109 	if (uec->tx_bd_ring_offset != 0) {
1110 		uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
1111 						 & ~(align - 1));
1112 	}
1113 
1114 	/* Zero all of Tx BDs */
1115 	memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
1116 
1117 	/* Allocate Rx BDs */
1118 	length = uec_info->rx_bd_ring_len * SIZEOFBD;
1119 	align = UEC_RX_BD_RING_ALIGNMENT;
1120 	uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
1121 	if (uec->rx_bd_ring_offset != 0) {
1122 		uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
1123 							 & ~(align - 1));
1124 	}
1125 
1126 	/* Zero all of Rx BDs */
1127 	memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
1128 
1129 	/* Allocate Rx buffer */
1130 	length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
1131 	align = UEC_RX_DATA_BUF_ALIGNMENT;
1132 	uec->rx_buf_offset = (u32)malloc(length + align);
1133 	if (uec->rx_buf_offset != 0) {
1134 		uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
1135 						 & ~(align - 1));
1136 	}
1137 
1138 	/* Zero all of the Rx buffer */
1139 	memset((void *)(uec->rx_buf_offset), 0, length + align);
1140 
1141 	/* Init TxBD ring */
1142 	bd = (qe_bd_t *)uec->p_tx_bd_ring;
1143 	uec->txBd = bd;
1144 
1145 	for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
1146 		BD_DATA_CLEAR(bd);
1147 		BD_STATUS_SET(bd, 0);
1148 		BD_LENGTH_SET(bd, 0);
1149 		bd ++;
1150 	}
1151 	BD_STATUS_SET((--bd), TxBD_WRAP);
1152 
1153 	/* Init RxBD ring */
1154 	bd = (qe_bd_t *)uec->p_rx_bd_ring;
1155 	uec->rxBd = bd;
1156 	buf = uec->p_rx_buf;
1157 	for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
1158 		BD_DATA_SET(bd, buf);
1159 		BD_LENGTH_SET(bd, 0);
1160 		BD_STATUS_SET(bd, RxBD_EMPTY);
1161 		buf += MAX_RXBUF_LEN;
1162 		bd ++;
1163 	}
1164 	BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
1165 
1166 	/* Init global Tx parameter RAM */
1167 	uec_init_tx_parameter(uec, num_threads_tx);
1168 
1169 	/* Init global Rx parameter RAM */
1170 	uec_init_rx_parameter(uec, num_threads_rx);
1171 
1172 	/* Init ethernet Tx and Rx parameter command */
1173 	if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
1174 					 num_threads_rx)) {
1175 		printf("%s issue init enet cmd failed\n", __FUNCTION__);
1176 		return -ENOMEM;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static int uec_init(struct eth_device* dev, bd_t *bd)
1183 {
1184 	uec_private_t		*uec;
1185 	int			err, i;
1186 	struct phy_info         *curphy;
1187 
1188 	uec = (uec_private_t *)dev->priv;
1189 
1190 	if (uec->the_first_run == 0) {
1191 		err = init_phy(dev);
1192 		if (err) {
1193 			printf("%s: Cannot initialize PHY, aborting.\n",
1194 			       dev->name);
1195 			return err;
1196 		}
1197 
1198 		curphy = uec->mii_info->phyinfo;
1199 
1200 		if (curphy->config_aneg) {
1201 			err = curphy->config_aneg(uec->mii_info);
1202 			if (err) {
1203 				printf("%s: Can't negotiate PHY\n", dev->name);
1204 				return err;
1205 			}
1206 		}
1207 
1208 		/* Give PHYs up to 5 sec to report a link */
1209 		i = 50;
1210 		do {
1211 			err = curphy->read_status(uec->mii_info);
1212 			udelay(100000);
1213 		} while (((i-- > 0) && !uec->mii_info->link) || err);
1214 
1215 		if (err || i <= 0)
1216 			printf("warning: %s: timeout on PHY link\n", dev->name);
1217 
1218 		uec->the_first_run = 1;
1219 	}
1220 
1221 	/* Set up the MAC address */
1222 	if (dev->enetaddr[0] & 0x01) {
1223 		printf("%s: MacAddress is multcast address\n",
1224 			 __FUNCTION__);
1225 		return -1;
1226 	}
1227 	uec_set_mac_address(uec, dev->enetaddr);
1228 
1229 
1230 	err = uec_open(uec, COMM_DIR_RX_AND_TX);
1231 	if (err) {
1232 		printf("%s: cannot enable UEC device\n", dev->name);
1233 		return -1;
1234 	}
1235 
1236 	phy_change(dev);
1237 
1238 	return (uec->mii_info->link ? 0 : -1);
1239 }
1240 
1241 static void uec_halt(struct eth_device* dev)
1242 {
1243 	uec_private_t	*uec = (uec_private_t *)dev->priv;
