xref: /openbmc/u-boot/drivers/qe/uec.c (revision 33b1d3f4)
1 /*
2  * Copyright (C) 2006-2009 Freescale Semiconductor, Inc.
3  *
4  * Dave Liu <daveliu@freescale.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of
9  * the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19  * MA 02111-1307 USA
20  */
21 
22 #include "common.h"
23 #include "net.h"
24 #include "malloc.h"
25 #include "asm/errno.h"
26 #include "asm/io.h"
27 #include "asm/immap_qe.h"
28 #include "qe.h"
29 #include "uccf.h"
30 #include "uec.h"
31 #include "uec_phy.h"
32 #include "miiphy.h"
33 
34 static uec_info_t uec_info[] = {
35 #ifdef CONFIG_UEC_ETH1
36 	STD_UEC_INFO(1),	/* UEC1 */
37 #endif
38 #ifdef CONFIG_UEC_ETH2
39 	STD_UEC_INFO(2),	/* UEC2 */
40 #endif
41 #ifdef CONFIG_UEC_ETH3
42 	STD_UEC_INFO(3),	/* UEC3 */
43 #endif
44 #ifdef CONFIG_UEC_ETH4
45 	STD_UEC_INFO(4),	/* UEC4 */
46 #endif
47 #ifdef CONFIG_UEC_ETH5
48 	STD_UEC_INFO(5),	/* UEC5 */
49 #endif
50 #ifdef CONFIG_UEC_ETH6
51 	STD_UEC_INFO(6),	/* UEC6 */
52 #endif
53 #ifdef CONFIG_UEC_ETH7
54 	STD_UEC_INFO(7),	/* UEC7 */
55 #endif
56 #ifdef CONFIG_UEC_ETH8
57 	STD_UEC_INFO(8),	/* UEC8 */
58 #endif
59 };
60 
61 #define MAXCONTROLLERS	(8)
62 
63 static struct eth_device *devlist[MAXCONTROLLERS];
64 
65 u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
66 void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
67 
68 static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
69 {
70 	uec_t		*uec_regs;
71 	u32		maccfg1;
72 
73 	if (!uec) {
74 		printf("%s: uec not initial\n", __FUNCTION__);
75 		return -EINVAL;
76 	}
77 	uec_regs = uec->uec_regs;
78 
79 	maccfg1 = in_be32(&uec_regs->maccfg1);
80 
81 	if (mode & COMM_DIR_TX)	{
82 		maccfg1 |= MACCFG1_ENABLE_TX;
83 		out_be32(&uec_regs->maccfg1, maccfg1);
84 		uec->mac_tx_enabled = 1;
85 	}
86 
87 	if (mode & COMM_DIR_RX)	{
88 		maccfg1 |= MACCFG1_ENABLE_RX;
89 		out_be32(&uec_regs->maccfg1, maccfg1);
90 		uec->mac_rx_enabled = 1;
91 	}
92 
93 	return 0;
94 }
95 
96 static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
97 {
98 	uec_t		*uec_regs;
99 	u32		maccfg1;
100 
101 	if (!uec) {
102 		printf("%s: uec not initial\n", __FUNCTION__);
103 		return -EINVAL;
104 	}
105 	uec_regs = uec->uec_regs;
106 
107 	maccfg1 = in_be32(&uec_regs->maccfg1);
108 
109 	if (mode & COMM_DIR_TX)	{
110 		maccfg1 &= ~MACCFG1_ENABLE_TX;
111 		out_be32(&uec_regs->maccfg1, maccfg1);
112 		uec->mac_tx_enabled = 0;
113 	}
114 
115 	if (mode & COMM_DIR_RX)	{
116 		maccfg1 &= ~MACCFG1_ENABLE_RX;
117 		out_be32(&uec_regs->maccfg1, maccfg1);
118 		uec->mac_rx_enabled = 0;
119 	}
120 
121 	return 0;
122 }
123 
124 static int uec_graceful_stop_tx(uec_private_t *uec)
125 {
126 	ucc_fast_t		*uf_regs;
127 	u32			cecr_subblock;
128 	u32			ucce;
129 
130 	if (!uec || !uec->uccf) {
131 		printf("%s: No handle passed.\n", __FUNCTION__);
132 		return -EINVAL;
133 	}
134 
135 	uf_regs = uec->uccf->uf_regs;
136 
137 	/* Clear the grace stop event */
138 	out_be32(&uf_regs->ucce, UCCE_GRA);
139 
140 	/* Issue host command */
141 	cecr_subblock =
142 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
143 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
144 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
145 
146 	/* Wait for command to complete */
147 	do {
148 		ucce = in_be32(&uf_regs->ucce);
149 	} while (! (ucce & UCCE_GRA));
150 
151 	uec->grace_stopped_tx = 1;
152 
153 	return 0;
154 }
155 
156 static int uec_graceful_stop_rx(uec_private_t *uec)
157 {
158 	u32		cecr_subblock;
159 	u8		ack;
160 
161 	if (!uec) {
162 		printf("%s: No handle passed.\n", __FUNCTION__);
163 		return -EINVAL;
164 	}
165 
166 	if (!uec->p_rx_glbl_pram) {
167 		printf("%s: No init rx global parameter\n", __FUNCTION__);
168 		return -EINVAL;
169 	}
170 
171 	/* Clear acknowledge bit */
172 	ack = uec->p_rx_glbl_pram->rxgstpack;
173 	ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
174 	uec->p_rx_glbl_pram->rxgstpack = ack;
175 
176 	/* Keep issuing cmd and checking ack bit until it is asserted */
177 	do {
178 		/* Issue host command */
179 		cecr_subblock =
180 		 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
181 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
182 				 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
