xref: /openbmc/u-boot/drivers/qe/uec.c (revision 54841ab5)
1 /*
2  * Copyright (C) 2006-2009 Freescale Semiconductor, Inc.
3  *
4  * Dave Liu <daveliu@freescale.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of
9  * the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19  * MA 02111-1307 USA
20  */
21 
22 #include "common.h"
23 #include "net.h"
24 #include "malloc.h"
25 #include "asm/errno.h"
26 #include "asm/io.h"
27 #include "asm/immap_qe.h"
28 #include "qe.h"
29 #include "uccf.h"
30 #include "uec.h"
31 #include "uec_phy.h"
32 #include "miiphy.h"
33 
34 /* Default UTBIPAR SMI address */
35 #ifndef CONFIG_UTBIPAR_INIT_TBIPA
36 #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
37 #endif
38 
39 static uec_info_t uec_info[] = {
40 #ifdef CONFIG_UEC_ETH1
41 	STD_UEC_INFO(1),	/* UEC1 */
42 #endif
43 #ifdef CONFIG_UEC_ETH2
44 	STD_UEC_INFO(2),	/* UEC2 */
45 #endif
46 #ifdef CONFIG_UEC_ETH3
47 	STD_UEC_INFO(3),	/* UEC3 */
48 #endif
49 #ifdef CONFIG_UEC_ETH4
50 	STD_UEC_INFO(4),	/* UEC4 */
51 #endif
52 #ifdef CONFIG_UEC_ETH5
53 	STD_UEC_INFO(5),	/* UEC5 */
54 #endif
55 #ifdef CONFIG_UEC_ETH6
56 	STD_UEC_INFO(6),	/* UEC6 */
57 #endif
58 #ifdef CONFIG_UEC_ETH7
59 	STD_UEC_INFO(7),	/* UEC7 */
60 #endif
61 #ifdef CONFIG_UEC_ETH8
62 	STD_UEC_INFO(8),	/* UEC8 */
63 #endif
64 };
65 
66 #define MAXCONTROLLERS	(8)
67 
68 static struct eth_device *devlist[MAXCONTROLLERS];
69 
70 u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
71 void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
72 
73 static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
74 {
75 	uec_t		*uec_regs;
76 	u32		maccfg1;
77 
78 	if (!uec) {
79 		printf("%s: uec not initial\n", __FUNCTION__);
80 		return -EINVAL;
81 	}
82 	uec_regs = uec->uec_regs;
83 
84 	maccfg1 = in_be32(&uec_regs->maccfg1);
85 
86 	if (mode & COMM_DIR_TX)	{
87 		maccfg1 |= MACCFG1_ENABLE_TX;
88 		out_be32(&uec_regs->maccfg1, maccfg1);
89 		uec->mac_tx_enabled = 1;
90 	}
91 
92 	if (mode & COMM_DIR_RX)	{
93 		maccfg1 |= MACCFG1_ENABLE_RX;
94 		out_be32(&uec_regs->maccfg1, maccfg1);
95 		uec->mac_rx_enabled = 1;
96 	}
97 
98 	return 0;
99 }
100 
101 static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
102 {
103 	uec_t		*uec_regs;
104 	u32		maccfg1;
105 
106 	if (!uec) {
107 		printf("%s: uec not initial\n", __FUNCTION__);
108 		return -EINVAL;
109 	}
110 	uec_regs = uec->uec_regs;
111 
112 	maccfg1 = in_be32(&uec_regs->maccfg1);
113 
114 	if (mode & COMM_DIR_TX)	{
115 		maccfg1 &= ~MACCFG1_ENABLE_TX;
116 		out_be32(&uec_regs->maccfg1, maccfg1);
117 		uec->mac_tx_enabled = 0;
118 	}
119 
120 	if (mode & COMM_DIR_RX)	{
121 		maccfg1 &= ~MACCFG1_ENABLE_RX;
122 		out_be32(&uec_regs->maccfg1, maccfg1);
123 		uec->mac_rx_enabled = 0;
124 	}
125 
126 	return 0;
127 }
128 
129 static int uec_graceful_stop_tx(uec_private_t *uec)
130 {
131 	ucc_fast_t		*uf_regs;
132 	u32			cecr_subblock;
133 	u32			ucce;
134 
135 	if (!uec || !uec->uccf) {
136 		printf("%s: No handle passed.\n", __FUNCTION__);
137 		return -EINVAL;
138 	}
139 
140 	uf_regs = uec->uccf->uf_regs;
141 
142 	/* Clear the grace stop event */
143 	out_be32(&uf_regs->ucce, UCCE_GRA);
144 
145 	/* Issue host command */
146 	cecr_subblock =
147 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
148 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
149 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
150 
151 	/* Wait for command to complete */
152 	do {
153 		ucce = in_be32(&uf_regs->ucce);
154 	} while (! (ucce & UCCE_GRA));
155 
156 	uec->grace_stopped_tx = 1;
157 
158 	return 0;
159 }
160 
161 static int uec_graceful_stop_rx(uec_private_t *uec)
162 {
163 	u32		cecr_subblock;
164 	u8		ack;
165 
166 	if (!uec) {
167 		printf("%s: No handle passed.\n", __FUNCTION__);
168 		return -EINVAL;
169 	}
170 
171 	if (!uec->p_rx_glbl_pram) {
172 		printf("%s: No init rx global parameter\n", __FUNCTION__);
173 		return -EINVAL;
174 	}
175 
176 	/* Clear acknowledge bit */
177 	ack = uec->p_rx_glbl_pram->rxgstpack;
178 	ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
179 	uec->p_rx_glbl_pram->rxgstpack = ack;
180 
181 	/* Keep issuing cmd and checking ack bit until it is asserted */
182 	do {
183 		/* Issue host command */
184 		cecr_subblock =
185 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
186 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