1244 	uec_stop(uec, COMM_DIR_RX_AND_TX);
1245 }
1246 
1247 static int uec_send(struct eth_device* dev, volatile void *buf, int len)
1248 {
1249 	uec_private_t		*uec;
1250 	ucc_fast_private_t	*uccf;
1251 	volatile qe_bd_t	*bd;
1252 	u16			status;
1253 	int			i;
1254 	int			result = 0;
1255 
1256 	uec = (uec_private_t *)dev->priv;
1257 	uccf = uec->uccf;
1258 	bd = uec->txBd;
1259 
1260 	/* Find an empty TxBD */
1261 	for (i = 0; bd->status & TxBD_READY; i++) {
1262 		if (i > 0x100000) {
1263 			printf("%s: tx buffer not ready\n", dev->name);
1264 			return result;
1265 		}
1266 	}
1267 
1268 	/* Init TxBD */
1269 	BD_DATA_SET(bd, buf);
1270 	BD_LENGTH_SET(bd, len);
1271 	status = bd->status;
1272 	status &= BD_WRAP;
1273 	status |= (TxBD_READY | TxBD_LAST);
1274 	BD_STATUS_SET(bd, status);
1275 
1276 	/* Tell UCC to transmit the buffer */
1277 	ucc_fast_transmit_on_demand(uccf);
1278 
1279 	/* Wait for buffer to be transmitted */
1280 	for (i = 0; bd->status & TxBD_READY; i++) {
1281 		if (i > 0x100000) {
1282 			printf("%s: tx error\n", dev->name);
1283 			return result;
1284 		}
1285 	}
1286 
1287 	/* Ok, the buffer be transimitted */
1288 	BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
1289 	uec->txBd = bd;
1290 	result = 1;
1291 
1292 	return result;
1293 }
1294 
1295 static int uec_recv(struct eth_device* dev)
1296 {
1297 	uec_private_t		*uec = dev->priv;
1298 	volatile qe_bd_t	*bd;
1299 	u16			status;
1300 	u16			len;
1301 	u8			*data;
1302 
1303 	bd = uec->rxBd;
1304 	status = bd->status;
1305 
1306 	while (!(status & RxBD_EMPTY)) {
1307 		if (!(status & RxBD_ERROR)) {
1308 			data = BD_DATA(bd);
1309 			len = BD_LENGTH(bd);
1310 			NetReceive(data, len);
1311 		} else {
1312 			printf("%s: Rx error\n", dev->name);
1313 		}
1314 		status &= BD_CLEAN;
1315 		BD_LENGTH_SET(bd, 0);
1316 		BD_STATUS_SET(bd, status | RxBD_EMPTY);
1317 		BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
1318 		status = bd->status;
1319 	}
1320 	uec->rxBd = bd;
1321 
1322 	return 1;
1323 }
1324 
1325 int uec_initialize(bd_t *bis, uec_info_t *uec_info)
1326 {
1327 	struct eth_device	*dev;
1328 	int			i;
1329 	uec_private_t		*uec;
1330 	int			err;
1331 
1332 	dev = (struct eth_device *)malloc(sizeof(struct eth_device));
1333 	if (!dev)
1334 		return 0;
1335 	memset(dev, 0, sizeof(struct eth_device));
1336 
1337 	/* Allocate the UEC private struct */
1338 	uec = (uec_private_t *)malloc(sizeof(uec_private_t));
1339 	if (!uec) {
1340 		return -ENOMEM;
1341 	}
1342 	memset(uec, 0, sizeof(uec_private_t));
1343 
1344 	/* Adjust uec_info */
1345 #if (MAX_QE_RISC == 4)
1346 	uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
1347 	uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
1348 #endif
1349 
1350 	devlist[uec_info->uf_info.ucc_num] = dev;
1351 
1352 	uec->uec_info = uec_info;
1353 	uec->dev = dev;
1354 
1355 	sprintf(dev->name, "FSL UEC%d", uec_info->uf_info.ucc_num);
1356 	dev->iobase = 0;
1357 	dev->priv = (void *)uec;
1358 	dev->init = uec_init;
1359 	dev->halt = uec_halt;
1360 	dev->send = uec_send;
1361 	dev->recv = uec_recv;
1362 
1363 	/* Clear the ethnet address */
1364 	for (i = 0; i < 6; i++)
1365 		dev->enetaddr[i] = 0;
1366 
1367 	eth_register(dev);
1368 
1369 	err = uec_startup(uec);
1370 	if (err) {
1371 		printf("%s: Cannot configure net device, aborting.",dev->name);
1372 		return err;
1373 	}
1374 
1375 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1376 	&& !defined(BITBANGMII)
1377 	miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
1378 #endif
1379 
1380 	return 1;
1381 }
1382 
1383 int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
1384 {
1385 	int i;
1386 
1387 	for (i = 0; i < num; i++)
1388 		uec_initialize(bis, &uecs[i]);
1389 
1390 	return 0;
1391 }
1392 
1393 int uec_standard_init(bd_t *bis)
1394 {
1395 	return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
1396 }
1397