xref: /openbmc/u-boot/drivers/qe/uec.c (revision 6d0f6bcf)
1 /*
2  * Copyright (C) 2006 Freescale Semiconductor, Inc.
3  *
4  * Dave Liu <daveliu@freescale.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of
9  * the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19  * MA 02111-1307 USA
20  */
21 
22 #include "common.h"
23 #include "net.h"
24 #include "malloc.h"
25 #include "asm/errno.h"
26 #include "asm/io.h"
27 #include "asm/immap_qe.h"
28 #include "qe.h"
29 #include "uccf.h"
30 #include "uec.h"
31 #include "uec_phy.h"
32 #include "miiphy.h"
33 
34 #ifdef CONFIG_UEC_ETH1
35 static uec_info_t eth1_uec_info = {
36 	.uf_info		= {
37 		.ucc_num	= CONFIG_SYS_UEC1_UCC_NUM,
38 		.rx_clock	= CONFIG_SYS_UEC1_RX_CLK,
39 		.tx_clock	= CONFIG_SYS_UEC1_TX_CLK,
40 		.eth_type	= CONFIG_SYS_UEC1_ETH_TYPE,
41 	},
42 #if (CONFIG_SYS_UEC1_ETH_TYPE == FAST_ETH)
43 	.num_threads_tx		= UEC_NUM_OF_THREADS_1,
44 	.num_threads_rx		= UEC_NUM_OF_THREADS_1,
45 #else
46 	.num_threads_tx		= UEC_NUM_OF_THREADS_4,
47 	.num_threads_rx		= UEC_NUM_OF_THREADS_4,
48 #endif
49 	.riscTx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
50 	.riscRx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
51 	.tx_bd_ring_len		= 16,
52 	.rx_bd_ring_len		= 16,
53 	.phy_address		= CONFIG_SYS_UEC1_PHY_ADDR,
54 	.enet_interface		= CONFIG_SYS_UEC1_INTERFACE_MODE,
55 };
56 #endif
57 #ifdef CONFIG_UEC_ETH2
58 static uec_info_t eth2_uec_info = {
59 	.uf_info		= {
60 		.ucc_num	= CONFIG_SYS_UEC2_UCC_NUM,
61 		.rx_clock	= CONFIG_SYS_UEC2_RX_CLK,
62 		.tx_clock	= CONFIG_SYS_UEC2_TX_CLK,
63 		.eth_type	= CONFIG_SYS_UEC2_ETH_TYPE,
64 	},
65 #if (CONFIG_SYS_UEC2_ETH_TYPE == FAST_ETH)
66 	.num_threads_tx		= UEC_NUM_OF_THREADS_1,
67 	.num_threads_rx		= UEC_NUM_OF_THREADS_1,
68 #else
69 	.num_threads_tx		= UEC_NUM_OF_THREADS_4,
70 	.num_threads_rx		= UEC_NUM_OF_THREADS_4,
71 #endif
72 	.riscTx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
73 	.riscRx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
74 	.tx_bd_ring_len		= 16,
75 	.rx_bd_ring_len		= 16,
76 	.phy_address		= CONFIG_SYS_UEC2_PHY_ADDR,
77 	.enet_interface		= CONFIG_SYS_UEC2_INTERFACE_MODE,
78 };
79 #endif
80 #ifdef CONFIG_UEC_ETH3
81 static uec_info_t eth3_uec_info = {
82 	.uf_info		= {
83 		.ucc_num	= CONFIG_SYS_UEC3_UCC_NUM,
84 		.rx_clock	= CONFIG_SYS_UEC3_RX_CLK,
85 		.tx_clock	= CONFIG_SYS_UEC3_TX_CLK,
86 		.eth_type	= CONFIG_SYS_UEC3_ETH_TYPE,
87 	},
88 #if (CONFIG_SYS_UEC3_ETH_TYPE == FAST_ETH)
89 	.num_threads_tx		= UEC_NUM_OF_THREADS_1,
90 	.num_threads_rx		= UEC_NUM_OF_THREADS_1,
91 #else
92 	.num_threads_tx		= UEC_NUM_OF_THREADS_4,
93 	.num_threads_rx		= UEC_NUM_OF_THREADS_4,
94 #endif
95 	.riscTx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
96 	.riscRx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
97 	.tx_bd_ring_len		= 16,
98 	.rx_bd_ring_len		= 16,
99 	.phy_address		= CONFIG_SYS_UEC3_PHY_ADDR,
100 	.enet_interface		= CONFIG_SYS_UEC3_INTERFACE_MODE,
101 };
102 #endif
103 #ifdef CONFIG_UEC_ETH4
104 static uec_info_t eth4_uec_info = {
105 	.uf_info		= {
106 		.ucc_num	= CONFIG_SYS_UEC4_UCC_NUM,
107 		.rx_clock	= CONFIG_SYS_UEC4_RX_CLK,
108 		.tx_clock	= CONFIG_SYS_UEC4_TX_CLK,
109 		.eth_type	= CONFIG_SYS_UEC4_ETH_TYPE,
110 	},
111 #if (CONFIG_SYS_UEC4_ETH_TYPE == FAST_ETH)
112 	.num_threads_tx		= UEC_NUM_OF_THREADS_1,
113 	.num_threads_rx		= UEC_NUM_OF_THREADS_1,
114 #else
115 	.num_threads_tx		= UEC_NUM_OF_THREADS_4,
116 	.num_threads_rx		= UEC_NUM_OF_THREADS_4,
117 #endif
118 	.riscTx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
119 	.riscRx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
120 	.tx_bd_ring_len		= 16,
121 	.rx_bd_ring_len		= 16,
122 	.phy_address		= CONFIG_SYS_UEC4_PHY_ADDR,
123 	.enet_interface		= CONFIG_SYS_UEC4_INTERFACE_MODE,
124 };
125 #endif
126 #ifdef CONFIG_UEC_ETH5
127 static uec_info_t eth5_uec_info = {
128 	.uf_info		= {
129 		.ucc_num	= CONFIG_SYS_UEC5_UCC_NUM,
130 		.rx_clock	= CONFIG_SYS_UEC5_RX_CLK,
131 		.tx_clock	= CONFIG_SYS_UEC5_TX_CLK,
132 		.eth_type	= CONFIG_SYS_UEC5_ETH_TYPE,
133 	},
134 #if (CONFIG_SYS_UEC5_ETH_TYPE == FAST_ETH)
135 	.num_threads_tx		= UEC_NUM_OF_THREADS_1,
136 	.num_threads_rx		= UEC_NUM_OF_THREADS_1,
137 #else
138 	.num_threads_tx		= UEC_NUM_OF_THREADS_4,
139 	.num_threads_rx		= UEC_NUM_OF_THREADS_4,
140 #endif
141 	.riscTx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
142 	.riscRx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
143 	.tx_bd_ring_len		= 16,
144 	.rx_bd_ring_len		= 16,
145 	.phy_address		= CONFIG_SYS_UEC5_PHY_ADDR,
146 	.enet_interface		= CONFIG_SYS_UEC5_INTERFACE_MODE,
147 };
148 #endif
149 #ifdef CONFIG_UEC_ETH6
150 static uec_info_t eth6_uec_info = {
151 	.uf_info		= {
152 		.ucc_num	= CONFIG_SYS_UEC6_UCC_NUM,
153 		.rx_clock	= CONFIG_SYS_UEC6_RX_CLK,
154 		.tx_clock	= CONFIG_SYS_UEC6_TX_CLK,
155 		.eth_type	= CONFIG_SYS_UEC6_ETH_TYPE,