187 				 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
188 		ack = uec->p_rx_glbl_pram->rxgstpack;
189 	} while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
190 
191 	uec->grace_stopped_rx = 1;
192 
193 	return 0;
194 }
195 
196 static int uec_restart_tx(uec_private_t *uec)
197 {
198 	u32		cecr_subblock;
199 
200 	if (!uec || !uec->uec_info) {
201 		printf("%s: No handle passed.\n", __FUNCTION__);
202 		return -EINVAL;
203 	}
204 
205 	cecr_subblock =
206 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
207 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
208 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
209 
210 	uec->grace_stopped_tx = 0;
211 
212 	return 0;
213 }
214 
215 static int uec_restart_rx(uec_private_t *uec)
216 {
217 	u32		cecr_subblock;
218 
219 	if (!uec || !uec->uec_info) {
220 		printf("%s: No handle passed.\n", __FUNCTION__);
221 		return -EINVAL;
222 	}
223 
224 	cecr_subblock =
225 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
226 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
227 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
228 
229 	uec->grace_stopped_rx = 0;
230 
231 	return 0;
232 }
233 
234 static int uec_open(uec_private_t *uec, comm_dir_e mode)
235 {
236 	ucc_fast_private_t	*uccf;
237 
238 	if (!uec || !uec->uccf) {
239 		printf("%s: No handle passed.\n", __FUNCTION__);
240 		return -EINVAL;
241 	}
242 	uccf = uec->uccf;
243 
244 	/* check if the UCC number is in range. */
245 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
246 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
247 		return -EINVAL;
248 	}
249 
250 	/* Enable MAC */
251 	uec_mac_enable(uec, mode);
252 
253 	/* Enable UCC fast */
254 	ucc_fast_enable(uccf, mode);
255 
256 	/* RISC microcode start */
257 	if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
258 		uec_restart_tx(uec);
259 	}
260 	if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
261 		uec_restart_rx(uec);
262 	}
263 
264 	return 0;
265 }
266 
267 static int uec_stop(uec_private_t *uec, comm_dir_e mode)
268 {
269 	ucc_fast_private_t	*uccf;
270 
271 	if (!uec || !uec->uccf) {
272 		printf("%s: No handle passed.\n", __FUNCTION__);
273 		return -EINVAL;
274 	}
275 	uccf = uec->uccf;
276 
277 	/* check if the UCC number is in range. */
278 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
279 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
280 		return -EINVAL;
281 	}
282 	/* Stop any transmissions */
283 	if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
284 		uec_graceful_stop_tx(uec);
285 	}
286 	/* Stop any receptions */
287 	if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
288 		uec_graceful_stop_rx(uec);
289 	}
290 
291 	/* Disable the UCC fast */
292 	ucc_fast_disable(uec->uccf, mode);
293 
294 	/* Disable the MAC */
295 	uec_mac_disable(uec, mode);
296 
297 	return 0;
298 }
299 
300 static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
301 {
302 	uec_t		*uec_regs;
303 	u32		maccfg2;
304 
305 	if (!uec) {
306 		printf("%s: uec not initial\n", __FUNCTION__);
307 		return -EINVAL;
308 	}
309 	uec_regs = uec->uec_regs;
310 
311 	if (duplex == DUPLEX_HALF) {
312 		maccfg2 = in_be32(&uec_regs->maccfg2);
313 		maccfg2 &= ~MACCFG2_FDX;
314 		out_be32(&uec_regs->maccfg2, maccfg2);
315 	}
316 
317 	if (duplex == DUPLEX_FULL) {
318 		maccfg2 = in_be32(&uec_regs->maccfg2);
319 		maccfg2 |= MACCFG2_FDX;
320 		out_be32(&uec_regs->maccfg2, maccfg2);
321 	}
322 
323 	return 0;
324 }
325 
326 static int uec_set_mac_if_mode(uec_private_t *uec,
327 		enet_interface_type_e if_mode, int speed)
328 {
329 	enet_interface_type_e	enet_if_mode;
330 	uec_info_t		*uec_info;
331 	uec_t			*uec_regs;
332 	u32			upsmr;
333 	u32			maccfg2;
334 
335 	if (!uec) {
336 		printf("%s: uec not initial\n", __FUNCTION__);
337 		return -EINVAL;
338 	}
339 
340 	uec_info = uec->uec_info;
341 	uec_regs = uec->uec_regs;
342 	enet_if_mode = if_mode;
343 
344 	maccfg2 = in_be32(&uec_regs->maccfg2);
345 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
346 
347 	upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
348 	upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
349 
350 	switch (speed) {
351 		case 10:
352 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
353 			switch (enet_if_mode) {