183 		ack = uec->p_rx_glbl_pram->rxgstpack;
184 	} while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
185 
186 	uec->grace_stopped_rx = 1;
187 
188 	return 0;
189 }
190 
191 static int uec_restart_tx(uec_private_t *uec)
192 {
193 	u32		cecr_subblock;
194 
195 	if (!uec || !uec->uec_info) {
196 		printf("%s: No handle passed.\n", __FUNCTION__);
197 		return -EINVAL;
198 	}
199 
200 	cecr_subblock =
201 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
202 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
203 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
204 
205 	uec->grace_stopped_tx = 0;
206 
207 	return 0;
208 }
209 
210 static int uec_restart_rx(uec_private_t *uec)
211 {
212 	u32		cecr_subblock;
213 
214 	if (!uec || !uec->uec_info) {
215 		printf("%s: No handle passed.\n", __FUNCTION__);
216 		return -EINVAL;
217 	}
218 
219 	cecr_subblock =
220 	 ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
221 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
222 			 (u8)QE_CR_PROTOCOL_ETHERNET, 0);
223 
224 	uec->grace_stopped_rx = 0;
225 
226 	return 0;
227 }
228 
229 static int uec_open(uec_private_t *uec, comm_dir_e mode)
230 {
231 	ucc_fast_private_t	*uccf;
232 
233 	if (!uec || !uec->uccf) {
234 		printf("%s: No handle passed.\n", __FUNCTION__);
235 		return -EINVAL;
236 	}
237 	uccf = uec->uccf;
238 
239 	/* check if the UCC number is in range. */
240 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
241 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
242 		return -EINVAL;
243 	}
244 
245 	/* Enable MAC */
246 	uec_mac_enable(uec, mode);
247 
248 	/* Enable UCC fast */
249 	ucc_fast_enable(uccf, mode);
250 
251 	/* RISC microcode start */
252 	if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
253 		uec_restart_tx(uec);
254 	}
255 	if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
256 		uec_restart_rx(uec);
257 	}
258 
259 	return 0;
260 }
261 
262 static int uec_stop(uec_private_t *uec, comm_dir_e mode)
263 {
264 	ucc_fast_private_t	*uccf;
265 
266 	if (!uec || !uec->uccf) {
267 		printf("%s: No handle passed.\n", __FUNCTION__);
268 		return -EINVAL;
269 	}
270 	uccf = uec->uccf;
271 
272 	/* check if the UCC number is in range. */
273 	if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
274 		printf("%s: ucc_num out of range.\n", __FUNCTION__);
275 		return -EINVAL;
276 	}
277 	/* Stop any transmissions */
278 	if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
279 		uec_graceful_stop_tx(uec);
280 	}
281 	/* Stop any receptions */
282 	if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
283 		uec_graceful_stop_rx(uec);
284 	}
285 
286 	/* Disable the UCC fast */
287 	ucc_fast_disable(uec->uccf, mode);
288 
289 	/* Disable the MAC */
290 	uec_mac_disable(uec, mode);
291 
292 	return 0;
293 }
294 
295 static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
296 {
297 	uec_t		*uec_regs;
298 	u32		maccfg2;
299 
300 	if (!uec) {
301 		printf("%s: uec not initial\n", __FUNCTION__);
302 		return -EINVAL;
303 	}
304 	uec_regs = uec->uec_regs;
305 
306 	if (duplex == DUPLEX_HALF) {
307 		maccfg2 = in_be32(&uec_regs->maccfg2);
308 		maccfg2 &= ~MACCFG2_FDX;
309 		out_be32(&uec_regs->maccfg2, maccfg2);
310 	}
311 
312 	if (duplex == DUPLEX_FULL) {
313 		maccfg2 = in_be32(&uec_regs->maccfg2);
314 		maccfg2 |= MACCFG2_FDX;
315 		out_be32(&uec_regs->maccfg2, maccfg2);
316 	}
317 
318 	return 0;
319 }
320 
321 static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
322 {
323 	enet_interface_e	enet_if_mode;
324 	uec_info_t		*uec_info;
325 	uec_t			*uec_regs;
326 	u32			upsmr;
327 	u32			maccfg2;
328 
329 	if (!uec) {
330 		printf("%s: uec not initial\n", __FUNCTION__);
331 		return -EINVAL;
332 	}
333 
334 	uec_info = uec->uec_info;
335 	uec_regs = uec->uec_regs;
336 	enet_if_mode = if_mode;
337 
338 	maccfg2 = in_be32(&uec_regs->maccfg2);
339 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
340 
341 	upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
342 	upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
343 
344 	switch (enet_if_mode) {
345 		case ENET_100_MII:
346 		case ENET_10_MII:
347 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
348 			break;
349 		case ENET_1000_GMII:
350 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