156 	},
157 #if (CONFIG_SYS_UEC6_ETH_TYPE == FAST_ETH)
158 	.num_threads_tx		= UEC_NUM_OF_THREADS_1,
159 	.num_threads_rx		= UEC_NUM_OF_THREADS_1,
160 #else
161 	.num_threads_tx		= UEC_NUM_OF_THREADS_4,
162 	.num_threads_rx		= UEC_NUM_OF_THREADS_4,
163 #endif
164 	.riscTx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
165 	.riscRx			= QE_RISC_ALLOCATION_RISC1_AND_RISC2,
166 	.tx_bd_ring_len		= 16,
167 	.rx_bd_ring_len		= 16,
168 	.phy_address		= CONFIG_SYS_UEC6_PHY_ADDR,
169 	.enet_interface		= CONFIG_SYS_UEC6_INTERFACE_MODE,
170 };
171 #endif
172 
173 #define MAXCONTROLLERS	(6)
174 
175 static struct eth_device *devlist[MAXCONTROLLERS];
176 
177 u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
178 void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
179 
180 static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
181 {
182 	uec_t		*uec_regs;
183 	u32		maccfg1;
184 
185 	if (!uec) {
186 		printf("%s: uec not initial\n", __FUNCTION__);
187 		return -EINVAL;
188 	}
189 	uec_regs = uec->uec_regs;
190 
191 	maccfg1 = in_be32(&uec_regs->maccfg1);
192 
193 	if (mode & COMM_DIR_TX)	{
194 		maccfg1 |= MACCFG1_ENABLE_TX;
195 		out_be32(&uec_regs->maccfg1, maccfg1);
196 		uec->mac_tx_enabled = 1;
197 	}
198 
199 	if (mode & COMM_DIR_RX)	{
200 		maccfg1 |= MACCFG1_ENABLE_RX;
201 		out_be32(&uec_regs->maccfg1, maccfg1);
202 		uec->mac_rx_enabled = 1;
203 	}
204 
205 	return 0;
206 }
207 
208 static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
209 {
210 	uec_t		*uec_regs;
211 	u32		maccfg1;
212 
213 	if (!uec) {
214 		printf("%s: uec not initial\n", __FUNCTION__);
215 		return -EINVAL;
216 	}
217 	uec_regs = uec->uec_regs;
218 
219 	maccfg1 = in_be32(&uec_regs->maccfg1);
220 
221 	if (mode & COMM_DIR_TX)	{
222 		maccfg1 &= ~MACCFG1_ENABLE_TX;
223 		out_be32(&uec_regs->maccfg1, maccfg1);
224 		uec->mac_tx_enabled = 0;
225 	}
226 
227 	if (mode & COMM_DIR_RX)	{
228 		maccfg1 &= ~MACCFG1_ENABLE_RX;
229 		out_be32(&uec_regs->maccfg1, maccfg1);
230 		uec->mac_rx_enabled = 0;
231 	}
232 
233 	return 0;
234 }
235 
236 static int uec_graceful_stop_tx(uec_private_t *uec)
237 {
238 	ucc_fast_t		*uf_regs;
239 	u32			cecr_subblock;
240 	u32			ucce;
241 
242 	if (!uec || !uec->uccf) {
243 		printf("%s: No handle passed.\n", __FUNCTION__);
244 		return -EINVAL;
245 	}
246 
247 	uf_regs = uec->uccf->uf_regs;
248 
249 	/* Clear the grace stop event */
250 	out_be32(&uf_regs->ucce, UCCE_GRA);
251 
252 	/* Issue host command */
253 	cecr_subblock =
254 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
255 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
256 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
257 
258 	/* Wait for command to complete */
259 	do {
260 		ucce = in_be32(&uf_regs->ucce);
261 	} while (! (ucce & UCCE_GRA));
262 
263 	uec->grace_stopped_tx = 1;
264 
265 	return 0;
266 }
267 
268 static int uec_graceful_stop_rx(uec_private_t *uec)
269 {
270 	u32		cecr_subblock;
271 	u8		ack;
272 
273 	if (!uec) {
274 		printf("%s: No handle passed.\n", __FUNCTION__);
275 		return -EINVAL;
276 	}
277 
278 	if (!uec->p_rx_glbl_pram) {
279 		printf("%s: No init rx global parameter\n", __FUNCTION__);
280 		return -EINVAL;
281 	}
282 
283 	/* Clear acknowledge bit */
284 	ack = uec->p_rx_glbl_pram->rxgstpack;
285 	ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
286 	uec->p_rx_glbl_pram->rxgstpack = ack;
287 
288 	/* Keep issuing cmd and checking ack bit until it is asserted */
289 	do {
290 		/* Issue host command */
291 		cecr_subblock =
292 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
293 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
294 				 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
295 		ack = uec->p_rx_glbl_pram->rxgstpack;
296 	} while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
297 
298 	uec->grace_stopped_rx = 1;
299 
300 	return 0;
301 }
302 
303 static int uec_restart_tx(uec_private_t *uec)
304 {
305 	u32		cecr_subblock;
306 
307 	if (!uec || !uec->uec_info) {
308 		printf("%s: No handle passed.\n", __FUNCTION__);
309 		return -EINVAL;
310 	}
311 
312 	cecr_subblock =
313 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
314 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
315 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
316 
317 	uec->grace_stopped_tx = 0;
318 
319 	return 0;
320 }
321 
322 static int uec_restart_rx(uec_private_t *uec)
323 {
324 	u32		cecr_subblock;
325 
326 	if (!uec || !uec->uec_info) {
327 		printf("%s: No handle passed.\n", __FUNCTION__);
328 		return -EINVAL;
329 	}
330 
331 	cecr_subblock =
332 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
333 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
334 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
335 
336 	uec->grace_stopped_rx = 0;
337 
338 	return 0;
339 }
340 
341 static int uec_open(uec_private_t *uec, comm_dir_e mode)