354 				case MII:
355 					break;
356 				case RGMII:
357 					upsmr |= (UPSMR_RPM | UPSMR_R10M);
358 					break;
359 				case RMII:
360 					upsmr |= (UPSMR_R10M | UPSMR_RMM);
361 					break;
362 				default:
363 					return -EINVAL;
364 					break;
365 			}
366 			break;
367 		case 100:
368 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
369 			switch (enet_if_mode) {
370 				case MII:
371 					break;
372 				case RGMII:
373 					upsmr |= UPSMR_RPM;
374 					break;
375 				case RMII:
376 					upsmr |= UPSMR_RMM;
377 					break;
378 				default:
379 					return -EINVAL;
380 					break;
381 			}
382 			break;
383 		case 1000:
384 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
385 			switch (enet_if_mode) {
386 				case GMII:
387 					break;
388 				case TBI:
389 					upsmr |= UPSMR_TBIM;
390 					break;
391 				case RTBI:
392 					upsmr |= (UPSMR_RPM | UPSMR_TBIM);
393 					break;
394 				case RGMII_RXID:
395 				case RGMII_ID:
396 				case RGMII:
397 					upsmr |= UPSMR_RPM;
398 					break;
399 				case SGMII:
400 					upsmr |= UPSMR_SGMM;
401 					break;
402 				default:
403 					return -EINVAL;
404 					break;
405 			}
406 			break;
407 		default:
408 			return -EINVAL;
409 			break;
410 	}
411 
412 	out_be32(&uec_regs->maccfg2, maccfg2);
413 	out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
414 
415 	return 0;
416 }
417 
418 static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
419 {
420 	uint		timeout = 0x1000;
421 	u32		miimcfg = 0;
422 
423 	miimcfg = in_be32(&uec_mii_regs->miimcfg);
424 	miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
425 	out_be32(&uec_mii_regs->miimcfg, miimcfg);
426 
427 	/* Wait until the bus is free */
428 	while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
429 	if (timeout <= 0) {
430 		printf("%s: The MII Bus is stuck!", __FUNCTION__);
431 		return -ETIMEDOUT;
432 	}
433 
434 	return 0;
435 }
436 
437 static int init_phy(struct eth_device *dev)
438 {
439 	uec_private_t		*uec;
440 	uec_mii_t		*umii_regs;
441 	struct uec_mii_info	*mii_info;
442 	struct phy_info		*curphy;
443 	int			err;
444 
445 	uec = (uec_private_t *)dev->priv;
446 	umii_regs = uec->uec_mii_regs;
447 
448 	uec->oldlink = 0;
449 	uec->oldspeed = 0;
450 	uec->oldduplex = -1;
451 
452 	mii_info = malloc(sizeof(*mii_info));
453 	if (!mii_info) {
454 		printf("%s: Could not allocate mii_info", dev->name);
455 		return -ENOMEM;
456 	}
457 	memset(mii_info, 0, sizeof(*mii_info));
458 
459 	if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
460 		mii_info->speed = SPEED_1000;
461 	} else {
462 		mii_info->speed = SPEED_100;
463 	}
464 
465 	mii_info->duplex = DUPLEX_FULL;
466 	mii_info->pause = 0;
467 	mii_info->link = 1;
468 
469 	mii_info->advertising = (ADVERTISED_10baseT_Half |
470 				ADVERTISED_10baseT_Full |
471 				ADVERTISED_100baseT_Half |
472 				ADVERTISED_100baseT_Full |
473 				ADVERTISED_1000baseT_Full);
474 	mii_info->autoneg = 1;
475 	mii_info->mii_id = uec->uec_info->phy_address;
476 	mii_info->dev = dev;
477 
478 	mii_info->mdio_read = &uec_read_phy_reg;
479 	mii_info->mdio_write = &uec_write_phy_reg;
480 
481 	uec->mii_info = mii_info;
482 
483 	qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
484 
485 	if (init_mii_management_configuration(umii_regs)) {
486 		printf("%s: The MII Bus is stuck!", dev->name);
487 		err = -1;
488 		goto bus_fail;
489 	}
490 
491 	/* get info for this PHY */
492 	curphy = uec_get_phy_info(uec->mii_info);
493 	if (!curphy) {
494 		printf("%s: No PHY found", dev->name);
495 		err = -1;
496 		goto no_phy;
497 	}
498 
499 	mii_info->phyinfo = curphy;
500 
501 	/* Run the commands which initialize the PHY */
502 	if (curphy->init) {
503 		err = curphy->init(uec->mii_info);
504 		if (err)
505 			goto phy_init_fail;
506 	}
507 
508 	return 0;
509 
510 phy_init_fail:
511 no_phy:
512 bus_fail:
513 	free(mii_info);
514 	return err;
515 }
516 
517 static void adjust_link(struct eth_device *dev)
518 {
519 	uec_private_t		*uec = (uec_private_t *)dev->priv;
520 	uec_t			*uec_regs;
521 	struct uec_mii_info	*mii_info = uec->mii_info;
522 
523 	extern void change_phy_interface_mode(struct eth_device *dev,
524 				 enet_interface_type_e mode, int speed);
525 	uec_regs = uec->uec_regs;
526 
527 	if (mii_info->link) {
528 		/* Now we make sure that we can be in full duplex mode.