351 			break;
352 		case ENET_1000_TBI:
353 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
354 			upsmr |= UPSMR_TBIM;
355 			break;
356 		case ENET_1000_RTBI:
357 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
358 			upsmr |= (UPSMR_RPM | UPSMR_TBIM);
359 			break;
360 		case ENET_1000_RGMII_RXID:
361 		case ENET_1000_RGMII_ID:
362 		case ENET_1000_RGMII:
363 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
364 			upsmr |= UPSMR_RPM;
365 			break;
366 		case ENET_100_RGMII:
367 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
368 			upsmr |= UPSMR_RPM;
369 			break;
370 		case ENET_10_RGMII:
371 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
372 			upsmr |= (UPSMR_RPM | UPSMR_R10M);
373 			break;
374 		case ENET_100_RMII:
375 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
376 			upsmr |= UPSMR_RMM;
377 			break;
378 		case ENET_10_RMII:
379 			maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
380 			upsmr |= (UPSMR_R10M | UPSMR_RMM);
381 			break;
382 		case ENET_1000_SGMII:
383 			maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
384 			upsmr |= UPSMR_SGMM;
385 			break;
386 		default:
387 			return -EINVAL;
388 			break;
389 	}
390 	out_be32(&uec_regs->maccfg2, maccfg2);
391 	out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
392 
393 	return 0;
394 }
395 
396 static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
397 {
398 	uint		timeout = 0x1000;
399 	u32		miimcfg = 0;
400 
401 	miimcfg = in_be32(&uec_mii_regs->miimcfg);
402 	miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
403 	out_be32(&uec_mii_regs->miimcfg, miimcfg);
404 
405 	/* Wait until the bus is free */
406 	while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
407 	if (timeout <= 0) {
408 		printf("%s: The MII Bus is stuck!", __FUNCTION__);
409 		return -ETIMEDOUT;
410 	}
411 
412 	return 0;
413 }
414 
415 static int init_phy(struct eth_device *dev)
416 {
417 	uec_private_t		*uec;
418 	uec_mii_t		*umii_regs;
419 	struct uec_mii_info	*mii_info;
420 	struct phy_info		*curphy;
421 	int			err;
422 
423 	uec = (uec_private_t *)dev->priv;
424 	umii_regs = uec->uec_mii_regs;
425 
426 	uec->oldlink = 0;
427 	uec->oldspeed = 0;
428 	uec->oldduplex = -1;
429 
430 	mii_info = malloc(sizeof(*mii_info));
431 	if (!mii_info) {
432 		printf("%s: Could not allocate mii_info", dev->name);
433 		return -ENOMEM;
434 	}
435 	memset(mii_info, 0, sizeof(*mii_info));
436 
437 	if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
438 		mii_info->speed = SPEED_1000;
439 	} else {
440 		mii_info->speed = SPEED_100;
441 	}
442 
443 	mii_info->duplex = DUPLEX_FULL;
444 	mii_info->pause = 0;
445 	mii_info->link = 1;
446 
447 	mii_info->advertising = (ADVERTISED_10baseT_Half |
448 				ADVERTISED_10baseT_Full |
449 				ADVERTISED_100baseT_Half |
450 				ADVERTISED_100baseT_Full |
451 				ADVERTISED_1000baseT_Full);
452 	mii_info->autoneg = 1;
453 	mii_info->mii_id = uec->uec_info->phy_address;
454 	mii_info->dev = dev;
455 
456 	mii_info->mdio_read = &uec_read_phy_reg;
457 	mii_info->mdio_write = &uec_write_phy_reg;
458 
459 	uec->mii_info = mii_info;
460 
461 	qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
462 
463 	if (init_mii_management_configuration(umii_regs)) {
464 		printf("%s: The MII Bus is stuck!", dev->name);
465 		err = -1;
466 		goto bus_fail;
467 	}
468 
469 	/* get info for this PHY */
470 	curphy = uec_get_phy_info(uec->mii_info);
471 	if (!curphy) {
472 		printf("%s: No PHY found", dev->name);
473 		err = -1;
474 		goto no_phy;
475 	}
476 
477 	mii_info->phyinfo = curphy;
478 
479 	/* Run the commands which initialize the PHY */
480 	if (curphy->init) {
481 		err = curphy->init(uec->mii_info);
482 		if (err)
483 			goto phy_init_fail;
484 	}
485 
486 	return 0;
487 
488 phy_init_fail:
489 no_phy:
490 bus_fail:
491 	free(mii_info);
492 	return err;
493 }
494 
495 static void adjust_link(struct eth_device *dev)
496 {
497 	uec_private_t		*uec = (uec_private_t *)dev->priv;
498 	uec_t			*uec_regs;
499 	struct uec_mii_info	*mii_info = uec->mii_info;
500 
501 	extern void change_phy_interface_mode(struct eth_device *dev,
502 					 enet_interface_e mode);
503 	uec_regs = uec->uec_regs;
504 
505 	if (mii_info->link) {
506 		/* Now we make sure that we can be in full duplex mode.