342 {
343 	ucc_fast_private_t	*uccf;
344 
345 	if (!uec || !uec->uccf) {
346 		printf("%s: No handle passed.\n", __FUNCTION__);
347 		return -EINVAL;
348 	}
349 	uccf = uec->uccf;
350 
351 	/* check if the UCC number is in range. */
352 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
353 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
354 		return -EINVAL;
355 	}
356 
357 	/* Enable MAC */
358 	uec_mac_enable(uec, mode);
359 
360 	/* Enable UCC fast */
361 	ucc_fast_enable(uccf, mode);
362 
363 	/* RISC microcode start */
364 	if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
365 		uec_restart_tx(uec);
366 	}
367 	if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
368 		uec_restart_rx(uec);
369 	}
370 
371 	return 0;
372 }
373 
374 static int uec_stop(uec_private_t *uec, comm_dir_e mode)
375 {
376 	ucc_fast_private_t	*uccf;
377 
378 	if (!uec || !uec->uccf) {
379 		printf("%s: No handle passed.\n", __FUNCTION__);
380 		return -EINVAL;
381 	}
382 	uccf = uec->uccf;
383 
384 	/* check if the UCC number is in range. */
385 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
386 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
387 		return -EINVAL;
388 	}
389 	/* Stop any transmissions */
390 	if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
391 		uec_graceful_stop_tx(uec);
392 	}
393 	/* Stop any receptions */
394 	if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
395 		uec_graceful_stop_rx(uec);
396 	}
397 
398 	/* Disable the UCC fast */
399 	ucc_fast_disable(uec->uccf, mode);
400 
401 	/* Disable the MAC */
402 	uec_mac_disable(uec, mode);
403 
404 	return 0;
405 }
406 
407 static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
408 {
409 	uec_t		*uec_regs;
410 	u32		maccfg2;
411 
412 	if (!uec) {
413 		printf("%s: uec not initial\n", __FUNCTION__);
414 		return -EINVAL;
415 	}
416 	uec_regs = uec->uec_regs;
417 
418 	if (duplex == DUPLEX_HALF) {
419 		maccfg2 = in_be32(&uec_regs->maccfg2);
420 		maccfg2 &= ~MACCFG2_FDX;
421 		out_be32(&uec_regs->maccfg2, maccfg2);
422 	}
423 
424 	if (duplex == DUPLEX_FULL) {
425 		maccfg2 = in_be32(&uec_regs->maccfg2);
426 		maccfg2 |= MACCFG2_FDX;
427 		out_be32(&uec_regs->maccfg2, maccfg2);
428 	}
429 
430 	return 0;
431 }
432 
433 static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
434 {
435 	enet_interface_e	enet_if_mode;
436 	uec_info_t		*uec_info;
437 	uec_t			*uec_regs;
438 	u32			upsmr;
439 	u32			maccfg2;
440 
441 	if (!uec) {
442 		printf("%s: uec not initial\n", __FUNCTION__);
443 		return -EINVAL;
444 	}
445 
446 	uec_info = uec->uec_info;
447 	uec_regs = uec->uec_regs;
448 	enet_if_mode = if_mode;
449 
450 	maccfg2 = in_be32(&uec_regs->maccfg2);
451 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
452 
453 	upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
454 	upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
455 
456 	switch (enet_if_mode) {
457 		case ENET_100_MII:
458 		case ENET_10_MII:
459 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
460 			break;
461 		case ENET_1000_GMII:
462 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
463 			break;
464 		case ENET_1000_TBI:
465 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
466 			upsmr |= UPSMR_TBIM;
467 			break;
468 		case ENET_1000_RTBI:
469 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
470 			upsmr |= (UPSMR_RPM | UPSMR_TBIM);
471 			break;
472 		case ENET_1000_RGMII_RXID:
473 		case ENET_1000_RGMII_ID:
474 		case ENET_1000_RGMII:
475 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
476 			upsmr |= UPSMR_RPM;
477 			break;
478 		case ENET_100_RGMII:
479 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
480 			upsmr |= UPSMR_RPM;
481 			break;
482 		case ENET_10_RGMII:
483 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
484 			upsmr |= (UPSMR_RPM | UPSMR_R10M);
485 			break;
486 		case ENET_100_RMII:
487 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
488 			upsmr |= UPSMR_RMM;
489 			break;
490 		case ENET_10_RMII:
491 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
492 			upsmr |= (UPSMR_R10M | UPSMR_RMM);
493 			break;
494 		default:
495 			return -EINVAL;
496 			break;
497 	}
498 	out_be32(&uec_regs->maccfg2, maccfg2);
499 	out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
500 
501 	return 0;
502 }
503 
504 static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
505 {
506 	uint		timeout = 0x1000;
507 	u32		miimcfg = 0;
508 
509 	miimcfg = in_be32(&uec_mii_regs->miimcfg);
510 	miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
511 	out_be32(&uec_mii_regs->miimcfg, miimcfg);
512 
513 	/* Wait until the bus is free */
514 	while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
515 	if (timeout <= 0) {
516 		printf("%s: The MII Bus is stuck!", __FUNCTION__);
517 		return -ETIMEDOUT;
518 	}
519 
520 	return 0;
521 }
522 