529 		* If not, we operate in half-duplex mode. */
530 		if (mii_info->duplex != uec->oldduplex) {
531 			if (!(mii_info->duplex)) {
532 				uec_set_mac_duplex(uec, DUPLEX_HALF);
533 				printf("%s: Half Duplex\n", dev->name);
534 			} else {
535 				uec_set_mac_duplex(uec, DUPLEX_FULL);
536 				printf("%s: Full Duplex\n", dev->name);
537 			}
538 			uec->oldduplex = mii_info->duplex;
539 		}
540 
541 		if (mii_info->speed != uec->oldspeed) {
542 			enet_interface_type_e	mode = \
543 				uec->uec_info->enet_interface_type;
544 			if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
545 				switch (mii_info->speed) {
546 				case 1000:
547 					break;
548 				case 100:
549 					printf ("switching to rgmii 100\n");
550 					mode = RGMII;
551 					break;
552 				case 10:
553 					printf ("switching to rgmii 10\n");
554 					mode = RGMII;
555 					break;
556 				default:
557 					printf("%s: Ack,Speed(%d)is illegal\n",
558 						dev->name, mii_info->speed);
559 					break;
560 				}
561 			}
562 
563 			/* change phy */
564 			change_phy_interface_mode(dev, mode, mii_info->speed);
565 			/* change the MAC interface mode */
566 			uec_set_mac_if_mode(uec, mode, mii_info->speed);
567 
568 			printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
569 			uec->oldspeed = mii_info->speed;
570 		}
571 
572 		if (!uec->oldlink) {
573 			printf("%s: Link is up\n", dev->name);
574 			uec->oldlink = 1;
575 		}
576 
577 	} else { /* if (mii_info->link) */
578 		if (uec->oldlink) {
579 			printf("%s: Link is down\n", dev->name);
580 			uec->oldlink = 0;
581 			uec->oldspeed = 0;
582 			uec->oldduplex = -1;
583 		}
584 	}
585 }
586 
587 static void phy_change(struct eth_device *dev)
588 {
589 	uec_private_t	*uec = (uec_private_t *)dev->priv;
590 
591 	/* Update the link, speed, duplex */
592 	uec->mii_info->phyinfo->read_status(uec->mii_info);
593 
594 	/* Adjust the interface according to speed */
595 	adjust_link(dev);
596 }
597 
598 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
599 
600 /*
601  * Find a device index from the devlist by name
602  *
603  * Returns:
604  *  The index where the device is located, -1 on error
605  */
606 static int uec_miiphy_find_dev_by_name(char *devname)
607 {
608 	int i;
609 
610 	for (i = 0; i < MAXCONTROLLERS; i++) {
611 		if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
612 			break;
613 		}
614 	}
615 
616 	/* If device cannot be found, returns -1 */
617 	if (i == MAXCONTROLLERS) {
618 		debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
619 		i = -1;
620 	}
621 
622 	return i;
623 }
624 
625 /*
626  * Read a MII PHY register.
627  *
628  * Returns:
629  *  0 on success
630  */
631 static int uec_miiphy_read(char *devname, unsigned char addr,
632 			    unsigned char reg, unsigned short *value)
633 {
634 	int devindex = 0;
635 
636 	if (devname == NULL || value == NULL) {
637 		debug("%s: NULL pointer given\n", __FUNCTION__);
638 	} else {
639 		devindex = uec_miiphy_find_dev_by_name(devname);
640 		if (devindex >= 0) {
641 			*value = uec_read_phy_reg(devlist[devindex], addr, reg);
642 		}
643 	}
644 	return 0;
645 }
646 
647 /*
648  * Write a MII PHY register.
649  *
650  * Returns:
651  *  0 on success
652  */
653 static int uec_miiphy_write(char *devname, unsigned char addr,
654 			     unsigned char reg, unsigned short value)
655 {
656 	int devindex = 0;
657 
658 	if (devname == NULL) {
659 		debug("%s: NULL pointer given\n", __FUNCTION__);
660 	} else {
661 		devindex = uec_miiphy_find_dev_by_name(devname);
662 		if (devindex >= 0) {
663 			uec_write_phy_reg(devlist[devindex], addr, reg, value);
664 		}
665 	}
666 	return 0;
667 }
668 #endif
669 
670 static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
671 {
672 	uec_t		*uec_regs;
673 	u32		mac_addr1;
674 	u32		mac_addr2;
675 
676 	if (!uec) {
677 		printf("%s: uec not initial\n", __FUNCTION__);
678 		return -EINVAL;
679 	}
680 
681 	uec_regs = uec->uec_regs;
682 
683 	/* if a station address of 0x12345678ABCD, perform a write to
684 	MACSTNADDR1 of 0xCDAB7856,
685 	MACSTNADDR2 of 0x34120000 */
686 
687 	mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
688 			(mac_addr[3] << 8)  | (mac_addr[2]);
689 	out_be32(&uec_regs->macstnaddr1, mac_addr1);
690 
691 	mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
692 	out_be32(&uec_regs->macstnaddr2, mac_addr2);
693 
694 	return 0;
695 }
696 
697 static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
698 					 int *threads_num_ret)
699 {
700 	int	num_threads_numerica;
701 
702 	switch (threads_num) {
703 		case UEC_NUM_OF_THREADS_1:
704 			num_threads_numerica = 1;
705 			break;
706 		case UEC_NUM_OF_THREADS_2:
707 			num_threads_numerica = 2;
708 			break;
709 		case UEC_NUM_OF_THREADS_4:
710 			num_threads_numerica = 4;
711 			break;
712 		case UEC_NUM_OF_THREADS_6:
713 			num_threads_numerica = 6;
714 			break;
715 		case UEC_NUM_OF_THREADS_8:
716 			num_threads_numerica = 8;
717 			break;
718 		default:
719 			printf("%s: Bad number of threads value.",
720 				 __FUNCTION__);
721 			return -EINVAL;
722 	}
723 
724 	*threads_num_ret = num_threads_numerica;
725 
726 	return 0;
727 }
728 
729 static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
730 {
731 	uec_info_t	*uec_info;
732 	u32		end_bd;
733 	u8		bmrx = 0;
734 	int		i;
735 
736 	uec_info = uec->uec_info;
737 
738 	/* Alloc global Tx parameter RAM page */
739 	uec->tx_glbl_pram_offset = qe_muram_alloc(
740 				sizeof(uec_tx_global_pram_t),
741 				 UEC_TX_GLOBAL_PRAM_ALIGNMENT);
742 	uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
743 				qe_muram_addr(uec->tx_glbl_pram_offset);
744 
745 	/* Zero the global Tx prameter RAM */
746 	memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
747 
748 	/* Init global Tx parameter RAM */
749 
750 	/* TEMODER, RMON statistics disable, one Tx queue */
751 	out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
752 
753 	/* SQPTR */