507 		* If not, we operate in half-duplex mode. */
508 		if (mii_info->duplex != uec->oldduplex) {
509 			if (!(mii_info->duplex)) {
510 				uec_set_mac_duplex(uec, DUPLEX_HALF);
511 				printf("%s: Half Duplex\n", dev->name);
512 			} else {
513 				uec_set_mac_duplex(uec, DUPLEX_FULL);
514 				printf("%s: Full Duplex\n", dev->name);
515 			}
516 			uec->oldduplex = mii_info->duplex;
517 		}
518 
519 		if (mii_info->speed != uec->oldspeed) {
520 			if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
521 				switch (mii_info->speed) {
522 				case 1000:
523 					break;
524 				case 100:
525 					printf ("switching to rgmii 100\n");
526 					/* change phy to rgmii 100 */
527 					change_phy_interface_mode(dev,
528 								ENET_100_RGMII);
529 					/* change the MAC interface mode */
530 					uec_set_mac_if_mode(uec,ENET_100_RGMII);
531 					break;
532 				case 10:
533 					printf ("switching to rgmii 10\n");
534 					/* change phy to rgmii 10 */
535 					change_phy_interface_mode(dev,
536 								ENET_10_RGMII);
537 					/* change the MAC interface mode */
538 					uec_set_mac_if_mode(uec,ENET_10_RGMII);
539 					break;
540 				default:
541 					printf("%s: Ack,Speed(%d)is illegal\n",
542 						dev->name, mii_info->speed);
543 					break;
544 				}
545 			}
546 
547 			printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
548 			uec->oldspeed = mii_info->speed;
549 		}
550 
551 		if (!uec->oldlink) {
552 			printf("%s: Link is up\n", dev->name);
553 			uec->oldlink = 1;
554 		}
555 
556 	} else { /* if (mii_info->link) */
557 		if (uec->oldlink) {
558 			printf("%s: Link is down\n", dev->name);
559 			uec->oldlink = 0;
560 			uec->oldspeed = 0;
561 			uec->oldduplex = -1;
562 		}
563 	}
564 }
565 
566 static void phy_change(struct eth_device *dev)
567 {
568 	uec_private_t	*uec = (uec_private_t *)dev->priv;
569 
570 	/* Update the link, speed, duplex */
571 	uec->mii_info->phyinfo->read_status(uec->mii_info);
572 
573 	/* Adjust the interface according to speed */
574 	adjust_link(dev);
575 }
576 
577 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
578 	&& !defined(BITBANGMII)
579 
580 /*
581  * Find a device index from the devlist by name
582  *
583  * Returns:
584  *  The index where the device is located, -1 on error
585  */
586 static int uec_miiphy_find_dev_by_name(char *devname)
587 {
588 	int i;
589 
590 	for (i = 0; i < MAXCONTROLLERS; i++) {
591 		if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
592 			break;
593 		}
594 	}
595 
596 	/* If device cannot be found, returns -1 */
597 	if (i == MAXCONTROLLERS) {
598 		debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
599 		i = -1;
600 	}
601 
602 	return i;
603 }
604 
605 /*
606  * Read a MII PHY register.
607  *
608  * Returns:
609  *  0 on success
610  */
611 static int uec_miiphy_read(char *devname, unsigned char addr,
612 			    unsigned char reg, unsigned short *value)
613 {
614 	int devindex = 0;
615 
616 	if (devname == NULL || value == NULL) {
617 		debug("%s: NULL pointer given\n", __FUNCTION__);
618 	} else {
619 		devindex = uec_miiphy_find_dev_by_name(devname);
620 		if (devindex >= 0) {
621 			*value = uec_read_phy_reg(devlist[devindex], addr, reg);
622 		}
623 	}
624 	return 0;
625 }
626 
627 /*
628  * Write a MII PHY register.
629  *
630  * Returns:
631  *  0 on success
632  */
633 static int uec_miiphy_write(char *devname, unsigned char addr,
634 			     unsigned char reg, unsigned short value)
635 {
636 	int devindex = 0;
637 
638 	if (devname == NULL) {
639 		debug("%s: NULL pointer given\n", __FUNCTION__);
640 	} else {
641 		devindex = uec_miiphy_find_dev_by_name(devname);
642 		if (devindex >= 0) {
643 			uec_write_phy_reg(devlist[devindex], addr, reg, value);
644 		}
645 	}
646 	return 0;
647 }
648 #endif
649 
650 static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
651 {
652 	uec_t		*uec_regs;
653 	u32		mac_addr1;
654 	u32		mac_addr2;
655 
656 	if (!uec) {
657 		printf("%s: uec not initial\n", __FUNCTION__);
658 		return -EINVAL;
659 	}
660 
661 	uec_regs = uec->uec_regs;
662 
663 	/* if a station address of 0x12345678ABCD, perform a write to
664 	MACSTNADDR1 of 0xCDAB7856,
665 	MACSTNADDR2 of 0x34120000 */
666 
667 	mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
668 			(mac_addr[3] << 8)  | (mac_addr[2]);
669 	out_be32(&uec_regs->macstnaddr1, mac_addr1);
670 
671 	mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
672 	out_be32(&uec_regs->macstnaddr2, mac_addr2);
673 
674 	return 0;
675 }
676 
677 static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
678 					 int *threads_num_ret)
679 {
680 	int	num_threads_numerica;
681 
682 	switch (threads_num) {
683 		case UEC_NUM_OF_THREADS_1:
684 			num_threads_numerica = 1;
685 			break;
686 		case UEC_NUM_OF_THREADS_2:
687 			num_threads_numerica = 2;
688 			break;
689 		case UEC_NUM_OF_THREADS_4:
690 			num_threads_numerica = 4;
691 			break;
692 		case UEC_NUM_OF_THREADS_6:
693 			num_threads_numerica = 6;
694 			break;
695 		case UEC_NUM_OF_THREADS_8:
696 			num_threads_numerica = 8;
697 			break;
698 		default:
699 			printf("%s: Bad number of threads value.",
700 				 __FUNCTION__);
701 			return -EINVAL;
702 	}
703 
704 	*threads_num_ret = num_threads_numerica;
705 
706 	return 0;
707 }
708 
709 static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
710 {
711 	uec_info_t	*uec_info;
712 	u32		end_bd;
713 	u8		bmrx = 0;