523 static int init_phy(struct eth_device *dev)
524 {
525 	uec_private_t		*uec;
526 	uec_mii_t		*umii_regs;
527 	struct uec_mii_info	*mii_info;
528 	struct phy_info		*curphy;
529 	int			err;
530 
531 	uec = (uec_private_t *)dev->priv;
532 	umii_regs = uec->uec_mii_regs;
533 
534 	uec->oldlink = 0;
535 	uec->oldspeed = 0;
536 	uec->oldduplex = -1;
537 
538 	mii_info = malloc(sizeof(*mii_info));
539 	if (!mii_info) {
540 		printf("%s: Could not allocate mii_info", dev->name);
541 		return -ENOMEM;
542 	}
543 	memset(mii_info, 0, sizeof(*mii_info));
544 
545 	if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
546 		mii_info->speed = SPEED_1000;
547 	} else {
548 		mii_info->speed = SPEED_100;
549 	}
550 
551 	mii_info->duplex = DUPLEX_FULL;
552 	mii_info->pause = 0;
553 	mii_info->link = 1;
554 
555 	mii_info->advertising = (ADVERTISED_10baseT_Half |
556 				ADVERTISED_10baseT_Full |
557 				ADVERTISED_100baseT_Half |
558 				ADVERTISED_100baseT_Full |
559 				ADVERTISED_1000baseT_Full);
560 	mii_info->autoneg = 1;
561 	mii_info->mii_id = uec->uec_info->phy_address;
562 	mii_info->dev = dev;
563 
564 	mii_info->mdio_read = &uec_read_phy_reg;
565 	mii_info->mdio_write = &uec_write_phy_reg;
566 
567 	uec->mii_info = mii_info;
568 
569 	qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
570 
571 	if (init_mii_management_configuration(umii_regs)) {
572 		printf("%s: The MII Bus is stuck!", dev->name);
573 		err = -1;
574 		goto bus_fail;
575 	}
576 
577 	/* get info for this PHY */
578 	curphy = uec_get_phy_info(uec->mii_info);
579 	if (!curphy) {
580 		printf("%s: No PHY found", dev->name);
581 		err = -1;
582 		goto no_phy;
583 	}
584 
585 	mii_info->phyinfo = curphy;
586 
587 	/* Run the commands which initialize the PHY */
588 	if (curphy->init) {
589 		err = curphy->init(uec->mii_info);
590 		if (err)
591 			goto phy_init_fail;
592 	}
593 
594 	return 0;
595 
596 phy_init_fail:
597 no_phy:
598 bus_fail:
599 	free(mii_info);
600 	return err;
601 }
602 
603 static void adjust_link(struct eth_device *dev)
604 {
605 	uec_private_t		*uec = (uec_private_t *)dev->priv;
606 	uec_t			*uec_regs;
607 	struct uec_mii_info	*mii_info = uec->mii_info;
608 
609 	extern void change_phy_interface_mode(struct eth_device *dev,
610 					 enet_interface_e mode);
611 	uec_regs = uec->uec_regs;
612 
613 	if (mii_info->link) {
614 		/* Now we make sure that we can be in full duplex mode.
615 		* If not, we operate in half-duplex mode. */
616 		if (mii_info->duplex != uec->oldduplex) {
617 			if (!(mii_info->duplex)) {
618 				uec_set_mac_duplex(uec, DUPLEX_HALF);
619 				printf("%s: Half Duplex\n", dev->name);
620 			} else {
621 				uec_set_mac_duplex(uec, DUPLEX_FULL);
622 				printf("%s: Full Duplex\n", dev->name);
623 			}
624 			uec->oldduplex = mii_info->duplex;
625 		}
626 
627 		if (mii_info->speed != uec->oldspeed) {
628 			if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
629 				switch (mii_info->speed) {
630 				case 1000:
631 					break;
632 				case 100:
633 					printf ("switching to rgmii 100\n");
634 					/* change phy to rgmii 100 */
635 					change_phy_interface_mode(dev,
636 								ENET_100_RGMII);
637 					/* change the MAC interface mode */
638 					uec_set_mac_if_mode(uec,ENET_100_RGMII);
639 					break;
640 				case 10:
641 					printf ("switching to rgmii 10\n");
642 					/* change phy to rgmii 10 */
643 					change_phy_interface_mode(dev,
644 								ENET_10_RGMII);
645 					/* change the MAC interface mode */
646 					uec_set_mac_if_mode(uec,ENET_10_RGMII);
647 					break;
648 				default:
649 					printf("%s: Ack,Speed(%d)is illegal\n",
650 						dev->name, mii_info->speed);
651 					break;
652 				}
653 			}
654 
655 			printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
656 			uec->oldspeed = mii_info->speed;
657 		}
658 
659 		if (!uec->oldlink) {
660 			printf("%s: Link is up\n", dev->name);
661 			uec->oldlink = 1;
662 		}
663 
664 	} else { /* if (mii_info->link) */
665 		if (uec->oldlink) {
666 			printf("%s: Link is down\n", dev->name);
667 			uec->oldlink = 0;
668 			uec->oldspeed = 0;
669 			uec->oldduplex = -1;
670 		}
671 	}
672 }
673 
674 static void phy_change(struct eth_device *dev)
675 {
676 	uec_private_t	*uec = (uec_private_t *)dev->priv;
677 
678 	/* Update the link, speed, duplex */
679 	uec->mii_info->phyinfo->read_status(uec->mii_info);
680 
681 	/* Adjust the interface according to speed */
682 	adjust_link(dev);
683 }
684 
685 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
686 	&& !defined(BITBANGMII)
687 
688 /*
689  * Read a MII PHY register.
690  *
691  * Returns:
692  *  0 on success
693  */
694 static int uec_miiphy_read(char *devname, unsigned char addr,
695 			    unsigned char reg, unsigned short *value)
696 {
697 	*value = uec_read_phy_reg(devlist[0], addr, reg);
698 
699 	return 0;
700 }
701 
702 /*
703  * Write a MII PHY register.