754 	uec->send_q_mem_reg_offset = qe_muram_alloc(
755 				sizeof(uec_send_queue_qd_t),
756 				 UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
757 	uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
758 				qe_muram_addr(uec->send_q_mem_reg_offset);
759 	out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
760 
761 	/* Setup the table with TxBDs ring */
762 	end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
763 					 * SIZEOFBD;
764 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
765 				 (u32)(uec->p_tx_bd_ring));
766 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
767 						 end_bd);
768 
769 	/* Scheduler Base Pointer, we have only one Tx queue, no need it */
770 	out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
771 
772 	/* TxRMON Base Pointer, TxRMON disable, we don't need it */
773 	out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
774 
775 	/* TSTATE, global snooping, big endian, the CSB bus selected */
776 	bmrx = BMR_INIT_VALUE;
777 	out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
778 
779 	/* IPH_Offset */
780 	for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
781 		out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
782 	}
783 
784 	/* VTAG table */
785 	for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
786 		out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
787 	}
788 
789 	/* TQPTR */
790 	uec->thread_dat_tx_offset = qe_muram_alloc(
791 		num_threads_tx * sizeof(uec_thread_data_tx_t) +
792 		 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
793 
794 	uec->p_thread_data_tx = (uec_thread_data_tx_t *)
795 				qe_muram_addr(uec->thread_dat_tx_offset);
796 	out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
797 }
798 
799 static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
800 {
801 	u8	bmrx = 0;
802 	int	i;
803 	uec_82xx_address_filtering_pram_t	*p_af_pram;
804 
805 	/* Allocate global Rx parameter RAM page */
806 	uec->rx_glbl_pram_offset = qe_muram_alloc(
807 		sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
808 	uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
809 				qe_muram_addr(uec->rx_glbl_pram_offset);
810 
811 	/* Zero Global Rx parameter RAM */
812 	memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
813 
814 	/* Init global Rx parameter RAM */
815 	/* REMODER, Extended feature mode disable, VLAN disable,
816 	 LossLess flow control disable, Receive firmware statisic disable,
817 	 Extended address parsing mode disable, One Rx queues,
818 	 Dynamic maximum/minimum frame length disable, IP checksum check
819 	 disable, IP address alignment disable
820 	*/
821 	out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
822 
823 	/* RQPTR */
824 	uec->thread_dat_rx_offset = qe_muram_alloc(
825 			num_threads_rx * sizeof(uec_thread_data_rx_t),
826 			 UEC_THREAD_DATA_ALIGNMENT);
827 	uec->p_thread_data_rx = (uec_thread_data_rx_t *)
828 				qe_muram_addr(uec->thread_dat_rx_offset);
829 	out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
830 
831 	/* Type_or_Len */
832 	out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
833 
834 	/* RxRMON base pointer, we don't need it */
835 	out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
836 
837 	/* IntCoalescingPTR, we don't need it, no interrupt */
838 	out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
839 
840 	/* RSTATE, global snooping, big endian, the CSB bus selected */
841 	bmrx = BMR_INIT_VALUE;
842 	out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
843 
844 	/* MRBLR */
845 	out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
846 
847 	/* RBDQPTR */
848 	uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
849 				sizeof(uec_rx_bd_queues_entry_t) + \
850 				sizeof(uec_rx_prefetched_bds_t),
851 				 UEC_RX_BD_QUEUES_ALIGNMENT);
852 	uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
853 				qe_muram_addr(uec->rx_bd_qs_tbl_offset);
854 
855 	/* Zero it */
856 	memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
857 					sizeof(uec_rx_prefetched_bds_t));
858 	out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
859 	out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
860 		 (u32)uec->p_rx_bd_ring);
861 
862 	/* MFLR */
863 	out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
864 	/* MINFLR */
865 	out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
866 	/* MAXD1 */
867 	out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
868 	/* MAXD2 */
869 	out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
870 	/* ECAM_PTR */
871 	out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
872 	/* L2QT */
873 	out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
874 	/* L3QT */
875 	for (i = 0; i < 8; i++)	{
876 		out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
877 	}
878 
879 	/* VLAN_TYPE */
880 	out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
881 	/* TCI */
882 	out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
883 
884 	/* Clear PQ2 style address filtering hash table */
885 	p_af_pram = (uec_82xx_address_filtering_pram_t *) \
886 			uec->p_rx_glbl_pram->addressfiltering;
887 
888 	p_af_pram->iaddr_h = 0;
889 	p_af_pram->iaddr_l = 0;
890 	p_af_pram->gaddr_h = 0;
891 	p_af_pram->gaddr_l = 0;
892 }
893 
894 static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
895 					 int thread_tx, int thread_rx)
896 {
897 	uec_init_cmd_pram_t		*p_init_enet_param;
898 	u32				init_enet_param_offset;
899 	uec_info_t			*uec_info;
900 	int				i;
901 	int				snum;
902 	u32				init_enet_offset;
903 	u32				entry_val;
904 	u32				command;
905 	u32				cecr_subblock;
906 
907 	uec_info = uec->uec_info;
908 
909 	/* Allocate init enet command parameter */
910 	uec->init_enet_param_offset = qe_muram_alloc(
911 					sizeof(uec_init_cmd_pram_t), 4);
912 	init_enet_param_offset = uec->init_enet_param_offset;
913 	uec->p_init_enet_param = (uec_init_cmd_pram_t *)