714 	int		i;
715 
716 	uec_info = uec->uec_info;
717 
718 	/* Alloc global Tx parameter RAM page */
719 	uec->tx_glbl_pram_offset = qe_muram_alloc(
720 				sizeof(uec_tx_global_pram_t),
721 				 UEC_TX_GLOBAL_PRAM_ALIGNMENT);
722 	uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
723 				qe_muram_addr(uec->tx_glbl_pram_offset);
724 
725 	/* Zero the global Tx prameter RAM */
726 	memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
727 
728 	/* Init global Tx parameter RAM */
729 
730 	/* TEMODER, RMON statistics disable, one Tx queue */
731 	out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
732 
733 	/* SQPTR */
734 	uec->send_q_mem_reg_offset = qe_muram_alloc(
735 				sizeof(uec_send_queue_qd_t),
736 				 UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
737 	uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
738 				qe_muram_addr(uec->send_q_mem_reg_offset);
739 	out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
740 
741 	/* Setup the table with TxBDs ring */
742 	end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
743 					 * SIZEOFBD;
744 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
745 				 (u32)(uec->p_tx_bd_ring));
746 	out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
747 						 end_bd);
748 
749 	/* Scheduler Base Pointer, we have only one Tx queue, no need it */
750 	out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
751 
752 	/* TxRMON Base Pointer, TxRMON disable, we don't need it */
753 	out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
754 
755 	/* TSTATE, global snooping, big endian, the CSB bus selected */
756 	bmrx = BMR_INIT_VALUE;
757 	out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
758 
759 	/* IPH_Offset */
760 	for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
761 		out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
762 	}
763 
764 	/* VTAG table */
765 	for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
766 		out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
767 	}
768 
769 	/* TQPTR */
770 	uec->thread_dat_tx_offset = qe_muram_alloc(
771 		num_threads_tx * sizeof(uec_thread_data_tx_t) +
772 		 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
773 
774 	uec->p_thread_data_tx = (uec_thread_data_tx_t *)
775 				qe_muram_addr(uec->thread_dat_tx_offset);
776 	out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
777 }
778 
779 static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
780 {
781 	u8	bmrx = 0;
782 	int	i;
783 	uec_82xx_address_filtering_pram_t	*p_af_pram;
784 
785 	/* Allocate global Rx parameter RAM page */
786 	uec->rx_glbl_pram_offset = qe_muram_alloc(
787 		sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
788 	uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
789 				qe_muram_addr(uec->rx_glbl_pram_offset);
790 
791 	/* Zero Global Rx parameter RAM */
792 	memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
793 
794 	/* Init global Rx parameter RAM */
795 	/* REMODER, Extended feature mode disable, VLAN disable,
796 	 LossLess flow control disable, Receive firmware statisic disable,
797 	 Extended address parsing mode disable, One Rx queues,
798 	 Dynamic maximum/minimum frame length disable, IP checksum check
799 	 disable, IP address alignment disable
800 	*/
801 	out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
802 
803 	/* RQPTR */
804 	uec->thread_dat_rx_offset = qe_muram_alloc(
805 			num_threads_rx * sizeof(uec_thread_data_rx_t),
806 			 UEC_THREAD_DATA_ALIGNMENT);
807 	uec->p_thread_data_rx = (uec_thread_data_rx_t *)
808 				qe_muram_addr(uec->thread_dat_rx_offset);
809 	out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
810 
811 	/* Type_or_Len */
812 	out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
813 
814 	/* RxRMON base pointer, we don't need it */
815 	out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
816 
817 	/* IntCoalescingPTR, we don't need it, no interrupt */
818 	out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
819 
820 	/* RSTATE, global snooping, big endian, the CSB bus selected */
821 	bmrx = BMR_INIT_VALUE;
822 	out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
823 
824 	/* MRBLR */
825 	out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
826 
827 	/* RBDQPTR */
828 	uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
829 				sizeof(uec_rx_bd_queues_entry_t) + \
830 				sizeof(uec_rx_prefetched_bds_t),
831 				 UEC_RX_BD_QUEUES_ALIGNMENT);
832 	uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
833 				qe_muram_addr(uec->rx_bd_qs_tbl_offset);
834 
835 	/* Zero it */
836 	memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
837 					sizeof(uec_rx_prefetched_bds_t));
838 	out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
839 	out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
840 		 (u32)uec->p_rx_bd_ring);
841 
842 	/* MFLR */
843 	out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
844 	/* MINFLR */
845 	out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
846 	/* MAXD1 */
847 	out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
848 	/* MAXD2 */
849 	out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
850 	/* ECAM_PTR */
851 	out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
852 	/* L2QT */
853 	out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
854 	/* L3QT */
855 	for (i = 0; i < 8; i++)	{
