1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2014 Google, Inc 4 * Written by Simon Glass <sjg@chromium.org> 5 */ 6 7 #include <common.h> 8 #include <dm.h> 9 #include <errno.h> 10 #include <pci.h> 11 #include <asm/io.h> 12 #include <dm/device-internal.h> 13 #include <dm/lists.h> 14 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP) 15 #include <asm/fsp/fsp_support.h> 16 #endif 17 #include "pci_internal.h" 18 19 DECLARE_GLOBAL_DATA_PTR; 20 21 int pci_get_bus(int busnum, struct udevice **busp) 22 { 23 int ret; 24 25 ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp); 26 27 /* Since buses may not be numbered yet try a little harder with bus 0 */ 28 if (ret == -ENODEV) { 29 ret = uclass_first_device_err(UCLASS_PCI, busp); 30 if (ret) 31 return ret; 32 ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp); 33 } 34 35 return ret; 36 } 37 38 struct udevice *pci_get_controller(struct udevice *dev) 39 { 40 while (device_is_on_pci_bus(dev)) 41 dev = dev->parent; 42 43 return dev; 44 } 45 46 pci_dev_t dm_pci_get_bdf(struct udevice *dev) 47 { 48 struct pci_child_platdata *pplat = dev_get_parent_platdata(dev); 49 struct udevice *bus = dev->parent; 50 51 return PCI_ADD_BUS(bus->seq, pplat->devfn); 52 } 53 54 /** 55 * pci_get_bus_max() - returns the bus number of the last active bus 56 * 57 * @return last bus number, or -1 if no active buses 58 */ 59 static int pci_get_bus_max(void) 60 { 61 struct udevice *bus; 62 struct uclass *uc; 63 int ret = -1; 64 65 ret = uclass_get(UCLASS_PCI, &uc); 66 uclass_foreach_dev(bus, uc) { 67 if (bus->seq > ret) 68 ret = bus->seq; 69 } 70 71 debug("%s: ret=%d\n", __func__, ret); 72 73 return ret; 74 } 75 76 int pci_last_busno(void) 77 { 78 return pci_get_bus_max(); 79 } 80 81 int pci_get_ff(enum pci_size_t size) 82 { 83 switch (size) { 84 case PCI_SIZE_8: 85 return 0xff; 86 case PCI_SIZE_16: 87 return 0xffff; 88 default: 89 return 0xffffffff; 90 } 91 } 92 93 static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf, 94 ofnode *rnode) 95 { 96 struct fdt_pci_addr addr; 97 ofnode node; 98 int ret; 99 100 dev_for_each_subnode(node, bus) { 101 ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg", 102 &addr); 103 if (ret) 104 continue; 105 106 if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf)) 107 continue; 108 109 *rnode = node; 110 break; 111 } 112 }; 113 114 int pci_bus_find_devfn(struct udevice *bus, pci_dev_t find_devfn, 115 struct udevice **devp) 116 { 117 struct udevice *dev; 118 119 for (device_find_first_child(bus, &dev); 120 dev; 121 device_find_next_child(&dev)) { 122 struct pci_child_platdata *pplat; 123 124 pplat = dev_get_parent_platdata(dev); 125 if (pplat && pplat->devfn == find_devfn) { 126 *devp = dev; 127 return 0; 128 } 129 } 130 131 return -ENODEV; 132 } 133 134 int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp) 135 { 136 struct udevice *bus; 137 int ret; 138 139 ret = pci_get_bus(PCI_BUS(bdf), &bus); 140 if (ret) 141 return ret; 142 return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp); 143 } 144 145 static int pci_device_matches_ids(struct udevice *dev, 146 struct pci_device_id *ids) 147 { 148 struct pci_child_platdata *pplat; 149 int i; 150 151 pplat = dev_get_parent_platdata(dev); 152 if (!pplat) 153 return -EINVAL; 154 for (i = 0; ids[i].vendor != 0; i++) { 155 if (pplat->vendor == ids[i].vendor && 156 pplat->device == ids[i].device) 157 return i; 158 } 159 160 return -EINVAL; 161 } 162 163 int pci_bus_find_devices(struct udevice *bus, struct pci_device_id *ids, 164 int *indexp, struct udevice **devp) 165 { 166 struct udevice *dev; 167 168 /* Scan all devices on this bus */ 169 for (device_find_first_child(bus, &dev); 170 dev; 171 device_find_next_child(&dev)) { 172 if (pci_device_matches_ids(dev, ids) >= 0) { 173 if ((*indexp)-- <= 0) { 174 *devp = dev; 175 return 0; 176 } 177 } 178 } 179 180 return -ENODEV; 181 } 182 183 int pci_find_device_id(struct pci_device_id *ids, int index, 184 struct udevice **devp) 185 { 186 struct udevice *bus; 187 188 /* Scan all known buses */ 189 for (uclass_first_device(UCLASS_PCI, &bus); 190 bus; 191 uclass_next_device(&bus)) { 192 if (!pci_bus_find_devices(bus, ids, &index, devp)) 193 return 0; 194 } 195 *devp = NULL; 196 197 return -ENODEV; 198 } 199 200 static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor, 201 unsigned int device, int *indexp, 202 struct udevice **devp) 203 { 204 struct pci_child_platdata *pplat; 205 struct udevice *dev; 206 207 for (device_find_first_child(bus, &dev); 208 dev; 209 device_find_next_child(&dev)) { 210 pplat = dev_get_parent_platdata(dev); 211 if (pplat->vendor == vendor && pplat->device == device) { 212 if (!(*indexp)--) { 213 *devp = dev; 214 return 0; 215 } 216 } 217 } 218 219 return -ENODEV; 220 } 221 222 int dm_pci_find_device(unsigned int vendor, unsigned int device, int index, 223 struct udevice **devp) 224 { 225 struct udevice *bus; 226 227 /* Scan all known buses */ 228 for (uclass_first_device(UCLASS_PCI, &bus); 229 bus; 230 uclass_next_device(&bus)) { 231 if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp)) 232 return device_probe(*devp); 233 } 234 *devp = NULL; 235 236 return -ENODEV; 237 } 238 239 int dm_pci_find_class(uint find_class, int index, struct udevice **devp) 240 { 241 struct udevice *dev; 242 243 /* Scan all known buses */ 244 for (pci_find_first_device(&dev); 245 dev; 246 pci_find_next_device(&dev)) { 247 struct pci_child_platdata *pplat = dev_get_parent_platdata(dev); 248 249 if (pplat->class == find_class && !index--) { 250 *devp = dev; 251 return device_probe(*devp); 252 } 253 } 254 *devp = NULL; 255 256 return -ENODEV; 257 } 258 259 int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset, 260 unsigned long value, enum pci_size_t size) 261 { 262 struct dm_pci_ops *ops; 263 264 ops = pci_get_ops(bus); 265 if (!ops->write_config) 266 return -ENOSYS; 267 return ops->write_config(bus, bdf, offset, value, size); 268 } 269 270 int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset, 271 u32 clr, u32 set) 272 { 273 ulong val; 274 int ret; 275 276 ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32); 277 if (ret) 278 return ret; 279 val &= ~clr; 280 val |= set; 281 282 return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32); 283 } 284 285 int pci_write_config(pci_dev_t bdf, int offset, unsigned long value, 286 enum pci_size_t size) 287 { 288 struct udevice *bus; 289 int ret; 290 291 ret = pci_get_bus(PCI_BUS(bdf), &bus); 292 if (ret) 293 return ret; 294 295 return pci_bus_write_config(bus, bdf, offset, value, size); 296 } 297 298 int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value, 299 enum pci_size_t size) 300 { 301 struct udevice *bus; 302 303 for (bus = dev; device_is_on_pci_bus(bus);) 304 bus = bus->parent; 305 return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value, 306 size); 307 } 308 309 int pci_write_config32(pci_dev_t bdf, int offset, u32 value) 310 { 311 return pci_write_config(bdf, offset, value, PCI_SIZE_32); 312 } 313 314 int pci_write_config16(pci_dev_t bdf, int offset, u16 value) 315 { 316 return pci_write_config(bdf, offset, value, PCI_SIZE_16); 317 } 318 319 int pci_write_config8(pci_dev_t bdf, int offset, u8 value) 320 { 321 return pci_write_config(bdf, offset, value, PCI_SIZE_8); 322 } 323 324 int dm_pci_write_config8(struct udevice *dev, int offset, u8 value) 325 { 326 return dm_pci_write_config(dev, offset, value, PCI_SIZE_8); 327 } 328 329 int dm_pci_write_config16(struct udevice *dev, int offset, u16 value) 330 { 331 return dm_pci_write_config(dev, offset, value, PCI_SIZE_16); 332 } 333 334 int dm_pci_write_config32(struct udevice *dev, int offset, u32 value) 335 { 336 return dm_pci_write_config(dev, offset, value, PCI_SIZE_32); 337 } 338 339 int pci_bus_read_config(struct udevice *bus, pci_dev_t bdf, int offset, 340 unsigned long *valuep, enum pci_size_t size) 341 { 342 struct dm_pci_ops *ops; 343 344 ops = pci_get_ops(bus); 345 if (!ops->read_config) 346 return -ENOSYS; 347 return