914 				qe_muram_addr(uec->init_enet_param_offset);
915 
916 	/* Zero init enet command struct */
917 	memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
918 
919 	/* Init the command struct */
920 	p_init_enet_param = uec->p_init_enet_param;
921 	p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
922 	p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
923 	p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
924 	p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
925 	p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
926 	p_init_enet_param->largestexternallookupkeysize = 0;
927 
928 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
929 					 << ENET_INIT_PARAM_RGF_SHIFT;
930 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
931 					 << ENET_INIT_PARAM_TGF_SHIFT;
932 
933 	/* Init Rx global parameter pointer */
934 	p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
935 						 (u32)uec_info->risc_rx;
936 
937 	/* Init Rx threads */
938 	for (i = 0; i < (thread_rx + 1); i++) {
939 		if ((snum = qe_get_snum()) < 0) {
940 			printf("%s can not get snum\n", __FUNCTION__);
941 			return -ENOMEM;
942 		}
943 
944 		if (i==0) {
945 			init_enet_offset = 0;
946 		} else {
947 			init_enet_offset = qe_muram_alloc(
948 					sizeof(uec_thread_rx_pram_t),
949 					 UEC_THREAD_RX_PRAM_ALIGNMENT);
950 		}
951 
952 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
953 				 init_enet_offset | (u32)uec_info->risc_rx;
954 		p_init_enet_param->rxthread[i] = entry_val;
955 	}
956 
957 	/* Init Tx global parameter pointer */
958 	p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
959 					 (u32)uec_info->risc_tx;
960 
961 	/* Init Tx threads */
962 	for (i = 0; i < thread_tx; i++) {
963 		if ((snum = qe_get_snum()) < 0)	{
964 			printf("%s can not get snum\n", __FUNCTION__);
965 			return -ENOMEM;
966 		}
967 
968 		init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
969 						 UEC_THREAD_TX_PRAM_ALIGNMENT);
970 
971 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
972 				 init_enet_offset | (u32)uec_info->risc_tx;
973 		p_init_enet_param->txthread[i] = entry_val;
974 	}
975 
976 	__asm__ __volatile__("sync");
977 
978 	/* Issue QE command */
979 	command = QE_INIT_TX_RX;
980 	cecr_subblock =	ucc_fast_get_qe_cr_subblock(
981 				uec->uec_info->uf_info.ucc_num);
982 	qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
983 						 init_enet_param_offset);
984 
985 	return 0;
986 }
987 
988 static int uec_startup(uec_private_t *uec)
989 {
990 	uec_info_t			*uec_info;
991 	ucc_fast_info_t			*uf_info;
992 	ucc_fast_private_t		*uccf;
993 	ucc_fast_t			*uf_regs;
994 	uec_t				*uec_regs;
995 	int				num_threads_tx;
996 	int				num_threads_rx;
997 	u32				utbipar;
998 	u32				length;
999 	u32				align;
1000 	qe_bd_t				*bd;
1001 	u8				*buf;
1002 	int				i;
1003 
1004 	if (!uec || !uec->uec_info) {
1005 		printf("%s: uec or uec_info not initial\n", __FUNCTION__);
1006 		return -EINVAL;
1007 	}
1008 
1009 	uec_info = uec->uec_info;
1010 	uf_info = &(uec_info->uf_info);
1011 
1012 	/* Check if Rx BD ring len is illegal */
1013 	if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
1014 		(uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
1015 		printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
1016 			 __FUNCTION__);
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Check if Tx BD ring len is illegal */
1021 	if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
1022 		printf("%s: Tx BD ring length must not be smaller than 2.\n",
1023 			 __FUNCTION__);
1024 		return -EINVAL;
1025 	}
1026 
1027 	/* Check if MRBLR is illegal */
1028 	if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN  % UEC_MRBLR_ALIGNMENT)) {
1029 		printf("%s: max rx buffer length must be mutliple of 128.\n",
1030 			 __FUNCTION__);
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Both Rx and Tx are stopped */
1035 	uec->grace_stopped_rx = 1;
1036 	uec->grace_stopped_tx = 1;
1037 
1038 	/* Init UCC fast */
1039 	if (ucc_fast_init(uf_info, &uccf)) {
1040 		printf("%s: failed to init ucc fast\n", __FUNCTION__);
1041 		return -ENOMEM;
1042 	}
1043 
1044 	/* Save uccf */
1045 	uec->uccf = uccf;
1046 
1047 	/* Convert the Tx threads number */
1048 	if (uec_convert_threads_num(uec_info->num_threads_tx,
1049 					 &num_threads_tx)) {
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* Convert the Rx threads number */
1054 	if (uec_convert_threads_num(uec_info->num_threads_rx,
1055 					 &num_threads_rx)) {
1056 		return -EINVAL;
1057 	}
1058 
1059 	uf_regs = uccf->uf_regs;
1060 
1061 	/* UEC register is following UCC fast registers */
1062 	uec_regs = (uec_t *)(&uf_regs->ucc_eth);
1063 
1064 	/* Save the UEC register pointer to UEC private struct */
1065 	uec->uec_regs = uec_regs;
1066 
1067 	/* Init UPSMR, enable hardware statistics (UCC) */
1068 	out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
1069 
1070 	/* Init MACCFG1, flow control disable, disable Tx and Rx */
1071 	out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
1072 
1073 	/* Init MACCFG2, length check, MAC PAD and CRC enable */
1074 	out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
1075 
1076 	/* Setup MAC interface mode */
1077 	uec_set_mac_if_mode(uec, uec_info->enet_interface_type, uec_info->speed);
1078 
1079 	/* Setup MII management base */
1080 #ifndef CONFIG_eTSEC_MDIO_BUS
1081 	uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
1082 #else
1083 	uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
1084 #endif
1085 
1086 	/* Setup MII master clock source */
1087 	qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
1088 
1089 	/* Setup UTBIPAR */
1090 	utbipar = in_be32(&uec_regs->utbipar);
1091 	utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
1092 
1093 	/* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
1094 	 * This frees up the remaining SMI addresses for use.