856 		out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
857 	}
858 
859 	/* VLAN_TYPE */
860 	out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
861 	/* TCI */
862 	out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
863 
864 	/* Clear PQ2 style address filtering hash table */
865 	p_af_pram = (uec_82xx_address_filtering_pram_t *) \
866 			uec->p_rx_glbl_pram->addressfiltering;
867 
868 	p_af_pram->iaddr_h = 0;
869 	p_af_pram->iaddr_l = 0;
870 	p_af_pram->gaddr_h = 0;
871 	p_af_pram->gaddr_l = 0;
872 }
873 
874 static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
875 					 int thread_tx, int thread_rx)
876 {
877 	uec_init_cmd_pram_t		*p_init_enet_param;
878 	u32				init_enet_param_offset;
879 	uec_info_t			*uec_info;
880 	int				i;
881 	int				snum;
882 	u32				init_enet_offset;
883 	u32				entry_val;
884 	u32				command;
885 	u32				cecr_subblock;
886 
887 	uec_info = uec->uec_info;
888 
889 	/* Allocate init enet command parameter */
890 	uec->init_enet_param_offset = qe_muram_alloc(
891 					sizeof(uec_init_cmd_pram_t), 4);
892 	init_enet_param_offset = uec->init_enet_param_offset;
893 	uec->p_init_enet_param = (uec_init_cmd_pram_t *)
894 				qe_muram_addr(uec->init_enet_param_offset);
895 
896 	/* Zero init enet command struct */
897 	memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
898 
899 	/* Init the command struct */
900 	p_init_enet_param = uec->p_init_enet_param;
901 	p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
902 	p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
903 	p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
904 	p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
905 	p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
906 	p_init_enet_param->largestexternallookupkeysize = 0;
907 
908 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
909 					 << ENET_INIT_PARAM_RGF_SHIFT;
910 	p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
911 					 << ENET_INIT_PARAM_TGF_SHIFT;
912 
913 	/* Init Rx global parameter pointer */
914 	p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
915 						 (u32)uec_info->risc_rx;
916 
917 	/* Init Rx threads */
918 	for (i = 0; i < (thread_rx + 1); i++) {
919 		if ((snum = qe_get_snum()) < 0) {
920 			printf("%s can not get snum\n", __FUNCTION__);
921 			return -ENOMEM;
922 		}
923 
924 		if (i==0) {
925 			init_enet_offset = 0;
926 		} else {
927 			init_enet_offset = qe_muram_alloc(
928 					sizeof(uec_thread_rx_pram_t),
929 					 UEC_THREAD_RX_PRAM_ALIGNMENT);
930 		}
931 
932 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
933 				 init_enet_offset | (u32)uec_info->risc_rx;
934 		p_init_enet_param->rxthread[i] = entry_val;
935 	}
936 
937 	/* Init Tx global parameter pointer */
938 	p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
939 					 (u32)uec_info->risc_tx;
940 
941 	/* Init Tx threads */
942 	for (i = 0; i < thread_tx; i++) {
943 		if ((snum = qe_get_snum()) < 0)	{
944 			printf("%s can not get snum\n", __FUNCTION__);
945 			return -ENOMEM;
946 		}
947 
948 		init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
949 						 UEC_THREAD_TX_PRAM_ALIGNMENT);
950 
951 		entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
952 				 init_enet_offset | (u32)uec_info->risc_tx;
953 		p_init_enet_param->txthread[i] = entry_val;
954 	}
955 
956 	__asm__ __volatile__("sync");
957 
958 	/* Issue QE command */
959 	command = QE_INIT_TX_RX;
960 	cecr_subblock =	ucc_fast_get_qe_cr_subblock(
961 				uec->uec_info->uf_info.ucc_num);
962 	qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
963 						 init_enet_param_offset);
964 
965 	return 0;
966 }
967 
968 static int uec_startup(uec_private_t *uec)
969 {
970 	uec_info_t			*uec_info;
971 	ucc_fast_info_t			*uf_info;
972 	ucc_fast_private_t		*uccf;
973 	ucc_fast_t			*uf_regs;
974 	uec_t				*uec_regs;
975 	int				num_threads_tx;
976 	int				num_threads_rx;
977 	u32				utbipar;
978 	enet_interface_e		enet_interface;
979 	u32				length;
980 	u32				align;
981 	qe_bd_t				*bd;
982 	u8				*buf;
983 	int				i;
984 
985 	if (!uec || !uec->uec_info) {
986 		printf("%s: uec or uec_info not initial\n", __FUNCTION__);
987 		return -EINVAL;
988 	}
989 
990 	uec_info = uec->uec_info;
991 	uf_info = &(uec_info->uf_info);
992 
993 	/* Check if Rx BD ring len is illegal */
994 	if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
995 		(uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
996 		printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
997 			 __FUNCTION__);
998 		return -EINVAL;
999 	}
1000 
1001 	/* Check if Tx BD ring len is illegal */
1002 	if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
1003 		printf("%s: Tx BD ring length must not be smaller than 2.\n",
1004 			 __FUNCTION__);
1005 		return -EINVAL;
1006 	}
1007 
1008 	/* Check if MRBLR is illegal */
1009 	if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN  % UEC_MRBLR_ALIGNMENT)) {
1010 		printf("%s: max rx buffer length must be mutliple of 128.\n",
1011 			 __FUNCTION__);
1012 		return -EINVAL;
1013 	}
1014 
1015 	/* Both Rx and Tx are stopped */
1016 	uec->grace_stopped_rx = 1;
1017 	uec->grace_stopped_tx = 1;
1018 
1019 	/* Init UCC fast */
1020 	if (ucc_fast_init(uf_info, &uccf)) {
1021 		printf("%s: failed to init ucc fast\n", __FUNCTION__);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	/* Save uccf */
1026 	uec->uccf = uccf;