704  *
705  * Returns:
706  *  0 on success
707  */
708 static int uec_miiphy_write(char *devname, unsigned char addr,
709 			     unsigned char reg, unsigned short value)
710 {
711 	uec_write_phy_reg(devlist[0], addr, reg, value);
712 
713 	return 0;
714 }
715 
716 #endif
717 
718 static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
719 {
720 	uec_t		*uec_regs;
721 	u32		mac_addr1;
722 	u32		mac_addr2;
723 
724 	if (!uec) {
725 		printf("%s: uec not initial\n", __FUNCTION__);
726 		return -EINVAL;
727 	}
728 
729 	uec_regs = uec->uec_regs;
730 
731 	/* if a station address of 0x12345678ABCD, perform a write to
732 	MACSTNADDR1 of 0xCDAB7856,
733 	MACSTNADDR2 of 0x34120000 */
734 
735 	mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
736 			(mac_addr[3] << 8)  | (mac_addr[2]);
737 	out_be32(&uec_regs->macstnaddr1, mac_addr1);
738 
739 	mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
740 	out_be32(&uec_regs->macstnaddr2, mac_addr2);
741 
742 	return 0;
743 }
744 
745 static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
746 					 int *threads_num_ret)
747 {
748 	int	num_threads_numerica;
749 
750 	switch (threads_num) {
751 		case UEC_NUM_OF_THREADS_1:
752 			num_threads_numerica = 1;
753 			break;
754 		case UEC_NUM_OF_THREADS_2:
755 			num_threads_numerica = 2;
756 			break;
757 		case UEC_NUM_OF_THREADS_4:
758 			num_threads_numerica = 4;
759 			break;
760 		case UEC_NUM_OF_THREADS_6:
761 			num_threads_numerica = 6;
762 			break;
763 		case UEC_NUM_OF_THREADS_8:
764 			num_threads_numerica = 8;
765 			break;
766 		default:
767 			printf("%s: Bad number of threads value.",
768 				 __FUNCTION__);
769 			return -EINVAL;
770 	}
771 
772 	*threads_num_ret = num_threads_numerica;
773 
774 	return 0;
775 }
776 
777 static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
778 {
779 	uec_info_t	*uec_info;
780 	u32		end_bd;
781 	u8		bmrx = 0;
782 	int		i;
783 
784 	uec_info = uec->uec_info;
785 
786 	/* Alloc global Tx parameter RAM page */
787 	uec->tx_glbl_pram_offset = qe_muram_alloc(
788 				sizeof(uec_tx_global_pram_t),
789 				 UEC_TX_GLOBAL_PRAM_ALIGNMENT);
790 	uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
791 				qe_muram_addr(uec->tx_glbl_pram_offset);
792 
793 	/* Zero the global Tx prameter RAM */
794 	memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
795 
796 	/* Init global Tx parameter RAM */
797 
798 	/* TEMODER, RMON statistics disable, one Tx queue */
799 	out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
800 
801 	/* SQPTR */
802 	uec->send_q_mem_reg_offset = qe_muram_alloc(
803 				sizeof(uec_send_queue_qd_t),
804 				 UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
805 	uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
806 				qe_muram_addr(uec->send_q_mem_reg_offset);
807 	out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
808 
809 	/* Setup the table with TxBDs ring */
810 	end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
811 					 * SIZEOFBD;
812 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
813 				 (u32)(uec->p_tx_bd_ring));
814 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
815 						 end_bd);
816 
817 	/* Scheduler Base Pointer, we have only one Tx queue, no need it */
818 	out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
819 
820 	/* TxRMON Base Pointer, TxRMON disable, we don't need it */
821 	out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
822 
823 	/* TSTATE, global snooping, big endian, the CSB bus selected */
824 	bmrx = BMR_INIT_VALUE;
825 	out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
826 
827 	/* IPH_Offset */
828 	for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
829 		out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
830 	}
831 
832 	/* VTAG table */
833 	for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
834 		out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
835 	}
836 
837 	/* TQPTR */
838 	uec->thread_dat_tx_offset = qe_muram_alloc(
839 		num_threads_tx * sizeof(uec_thread_data_tx_t) +
840 		 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
841 
842 	uec->p_thread_data_tx = (uec_thread_data_tx_t *)
843 				qe_muram_addr(uec->thread_dat_tx_offset);
844 	out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
845 }
846 
847 static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
848 {
849 	u8	bmrx = 0;
850 	int	i;
851 	uec_82xx_address_filtering_pram_t	*p_af_pram;
852 
853 	/* Allocate global Rx parameter RAM page */
854 	uec->rx_glbl_pram_offset = qe_muram_alloc(
855 		sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
856 	uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
857 				qe_muram_addr(uec->rx_glbl_pram_offset);
858 
859 	/* Zero Global Rx parameter RAM */
860 	memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
861 
862 	/* Init global Rx parameter RAM */
863 	/* REMODER, Extended feature mode disable, VLAN disable,
864 	 LossLess flow control disable, Receive firmware statisic disable,
865 	 Extended address parsing mode disable, One Rx queues,
866 	 Dynamic maximum/minimum frame length disable, IP checksum check
867 	 disable, IP address alignment disable
868 	*/
869 	out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
870 
871 	/* RQPTR */
872 	uec->thread_dat_rx_offset = qe_muram_alloc(
873 			num_threads_rx * sizeof(uec_thread_data_rx_t),
874 			 UEC_THREAD_DATA_ALIGNMENT);
875 	uec->p_thread_data_rx = (uec_thread_data_rx_t *)
876 				qe_muram_addr(uec->thread_dat_rx_offset);
877 	out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
878 
879 	/* Type_or_Len */
880 	out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
881 
882 	/* RxRMON base pointer, we don't need it */
883 	out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