1095 	 */
1096 	utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
1097 	out_be32(&uec_regs->utbipar, utbipar);
1098 
1099 	/* Configure the TBI for SGMII operation */
1100 	if ((uec->uec_info->enet_interface_type == SGMII) &&
1101 	   (uec->uec_info->speed == 1000)) {
1102 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1103 			ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1104 
1105 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1106 			ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1107 
1108 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1109 			ENET_TBI_MII_CR, TBICR_SETTINGS);
1110 	}
1111 
1112 	/* Allocate Tx BDs */
1113 	length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
1114 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
1115 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1116 	if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
1117 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
1118 		length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1119 	}
1120 
1121 	align = UEC_TX_BD_RING_ALIGNMENT;
1122 	uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
1123 	if (uec->tx_bd_ring_offset != 0) {
1124 		uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
1125 						 & ~(align - 1));
1126 	}
1127 
1128 	/* Zero all of Tx BDs */
1129 	memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
1130 
1131 	/* Allocate Rx BDs */
1132 	length = uec_info->rx_bd_ring_len * SIZEOFBD;
1133 	align = UEC_RX_BD_RING_ALIGNMENT;
1134 	uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
1135 	if (uec->rx_bd_ring_offset != 0) {
1136 		uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
1137 							 & ~(align - 1));
1138 	}
1139 
1140 	/* Zero all of Rx BDs */
1141 	memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
1142 
1143 	/* Allocate Rx buffer */
1144 	length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
1145 	align = UEC_RX_DATA_BUF_ALIGNMENT;
1146 	uec->rx_buf_offset = (u32)malloc(length + align);
1147 	if (uec->rx_buf_offset != 0) {
1148 		uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
1149 						 & ~(align - 1));
1150 	}
1151 
1152 	/* Zero all of the Rx buffer */
1153 	memset((void *)(uec->rx_buf_offset), 0, length + align);
1154 
1155 	/* Init TxBD ring */
1156 	bd = (qe_bd_t *)uec->p_tx_bd_ring;
1157 	uec->txBd = bd;
1158 
1159 	for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
1160 		BD_DATA_CLEAR(bd);
1161 		BD_STATUS_SET(bd, 0);
1162 		BD_LENGTH_SET(bd, 0);
1163 		bd ++;
1164 	}
1165 	BD_STATUS_SET((--bd), TxBD_WRAP);
1166 
1167 	/* Init RxBD ring */
1168 	bd = (qe_bd_t *)uec->p_rx_bd_ring;
1169 	uec->rxBd = bd;
1170 	buf = uec->p_rx_buf;
1171 	for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
1172 		BD_DATA_SET(bd, buf);
1173 		BD_LENGTH_SET(bd, 0);
1174 		BD_STATUS_SET(bd, RxBD_EMPTY);
1175 		buf += MAX_RXBUF_LEN;
1176 		bd ++;
1177 	}
1178 	BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
1179 
1180 	/* Init global Tx parameter RAM */
1181 	uec_init_tx_parameter(uec, num_threads_tx);
1182 
1183 	/* Init global Rx parameter RAM */
1184 	uec_init_rx_parameter(uec, num_threads_rx);
1185 
1186 	/* Init ethernet Tx and Rx parameter command */
1187 	if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
1188 					 num_threads_rx)) {
1189 		printf("%s issue init enet cmd failed\n", __FUNCTION__);
1190 		return -ENOMEM;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int uec_init(struct eth_device* dev, bd_t *bd)
1197 {
1198 	uec_private_t		*uec;
1199 	int			err, i;
1200 	struct phy_info         *curphy;
1201 
1202 	uec = (uec_private_t *)dev->priv;
1203 
1204 	if (uec->the_first_run == 0) {
1205 		err = init_phy(dev);
1206 		if (err) {
1207 			printf("%s: Cannot initialize PHY, aborting.\n",
1208 			       dev->name);
1209 			return err;
1210 		}
1211 
1212 		curphy = uec->mii_info->phyinfo;
1213 
1214 		if (curphy->config_aneg) {
1215 			err = curphy->config_aneg(uec->mii_info);
1216 			if (err) {
1217 				printf("%s: Can't negotiate PHY\n", dev->name);
1218 				return err;
1219 			}
1220 		}
1221 
1222 		/* Give PHYs up to 5 sec to report a link */
1223 		i = 50;
1224 		do {
1225 			err = curphy->read_status(uec->mii_info);
1226 			udelay(100000);
1227 		} while (((i-- > 0) && !uec->mii_info->link) || err);
1228 
1229 		if (err || i <= 0)
1230 			printf("warning: %s: timeout on PHY link\n", dev->name);
1231 
1232 		adjust_link(dev);
1233 		uec->the_first_run = 1;