1027 
1028 	/* Convert the Tx threads number */
1029 	if (uec_convert_threads_num(uec_info->num_threads_tx,
1030 					 &num_threads_tx)) {
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Convert the Rx threads number */
1035 	if (uec_convert_threads_num(uec_info->num_threads_rx,
1036 					 &num_threads_rx)) {
1037 		return -EINVAL;
1038 	}
1039 
1040 	uf_regs = uccf->uf_regs;
1041 
1042 	/* UEC register is following UCC fast registers */
1043 	uec_regs = (uec_t *)(&uf_regs->ucc_eth);
1044 
1045 	/* Save the UEC register pointer to UEC private struct */
1046 	uec->uec_regs = uec_regs;
1047 
1048 	/* Init UPSMR, enable hardware statistics (UCC) */
1049 	out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
1050 
1051 	/* Init MACCFG1, flow control disable, disable Tx and Rx */
1052 	out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
1053 
1054 	/* Init MACCFG2, length check, MAC PAD and CRC enable */
1055 	out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
1056 
1057 	/* Setup MAC interface mode */
1058 	uec_set_mac_if_mode(uec, uec_info->enet_interface);
1059 
1060 	/* Setup MII management base */
1061 #ifndef CONFIG_eTSEC_MDIO_BUS
1062 	uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
1063 #else
1064 	uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
1065 #endif
1066 
1067 	/* Setup MII master clock source */
1068 	qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
1069 
1070 	/* Setup UTBIPAR */
1071 	utbipar = in_be32(&uec_regs->utbipar);
1072 	utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
1073 	enet_interface = uec->uec_info->enet_interface;
1074 	if (enet_interface == ENET_1000_TBI ||
1075 		 enet_interface == ENET_1000_RTBI) {
1076 		utbipar |=  (uec_info->phy_address + uec_info->uf_info.ucc_num)
1077 						 << UTBIPAR_PHY_ADDRESS_SHIFT;
1078 	} else {
1079 		utbipar |=  (0x10 + uec_info->uf_info.ucc_num)
1080 						 << UTBIPAR_PHY_ADDRESS_SHIFT;
1081 	}
1082 
1083 	out_be32(&uec_regs->utbipar, utbipar);
1084 
1085 	/* Configure the TBI for SGMII operation */
1086 	if (uec->uec_info->enet_interface == ENET_1000_SGMII) {
1087 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1088 			ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1089 
1090 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1091 			ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1092 
1093 		uec_write_phy_reg(uec->dev, uec_regs->utbipar,
1094 			ENET_TBI_MII_CR, TBICR_SETTINGS);
1095 	}
1096 
1097 	/* Allocate Tx BDs */
1098 	length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
1099 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
1100 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1101 	if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
1102 		 UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
1103 		length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
1104 	}
1105 
1106 	align = UEC_TX_BD_RING_ALIGNMENT;
1107 	uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
1108 	if (uec->tx_bd_ring_offset != 0) {
1109 		uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
1110 						 & ~(align - 1));
1111 	}
1112 
1113 	/* Zero all of Tx BDs */
1114 	memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
1115 
1116 	/* Allocate Rx BDs */
1117 	length = uec_info->rx_bd_ring_len * SIZEOFBD;
1118 	align = UEC_RX_BD_RING_ALIGNMENT;
1119 	uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
1120 	if (uec->rx_bd_ring_offset != 0) {
1121 		uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
1122 							 & ~(align - 1));
1123 	}
1124 
1125 	/* Zero all of Rx BDs */
1126 	memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
1127 
1128 	/* Allocate Rx buffer */
1129 	length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
1130 	align = UEC_RX_DATA_BUF_ALIGNMENT;
1131 	uec->rx_buf_offset = (u32)malloc(length + align);
1132 	if (uec->rx_buf_offset != 0) {
1133 		uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
1134 						 & ~(align - 1));
1135 	}
1136 
1137 	/* Zero all of the Rx buffer */
1138 	memset((void *)(uec->rx_buf_offset), 0, length + align);
1139 
1140 	/* Init TxBD ring */
1141 	bd = (qe_bd_t *)uec->p_tx_bd_ring;
1142 	uec->txBd = bd;
1143 
1144 	for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
1145 		BD_DATA_CLEAR(bd);
1146 		BD_STATUS_SET(bd, 0);
1147 		BD_LENGTH_SET(bd, 0);
1148 		bd ++;
1149 	}
1150 	BD_STATUS_SET((--bd), TxBD_WRAP);
1151 
1152 	/* Init RxBD ring */
1153 	bd = (qe_bd_t *)uec->p_rx_bd_ring;
1154 	uec->rxBd = bd;
1155 	buf = uec->p_rx_buf;
1156 	for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
1157 		BD_DATA_SET(bd, buf);
1158 		BD_LENGTH_SET(bd, 0);
1159 		BD_STATUS_SET(bd, RxBD_EMPTY);
1160 		buf += MAX_RXBUF_LEN;
1161 		bd ++;
1162 	}
1163 	BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
1164 
1165 	/* Init global Tx parameter RAM */
1166 	uec_init_tx_parameter(uec, num_threads_tx);
1167 
1168 	/* Init global Rx parameter RAM */
1169 	uec_init_rx_parameter(uec, num_threads_rx);
1170 
1171 	/* Init ethernet Tx and Rx parameter command */
1172 	if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
1173 					 num_threads_rx)) {
1174 		printf("%s issue init enet cmd failed\n", __FUNCTION__);
1175 		return -ENOMEM;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static int uec_init(struct eth_device* dev, bd_t *bd)
1182 {
1183 	uec_private_t		*uec;
1184 	int			err, i;