884 
885 	/* IntCoalescingPTR, we don't need it, no interrupt */
886 	out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
887 
888 	/* RSTATE, global snooping, big endian, the CSB bus selected */
889 	bmrx = BMR_INIT_VALUE;
890 	out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
891 
892 	/* MRBLR */
893 	out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
894 
895 	/* RBDQPTR */
896 	uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
897 				sizeof(uec_rx_bd_queues_entry_t) + \
898 				sizeof(uec_rx_prefetched_bds_t),
899 				 UEC_RX_BD_QUEUES_ALIGNMENT);
900 	uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
901 				qe_muram_addr(uec->rx_bd_qs_tbl_offset);
902 
903 	/* Zero it */
904 	memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
905 					sizeof(uec_rx_prefetched_bds_t));
906 	out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
907 	out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
908 		 (u32)uec->p_rx_bd_ring);
909 
910 	/* MFLR */
911 	out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
912 	/* MINFLR */
913 	out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
914 	/* MAXD1 */
915 	out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
916 	/* MAXD2 */
917 	out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
918 	/* ECAM_PTR */
919 	out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
920 	/* L2QT */
921 	out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
922 	/* L3QT */
923 	for (i = 0; i < 8; i++)	{
924 		out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
925 	}
926 
927 	/* VLAN_TYPE */
928 	out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
929 	/* TCI */
930 	out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
931 
932 	/* Clear PQ2 style address filtering hash table */
933 	p_af_pram = (uec_82xx_address_filtering_pram_t *) \
934 			uec->p_rx_glbl_pram->addressfiltering;
935 
936 	p_af_pram->iaddr_h = 0;
937 	p_af_pram->iaddr_l = 0;
938 	p_af_pram->gaddr_h = 0;
939 	p_af_pram->gaddr_l = 0;
940 }
941 
942 static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
943 					 int thread_tx, int thread_rx)
944 {
945 	uec_init_cmd_pram_t		*p_init_enet_param;
946 	u32				init_enet_param_offset;
947 	uec_info_t			*uec_info;
948 	int				i;
949 	int				snum;
950 	u32				init_enet_offset;
951 	u32				entry_val;
952 	u32				command;
953 	u32				cecr_subblock;
954 
955 	uec_info = uec->uec_info;
956 
957 	/* Allocate init enet command parameter */
958 	uec->init_enet_param_offset = qe_muram_alloc(
959 					sizeof(uec_init_cmd_pram_t), 4);
960 	init_enet_param_offset = uec->init_enet_param_offset;
961 	uec->p_init_enet_param = (uec_init_cmd_pram_t *)
962 				qe_muram_addr(uec->init_enet_param_offset);
963 
964 	/* Zero init enet command struct */
965 	memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
966 
967 	/* Init the command struct */
968 	p_init_enet_param = uec->p_init_enet_param;
969 	p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
970 	p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
971 	p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
972 	p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
973 	p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
974 	p_init_enet_param->largestexternallookupkeysize = 0;
975 
976 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
977 					 << ENET_INIT_PARAM_RGF_SHIFT;
978 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
979 					 << ENET_INIT_PARAM_TGF_SHIFT;
980 
981 	/* Init Rx global parameter pointer */
982 	p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
983 						 (u32)uec_info->riscRx;
984 
985 	/* Init Rx threads */
986 	for (i = 0; i < (thread_rx + 1); i++) {
987 		if ((snum = qe_get_snum()) < 0) {
988 			printf("%s can not get snum\n", __FUNCTION__);
989 			return -ENOMEM;
990 		}
991 
992 		if (i==0) {
993 			init_enet_offset = 0;
994 		} else {
995 			init_enet_offset = qe_muram_alloc(
996 					sizeof(uec_thread_rx_pram_t),
997 					 UEC_THREAD_RX_PRAM_ALIGNMENT);
998 		}
999 
1000 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
1001 				 init_enet_offset | (u32)uec_info->riscRx;
1002 		p_init_enet_param->rxthread[i] = entry_val;
1003 	}
1004 
1005 	/* Init Tx global parameter pointer */
1006 	p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
1007 					 (u32)uec_info->riscTx;
1008 
1009 	/* Init Tx threads */
1010 	for (i = 0; i < thread_tx; i++) {
1011 		if ((snum = qe_get_snum()) < 0)	{
1012 			printf("%s can not get snum\n", __FUNCTION__);
1013 			return -ENOMEM;
1014 		}
1015 
1016 		init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
1017 						 UEC_THREAD_TX_PRAM_ALIGNMENT);
1018 
1019 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
1020 				 init_enet_offset | (u32)uec_info->riscTx;
1021 		p_init_enet_param->txthread[i] = entry_val;
1022 	}
1023 
1024 	__asm__ __volatile__("sync");
1025 
1026 	/* Issue QE command */
1027 	command = QE_INIT_TX_RX;
1028 	cecr_subblock =	ucc_fast_get_qe_cr_subblock(
1029 				uec->uec_info->uf_info.ucc_num);
1030 	qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
1031 						 init_enet_param_offset);
1032 
1033 	return 0;
1034 }
1035 
1036 static int uec_startup(uec_private_t *uec)
1037 {
1038 	uec_info_t			*uec_info;
1039 	ucc_fast_info_t			*uf_info;
1040 	ucc_fast_private_t		*uccf;
1041 	ucc_fast_t			*uf_regs;
1042 	uec_t				*uec_regs;
1043 	int				num_threads_tx;
1044 	int				num_threads_rx;
1045 	u32				utbipar;
1046 	enet_interface_e		enet_interface;
1047 	u32				length;
1048 	u32				align;
1049 	qe_bd_t				*bd;
1050 	u8				*buf;
1051 	int				i;
1052 
1053 	if (!uec || !uec->uec_info) {
1054 		printf("%s: uec or uec_info not initial\n", __FUNCTION__);
1055 		return -EINVAL;
1056 	}
1057 