1234 	}
1235 
1236 	/* Set up the MAC address */
1237 	if (dev->enetaddr[0] & 0x01) {
1238 		printf("%s: MacAddress is multcast address\n",
1239 			 __FUNCTION__);
1240 		return -1;
1241 	}
1242 	uec_set_mac_address(uec, dev->enetaddr);
1243 
1244 
1245 	err = uec_open(uec, COMM_DIR_RX_AND_TX);
1246 	if (err) {
1247 		printf("%s: cannot enable UEC device\n", dev->name);
1248 		return -1;
1249 	}
1250 
1251 	phy_change(dev);
1252 
1253 	return (uec->mii_info->link ? 0 : -1);
1254 }
1255 
1256 static void uec_halt(struct eth_device* dev)
1257 {
1258 	uec_private_t	*uec = (uec_private_t *)dev->priv;
1259 	uec_stop(uec, COMM_DIR_RX_AND_TX);
1260 }
1261 
1262 static int uec_send(struct eth_device* dev, volatile void *buf, int len)
1263 {
1264 	uec_private_t		*uec;
1265 	ucc_fast_private_t	*uccf;
1266 	volatile qe_bd_t	*bd;
1267 	u16			status;
1268 	int			i;
1269 	int			result = 0;
1270 
1271 	uec = (uec_private_t *)dev->priv;
1272 	uccf = uec->uccf;
1273 	bd = uec->txBd;
1274 
1275 	/* Find an empty TxBD */
1276 	for (i = 0; bd->status & TxBD_READY; i++) {
1277 		if (i > 0x100000) {
1278 			printf("%s: tx buffer not ready\n", dev->name);
1279 			return result;
1280 		}
1281 	}
1282 
1283 	/* Init TxBD */
1284 	BD_DATA_SET(bd, buf);
1285 	BD_LENGTH_SET(bd, len);
1286 	status = bd->status;
1287 	status &= BD_WRAP;
1288 	status |= (TxBD_READY | TxBD_LAST);
1289 	BD_STATUS_SET(bd, status);
1290 
1291 	/* Tell UCC to transmit the buffer */
1292 	ucc_fast_transmit_on_demand(uccf);
1293 
1294 	/* Wait for buffer to be transmitted */
1295 	for (i = 0; bd->status & TxBD_READY; i++) {
1296 		if (i > 0x100000) {
1297 			printf("%s: tx error\n", dev->name);
1298 			return result;
1299 		}
1300 	}
1301 
1302 	/* Ok, the buffer be transimitted */
1303 	BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
1304 	uec->txBd = bd;
1305 	result = 1;
1306 
1307 	return result;
1308 }
1309 
1310 static int uec_recv(struct eth_device* dev)
1311 {
1312 	uec_private_t		*uec = dev->priv;
1313 	volatile qe_bd_t	*bd;
1314 	u16			status;
1315 	u16			len;
1316 	u8			*data;
1317 
1318 	bd = uec->rxBd;
1319 	status = bd->status;
1320 
1321 	while (!(status & RxBD_EMPTY)) {
1322 		if (!(status & RxBD_ERROR)) {
1323 			data = BD_DATA(bd);
1324 			len = BD_LENGTH(bd);
1325 			NetReceive(data, len);
1326 		} else {
1327 			printf("%s: Rx error\n", dev->name);
1328 		}
1329 		status &= BD_CLEAN;
1330 		BD_LENGTH_SET(bd, 0);
1331 		BD_STATUS_SET(bd, status | RxBD_EMPTY);
1332 		BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
1333 		status = bd->status;
1334 	}
1335 	uec->rxBd = bd;
1336 
1337 	return 1;
1338 }
1339 
1340 int uec_initialize(bd_t *bis, uec_info_t *uec_info)
1341 {
1342 	struct eth_device	*dev;
1343 	int			i;
1344 	uec_private_t		*uec;
1345 	int			err;
1346 
1347 	dev = (struct eth_device *)malloc(sizeof(struct eth_device));
1348 	if (!dev)
1349 		return 0;
1350 	memset(dev, 0, sizeof(struct eth_device));
1351 
1352 	/* Allocate the UEC private struct */
1353 	uec = (uec_private_t *)malloc(sizeof(uec_private_t));
1354 	if (!uec) {
1355 		return -ENOMEM;
1356 	}
1357 	memset(uec, 0, sizeof(uec_private_t));
1358 
1359 	/* Adjust uec_info */
1360 #if (MAX_QE_RISC == 4)
1361 	uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
1362 	uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
1363 #endif
1364 
1365 	devlist[uec_info->uf_info.ucc_num] = dev;
1366 
1367 	uec->uec_info = uec_info;
1368 	uec->dev = dev;
1369 
1370 	sprintf(dev->name, "FSL UEC%d", uec_info->uf_info.ucc_num);
1371 	dev->iobase = 0;
1372 	dev->priv = (void *)uec;
1373 	dev->init = uec_init;
1374 	dev->halt = uec_halt;
1375 	dev->send = uec_send;
1376 	dev->recv = uec_recv;
1377 
1378 	/* Clear the ethnet address */
1379 	for (i = 0; i < 6; i++)
1380 		dev->enetaddr[i] = 0;
1381 
1382 	eth_register(dev);
1383 
1384 	err = uec_startup(uec);
1385 	if (err) {
1386 		printf("%s: Cannot configure net device, aborting.",dev->name);
1387 		return err;
1388 	}
1389 
1390 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
1391 	miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
1392 #endif
1393 
1394 	return 1;
1395 }
1396 
1397 int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
1398 {
1399 	int i;
1400 
1401 	for (i = 0; i < num; i++)
1402 		uec_initialize(bis, &uecs[i]);
1403 
1404 	return 0;
1405 }
1406 
1407 int uec_standard_init(bd_t *bis)
1408 {
1409 	return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
1410 }
1411