1185 	struct phy_info         *curphy;
1186 
1187 	uec = (uec_private_t *)dev->priv;
1188 
1189 	if (uec->the_first_run == 0) {
1190 		err = init_phy(dev);
1191 		if (err) {
1192 			printf("%s: Cannot initialize PHY, aborting.\n",
1193 			       dev->name);
1194 			return err;
1195 		}
1196 
1197 		curphy = uec->mii_info->phyinfo;
1198 
1199 		if (curphy->config_aneg) {
1200 			err = curphy->config_aneg(uec->mii_info);
1201 			if (err) {
1202 				printf("%s: Can't negotiate PHY\n", dev->name);
1203 				return err;
1204 			}
1205 		}
1206 
1207 		/* Give PHYs up to 5 sec to report a link */
1208 		i = 50;
1209 		do {
1210 			err = curphy->read_status(uec->mii_info);
1211 			udelay(100000);
1212 		} while (((i-- > 0) && !uec->mii_info->link) || err);
1213 
1214 		if (err || i <= 0)
1215 			printf("warning: %s: timeout on PHY link\n", dev->name);
1216 
1217 		uec->the_first_run = 1;
1218 	}
1219 
1220 	/* Set up the MAC address */
1221 	if (dev->enetaddr[0] & 0x01) {
1222 		printf("%s: MacAddress is multcast address\n",
1223 			 __FUNCTION__);
1224 		return -1;
1225 	}
1226 	uec_set_mac_address(uec, dev->enetaddr);
1227 
1228 
1229 	err = uec_open(uec, COMM_DIR_RX_AND_TX);
1230 	if (err) {
1231 		printf("%s: cannot enable UEC device\n", dev->name);
1232 		return -1;
1233 	}
1234 
1235 	phy_change(dev);
1236 
1237 	return (uec->mii_info->link ? 0 : -1);
1238 }
1239 
1240 static void uec_halt(struct eth_device* dev)
1241 {
1242 	uec_private_t	*uec = (uec_private_t *)dev->priv;
1243 	uec_stop(uec, COMM_DIR_RX_AND_TX);
1244 }
1245 
1246 static int uec_send(struct eth_device* dev, volatile void *buf, int len)
1247 {
1248 	uec_private_t		*uec;
1249 	ucc_fast_private_t	*uccf;
1250 	volatile qe_bd_t	*bd;
1251 	u16			status;
1252 	int			i;
1253 	int			result = 0;
1254 
1255 	uec = (uec_private_t *)dev->priv;
1256 	uccf = uec->uccf;
1257 	bd = uec->txBd;
1258 
1259 	/* Find an empty TxBD */
1260 	for (i = 0; bd->status & TxBD_READY; i++) {
1261 		if (i > 0x100000) {
1262 			printf("%s: tx buffer not ready\n", dev->name);
1263 			return result;
1264 		}
1265 	}
1266 
1267 	/* Init TxBD */
1268 	BD_DATA_SET(bd, buf);
1269 	BD_LENGTH_SET(bd, len);
1270 	status = bd->status;
1271 	status &= BD_WRAP;
1272 	status |= (TxBD_READY | TxBD_LAST);
1273 	BD_STATUS_SET(bd, status);
1274 
1275 	/* Tell UCC to transmit the buffer */
1276 	ucc_fast_transmit_on_demand(uccf);
1277 
1278 	/* Wait for buffer to be transmitted */
1279 	for (i = 0; bd->status & TxBD_READY; i++) {
1280 		if (i > 0x100000) {
1281 			printf("%s: tx error\n", dev->name);
1282 			return result;
1283 		}
1284 	}
1285 
1286 	/* Ok, the buffer be transimitted */
1287 	BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
1288 	uec->txBd = bd;
1289 	result = 1;
1290 
1291 	return result;
1292 }
1293 
1294 static int uec_recv(struct eth_device* dev)
1295 {
1296 	uec_private_t		*uec = dev->priv;
1297 	volatile qe_bd_t	*bd;
1298 	u16			status;
1299 	u16			len;
1300 	u8			*data;
1301 
1302 	bd = uec->rxBd;
1303 	status = bd->status;
1304 
1305 	while (!(status & RxBD_EMPTY)) {
1306 		if (!(status & RxBD_ERROR)) {
1307 			data = BD_DATA(bd);
1308 			len = BD_LENGTH(bd);
1309 			NetReceive(data, len);
1310 		} else {
1311 			printf("%s: Rx error\n", dev->name);
1312 		}
1313 		status &= BD_CLEAN;
1314 		BD_LENGTH_SET(bd, 0);
1315 		BD_STATUS_SET(bd, status | RxBD_EMPTY);
1316 		BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
1317 		status = bd->status;
1318 	}
1319 	uec->rxBd = bd;
1320 
1321 	return 1;
1322 }
1323 
1324 int uec_initialize(bd_t *bis, uec_info_t *uec_info)
1325 {
1326 	struct eth_device	*dev;
1327 	int			i;
1328 	uec_private_t		*uec;
1329 	int			err;
1330 
1331 	dev = (struct eth_device *)malloc(sizeof(struct eth_device));
1332 	if (!dev)
1333 		return 0;
1334 	memset(dev, 0, sizeof(struct eth_device));
1335 
1336 	/* Allocate the UEC private struct */
1337 	uec = (uec_private_t *)malloc(sizeof(uec_private_t));
1338 	if (!uec) {
1339 		return -ENOMEM;
1340 	}
1341 	memset(uec, 0, sizeof(uec_private_t));
1342 
1343 	/* Adjust uec_info */
1344 #if (MAX_QE_RISC == 4)
1345 	uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
1346 	uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
1347 #endif
1348 
1349 	devlist[uec_info->uf_info.ucc_num] = dev;
1350 
1351 	uec->uec_info = uec_info;
1352 	uec->dev = dev;
1353 
1354 	sprintf(dev->name, "FSL UEC%d", uec_info->uf_info.ucc_num);
1355 	dev->iobase = 0;
1356 	dev->priv = (void *)uec;
1357 	dev->init = uec_init;
1358 	dev->halt = uec_halt;
1359 	dev->send = uec_send;
1360 	dev->recv = uec_recv;
1361 
1362 	/* Clear the ethnet address */
1363 	for (i = 0; i < 6; i++)
1364 		dev->enetaddr[i] = 0;
1365 
1366 	eth_register(dev);
1367 
1368 	err = uec_startup(uec);
1369 	if (err) {
1370 		printf("%s: Cannot configure net device, aborting.",dev->name);
1371 		return err;
1372 	}
1373 
1374 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1375 	&& !defined(BITBANGMII)
1376 	miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
1377 #endif
1378 
1379 	return 1;
1380 }
1381 
1382 int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
1383 {
1384 	int i;
1385 
1386 	for (i = 0; i < num; i++)
1387 		uec_initialize(bis, &uecs[i]);
1388 
1389 	return 0;
1390 }
1391 
1392 int uec_standard_init(bd_t *bis)
1393 {
1394 	return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
1395 }
1396 
1397 
1398