1058 	uec_info = uec->uec_info;
1059 	uf_info = &(uec_info->uf_info);
1060 
1061 	/* Check if Rx BD ring len is illegal */
1062 	if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
1063 		(uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
1064 		printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
1065 			 __FUNCTION__);
1066 		return -EINVAL;
1067 	}
1068 
1069 	/* Check if Tx BD ring len is illegal */
1070 	if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
1071 		printf("%s: Tx BD ring length must not be smaller than 2.\n",
1072 			 __FUNCTION__);
1073 		return -EINVAL;
1074 	}
1075 
1076 	/* Check if MRBLR is illegal */
1077 	if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN  % UEC_MRBLR_ALIGNMENT)) {
1078 		printf("%s: max rx buffer length must be mutliple of 128.\n",
1079 			 __FUNCTION__);
1080 		return -EINVAL;
1081 	}
1082 
1083 	/* Both Rx and Tx are stopped */
1084 	uec->grace_stopped_rx = 1;
1085 	uec->grace_stopped_tx = 1;
1086 
1087 	/* Init UCC fast */
1088 	if (ucc_fast_init(uf_info, &uccf)) {
1089 		printf("%s: failed to init ucc fast\n", __FUNCTION__);
1090 		return -ENOMEM;
1091 	}
1092 
1093 	/* Save uccf */
1094 	uec->uccf = uccf;
1095 
1096 	/* Convert the Tx threads number */
1097 	if (uec_convert_threads_num(uec_info->num_threads_tx,
1098 					 &num_threads_tx)) {
1099 		return -EINVAL;
1100 	}
1101 
1102 	/* Convert the Rx threads number */
1103 	if (uec_convert_threads_num(uec_info->num_threads_rx,
1104 					 &num_threads_rx)) {
1105 		return -EINVAL;
1106 	}
1107 
1108 	uf_regs = uccf->uf_regs;
1109 
1110 	/* UEC register is following UCC fast registers */
1111 	uec_regs = (uec_t *)(&uf_regs->ucc_eth);
1112 
1113 	/* Save the UEC register pointer to UEC private struct */
1114 	uec->uec_regs = uec_regs;
1115 
1116 	/* Init UPSMR, enable hardware statistics (UCC) */
1117 	out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
1118 
1119 	/* Init MACCFG1, flow control disable, disable Tx and Rx */
1120 	out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
1121 
1122 	/* Init MACCFG2, length check, MAC PAD and CRC enable */
1123 	out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
1124 
1125 	/* Setup MAC interface mode */
1126 	uec_set_mac_if_mode(uec, uec_info->enet_interface);
1127 
1128 	/* Setup MII management base */
1129 #ifndef CONFIG_eTSEC_MDIO_BUS
1130 	uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
1131 #else
1132 	uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
1133 #endif
1134 
1135 	/* Setup MII master clock source */
1136 	qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
1137 
1138 	/* Setup UTBIPAR */
1139 	utbipar = in_be32(&uec_regs->utbipar);
1140 	utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
1141 	enet_interface = uec->uec_info->enet_interface;
1142 	if (enet_interface == ENET_1000_TBI ||
1143 		 enet_interface == ENET_1000_RTBI) {
1144 		utbipar |=  (uec_info->phy_address + uec_info->uf_info.ucc_num)
1145 						 << UTBIPAR_PHY_ADDRESS_SHIFT;
1146 	} else {
1147 		utbipar |=  (0x10 + uec_info->uf_info.ucc_num)
1148 						 << UTBIPAR_PHY_ADDRESS_SHIFT;
1149 	}
1150 
1151 	out_be32(&uec_regs->utbipar, utbipar);
1152 
1153 	/* Allocate Tx BDs */
1154 	length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
1155 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
1156 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1157 	if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
1158 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
1159 		length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1160 	}
1161 
1162 	align = UEC_TX_BD_RING_ALIGNMENT;
1163 	uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
1164 	if (uec->tx_bd_ring_offset != 0) {
1165 		uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
1166 						 & ~(align - 1));
1167 	}
1168 
1169 	/* Zero all of Tx BDs */
1170 	memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
1171 
1172 	/* Allocate Rx BDs */
1173 	length = uec_info->rx_bd_ring_len * SIZEOFBD;
1174 	align = UEC_RX_BD_RING_ALIGNMENT;
1175 	uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
1176 	if (uec->rx_bd_ring_offset != 0) {
1177 		uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
1178 							 & ~(align - 1));
1179 	}
1180 
1181 	/* Zero all of Rx BDs */
1182 	memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
1183 
1184 	/* Allocate Rx buffer */
1185 	length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
1186 	align = UEC_RX_DATA_BUF_ALIGNMENT;
1187 	uec->rx_buf_offset = (u32)malloc(length + align);
1188 	if (uec->rx_buf_offset != 0) {
1189 		uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
1190 						 & ~(align - 1));
1191 	}
1192 
1193 	/* Zero all of the Rx buffer */
1194 	memset((void *)(uec->rx_buf_offset), 0, length + align);
1195 
1196 	/* Init TxBD ring */
1197 	bd = (qe_bd_t *)uec->p_tx_bd_ring;
1198 	uec->txBd = bd;
1199 
1200 	for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
1201 		BD_DATA_CLEAR(bd);
1202 		BD_STATUS_SET(bd, 0);
1203 		BD_LENGTH_SET(bd, 0);
1204 		bd ++;
1205 	}
1206 	BD_STATUS_SET((--bd), TxBD_WRAP);
1207 
1208 	/* Init RxBD ring */
1209 	bd = (qe_bd_t *)uec->p_rx_bd_ring;
1210 	uec->rxBd = bd;
1211 	buf = uec->p_rx_buf;
1212 	for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
1213 		BD_DATA_SET(bd, buf);
1214 		BD_LENGTH_SET(bd, 0);
1215 		BD_STATUS_SET(bd, RxBD_EMPTY);
1216 		buf += MAX_RXBUF_LEN;
1217 		bd ++;
1218 	}
1219 	BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
1220 
1221 	/* Init global Tx parameter RAM */
1222 	uec_init_tx_parameter(uec, num_threads_tx);
1223 
1224 	/* Init global Rx parameter RAM */
1225 	uec_init_rx_parameter(uec, num_threads_rx);
1226 
1227 	/* Init ethernet Tx and Rx parameter command */
1228 	if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
1229 					 num_threads_rx)) {
1230 		printf("%s issue init enet cmd failed\n", __FUNCTION__);
1231 		return -ENOMEM;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static int uec_init(struct eth_device* dev, bd_t *bd)
1238 {
1239 	uec_private_t		*uec;
1240 	int			err, i;
1241 	struct phy_info         *curphy;
1242 
1243 	uec = (uec_private_t *)dev->priv;
1244 
1245 	if (uec->the_first_run == 0) {
1246 		err = init_phy(dev);
1247 		if (err) {
1248 			printf("%s: Cannot initialize PHY, aborting.\n",
1249 			       dev->name);
1250 			return err;
1251 		}
1252 
1253 		curphy = uec->mii_info->phyinfo;
1254 
1255 		if (curphy->config_aneg) {
1256 			err = curphy->config_aneg(uec->mii_info);
1257 			if (err) {
1258 				printf("%s: Can't negotiate PHY\n", dev->name);
1259 				return err;
1260 			}
1261 		}
1262 
1263 		/* Give PHYs up to 5 sec to report a link */
1264 		i = 50;
1265 		do {
1266 			err = curphy->read_status(uec->mii_info);
1267 			udelay(100000);
1268 		} while (((i-- > 0) && !uec->mii_info->link) || err);
1269 
1270 		if (err || i <= 0)
1271 			printf("warning: %s: timeout on PHY link\n", dev->name);
1272 
1273 		uec->the_first_run = 1;
1274 	}
1275 
1276 	/* Set up the MAC address */
1277 	if (dev->enetaddr[0] & 0x01) {
1278 		printf("%s: MacAddress is multcast address\n",
1279 			 __FUNCTION__);
1280 		return -1;
1281 	}
1282 	uec_set_mac_address(uec, dev->enetaddr);
1283 
1284 
1285 	err = uec_open(uec, COMM_DIR_RX_AND_TX);
1286 	if (err) {
1287 		printf("%s: cannot enable UEC device\n", dev->name);
1288 		return -1;
1289 	}
1290 
1291 	phy_change(dev);
1292 
1293 	return (uec->mii_info->link ? 0 : -1);
1294 }
1295 
1296 static void uec_halt(struct eth_device* dev)
1297 {
1298 	uec_private_t	*uec = (uec_private_t *)dev->priv;
1299 	uec_stop(uec, COMM_DIR_RX_AND_TX);
1300 }
1301 
1302 static int uec_send(struct eth_device* dev, volatile void *buf, int len)
1303 {
1304 	uec_private_t		*uec;
1305 	ucc_fast_private_t	*uccf;
1306 	volatile qe_bd_t	*bd;
1307 	u16			status;
1308 	int			i;
1309 	int			result = 0;
1310 
1311 	uec = (uec_private_t *)dev->priv;
1312 	uccf = uec->uccf;
1313 	bd = uec->txBd;
1314 
1315 	/* Find an empty TxBD */
1316 	for (i = 0; bd->status & TxBD_READY; i++) {
1317 		if (i > 0x100000) {
1318 			printf("%s: tx buffer not ready\n", dev->name);
1319 			return result;
1320 		}
1321 	}
1322 
1323 	/* Init TxBD */
1324 	BD_DATA_SET(bd, buf);
1325 	BD_LENGTH_SET(bd, len);
1326 	status = bd->status;
1327 	status &= BD_WRAP;
1328 	status |= (TxBD_READY | TxBD_LAST);
1329 	BD_STATUS_SET(bd, status);
1330 
1331 	/* Tell UCC to transmit the buffer */
1332 	ucc_fast_transmit_on_demand(uccf);
1333 
1334 	/* Wait for buffer to be transmitted */
1335 	for (i = 0; bd->status & TxBD_READY; i++) {
1336 		if (i > 0x100000) {
1337 			printf("%s: tx error\n", dev->name);
1338 			return result;
1339 		}
1340 	}
1341 
1342 	/* Ok, the buffer be transimitted */
1343 	BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
1344 	uec->txBd = bd;
1345 	result = 1;
1346 
1347 	return result;
1348 }
1349 
1350 static int uec_recv(struct eth_device* dev)
1351 {
1352 	uec_private_t		*uec = dev->priv;
1353 	volatile qe_bd_t	*bd;
1354 	u16			status;
1355 	u16			len;
1356 	u8			*data;
1357 
1358 	bd = uec->rxBd;
1359 	status = bd->status;
1360 
1361 	while (!(status & RxBD_EMPTY)) {
1362 		if (!(status & RxBD_ERROR)) {
1363 			data = BD_DATA(bd);
1364 			len = BD_LENGTH(bd);
1365 			NetReceive(data, len);
1366 		} else {
1367 			printf("%s: Rx error\n", dev->name);
1368 		}
1369 		status &= BD_CLEAN;
1370 		BD_LENGTH_SET(bd, 0);
1371 		BD_STATUS_SET(bd, status | RxBD_EMPTY);
1372 		BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
1373 		status = bd->status;
1374 	}
1375 	uec->rxBd = bd;
1376 
1377 	return 1;
1378 }
1379 
1380 int uec_initialize(int index)
1381 {
1382 	struct eth_device	*dev;
1383 	int			i;
1384 	uec_private_t		*uec;
1385 	uec_info_t		*uec_info;
1386 	int			err;
1387 
1388 	dev = (struct eth_device *)malloc(sizeof(struct eth_device));
1389 	if (!dev)
1390 		return 0;
1391 	memset(dev, 0, sizeof(struct eth_device));
1392 
1393 	/* Allocate the UEC private struct */
1394 	uec = (uec_private_t *)malloc(sizeof(uec_private_t));
1395 	if (!uec) {
1396 		return -ENOMEM;
1397 	}
1398 	memset(uec, 0, sizeof(uec_private_t));
1399 
1400 	/* Init UEC private struct, they come from board.h */
1401 	uec_info = NULL;
1402 	if (index == 0) {
1403 #ifdef CONFIG_UEC_ETH1
1404 		uec_info = &eth1_uec_info;
1405 #endif
1406 	} else if (index == 1) {
1407 #ifdef CONFIG_UEC_ETH2
1408 		uec_info = &eth2_uec_info;
1409 #endif
1410 	} else if (index == 2) {
1411 #ifdef CONFIG_UEC_ETH3
1412 		uec_info = &eth3_uec_info;
1413 #endif
1414 	} else if (index == 3) {
1415 #ifdef CONFIG_UEC_ETH4
1416 		uec_info = &eth4_uec_info;
1417 #endif
1418 	} else {
1419 		printf("%s: index is illegal.\n", __FUNCTION__);
1420 		return -EINVAL;
1421 	}
1422 
1423 	devlist[index] = dev;
1424 
1425 	uec->uec_info = uec_info;
1426 
1427 	sprintf(dev->name, "FSL UEC%d", index);
1428 	dev->iobase = 0;
1429 	dev->priv = (void *)uec;
1430 	dev->init = uec_init;
1431 	dev->halt = uec_halt;
1432 	dev->send = uec_send;
1433 	dev->recv = uec_recv;
1434 
1435 	/* Clear the ethnet address */
1436 	for (i = 0; i < 6; i++)
1437 		dev->enetaddr[i] = 0;
1438 
1439 	eth_register(dev);
1440 
1441 	err = uec_startup(uec);
1442 	if (err) {
1443 		printf("%s: Cannot configure net device, aborting.",dev->name);
1444 		return err;
1445 	}
1446 
1447 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1448 	&& !defined(BITBANGMII)
1449 	miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
1450 #endif
1451 
1452 	return 1;
1453 }
1454