ops->read_config(bus, bdf, offset, valuep, size); 348 } 349 350 int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep, 351 enum pci_size_t size) 352 { 353 struct udevice *bus; 354 int ret; 355 356 ret = pci_get_bus(PCI_BUS(bdf), &bus); 357 if (ret) 358 return ret; 359 360 return pci_bus_read_config(bus, bdf, offset, valuep, size); 361 } 362 363 int dm_pci_read_config(struct udevice *dev, int offset, unsigned long *valuep, 364 enum pci_size_t size) 365 { 366 struct udevice *bus; 367 368 for (bus = dev; device_is_on_pci_bus(bus);) 369 bus = bus->parent; 370 return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep, 371 size); 372 } 373 374 int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep) 375 { 376 unsigned long value; 377 int ret; 378 379 ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32); 380 if (ret) 381 return ret; 382 *valuep = value; 383 384 return 0; 385 } 386 387 int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep) 388 { 389 unsigned long value; 390 int ret; 391 392 ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16); 393 if (ret) 394 return ret; 395 *valuep = value; 396 397 return 0; 398 } 399 400 int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep) 401 { 402 unsigned long value; 403 int ret; 404 405 ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8); 406 if (ret) 407 return ret; 408 *valuep = value; 409 410 return 0; 411 } 412 413 int dm_pci_read_config8(struct udevice *dev, int offset, u8 *valuep) 414 { 415 unsigned long value; 416 int ret; 417 418 ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8); 419 if (ret) 420 return ret; 421 *valuep = value; 422 423 return 0; 424 } 425 426 int dm_pci_read_config16(struct udevice *dev, int offset, u16 *valuep) 427 { 428 unsigned long value; 429 int ret; 430 431 ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16); 432 if (ret) 433 return ret; 434 *valuep = value; 435 436 return 0; 437 } 438 439 int dm_pci_read_config32(struct udevice *dev, int offset, u32 *valuep) 440 { 441 unsigned long value; 442 int ret; 443 444 ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32); 445 if (ret) 446 return ret; 447 *valuep = value; 448 449 return 0; 450 } 451 452 int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set) 453 { 454 u8 val; 455 int ret; 456 457 ret = dm_pci_read_config8(dev, offset, &val); 458 if (ret) 459 return ret; 460 val &= ~clr; 461 val |= set; 462 463 return dm_pci_write_config8(dev, offset, val); 464 } 465 466 int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set) 467 { 468 u16 val; 469 int ret; 470 471 ret = dm_pci_read_config16(dev, offset, &val); 472 if (ret) 473 return ret; 474 val &= ~clr; 475 val |= set; 476 477 return dm_pci_write_config16(dev, offset, val); 478 } 479 480 int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set) 481 { 482 u32 val; 483 int ret; 484 485 ret = dm_pci_read_config32(dev, offset, &val); 486 if (ret) 487 return ret; 488 val &= ~clr; 489 val |= set; 490 491 return dm_pci_write_config32(dev, offset, val); 492 } 493 494 static void set_vga_bridge_bits(struct udevice *dev) 495 { 496 struct udevice *parent = dev->parent; 497 u16 bc; 498 499 while (parent->seq != 0) { 500 dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc); 501 bc |= PCI_BRIDGE_CTL_VGA; 502 dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc); 503 parent = parent->parent; 504 } 505 } 506 507 int pci_auto_config_devices(struct udevice *bus) 508 { 509 struct pci_controller *hose = bus->uclass_priv; 510 struct pci_child_platdata *pplat; 511 unsigned int sub_bus; 512 struct udevice *dev; 513 int ret; 514 515 sub_bus = bus->seq; 516 debug("%s: start\n", __func__); 517 pciauto_config_init(hose); 518 for (ret = device_find_first_child(bus, &dev); 519 !ret && dev; 520 ret = device_find_next_child(&dev)) { 521 unsigned int max_bus; 522 int ret; 523 524 debug("%s: device %s\n", __func__, dev->name); 525 ret = dm_pciauto_config_device(dev); 526 if (ret < 0) 527 return ret; 528 max_bus = ret; 529 sub_bus = max(sub_bus, max_bus); 530 531 pplat = dev_get_parent_platdata(dev); 532 if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8)) 533 set_vga_bridge_bits(dev); 534 } 535 debug("%s: done\n", __func__); 536 537 return sub_bus; 538 } 539 540 int pci_generic_mmap_write_config( 541 struct udevice *bus, 542 int (*addr_f)(struct udevice *bus, pci_dev_t bdf, uint offset, void **addrp), 543 pci_dev_t bdf, 544 uint offset, 545 ulong value, 546 enum pci_size_t size) 547 { 548 void *address; 549 550 if (addr_f(bus, bdf, offset, &address) < 0) 551 return 0; 552 553 switch (size) { 554 case PCI_SIZE_8: 555 writeb(value, address); 556 return 0; 557 case PCI_SIZE_16: 558 writew(value, address); 559 return 0; 560 case PCI_SIZE_32: 561 writel(value, address); 562 return 0; 563 default: 564 return -EINVAL; 565 } 566 } 567 568 int pci_generic_mmap_read_config( 569 struct udevice *bus, 570 int (*addr_f)(struct udevice *bus, pci_dev_t bdf, uint offset, void **addrp), 571 pci_dev_t bdf, 572 uint offset, 573 ulong *valuep, 574 enum pci_size_t size) 575 { 576 void *address; 577 578 if (addr_f(bus, bdf, offset, &address) < 0) { 579 *valuep = pci_get_ff(size); 580 return 0; 581 } 582 583 switch (size) { 584 case PCI_SIZE_8: 585 *valuep = readb(address); 586 return 0; 587 case PCI_SIZE_16: 588 *valuep = readw(address); 589 return 0; 590 case PCI_SIZE_32: 591 *valuep = readl(address); 592 return 0; 593 default: 594 return -EINVAL; 595 } 596 } 597 598 int dm_pci_hose_probe_bus(struct udevice *bus) 599 { 600 int sub_bus; 601 int ret; 602 603 debug("%s\n", __func__); 604 605 sub_bus = pci_get_bus_max() + 1; 606 debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name); 607 dm_pciauto_prescan_setup_bridge(bus, sub_bus); 608 609 ret = device_probe(bus); 610 if (ret) { 611 debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name, 612 ret); 613 return ret; 614 } 615 if (sub_bus != bus->seq) { 616 printf("%s: Internal error, bus '%s' got seq %d, expected %d\n", 617 __func__, bus->name, bus->seq, sub_bus); 618 return -EPIPE; 619 } 620 sub_bus = pci_get_bus_max(); 621 dm_pciauto_postscan_setup_bridge(bus, sub_bus); 622 623 return sub_bus; 624 } 625 626 /** 627 * pci_match_one_device - Tell if a PCI device structure has a matching 628 * PCI device id structure 629 * @id: single PCI device id structure to match 630 * @find: the PCI device id structure to match against 631 * 632 * Returns true if the finding pci_device_id structure matched or false if 633 * there is no match. 634 */ 635 static bool pci_match_one_id(const struct pci_device_id *id, 636 const struct pci_device_id *find) 637 { 638 if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) && 639 (id->device == PCI_ANY_ID || id->device == find->device) && 640 (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) && 641 (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) && 642 !((id->class ^ find->class) & id->class_mask)) 643 return true; 644 645 return false; 646 } 647 648 /** 649 * pci_find_and_bind_driver() - Find and bind the right PCI driver 650 * 651 * This only looks at certain fields in the descriptor. 652 * 653 * @parent: Parent bus 654 * @find_id: Specification of the driver to find 655 * @bdf: Bus/device/function addreess - see PCI_BDF() 656 * @devp: Returns a pointer to the device created 657 * @return 0 if OK, -EPERM if the device is not needed before relocation and 658 * therefore was not created, other -ve value on error 659 */ 660 static int pci_find_and_bind_driver(struct udevice *parent, 661 struct pci_device_id *find_id, 662 pci_dev_t bdf, struct udevice **devp) 663 { 664 struct pci_driver_entry *start, *entry; 665 ofnode node = ofnode_null(); 666 const char *drv; 667 int n_ents; 668 int ret; 669 char name[30], *str; 670 bool bridge; 671 672 *devp = NULL; 673 674 debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__, 675 find_id->vendor, find_id->device); 676 677 /* Determine optional OF node */ 678 pci_dev_find_ofnode(parent, bdf, &node); 679 680 start = ll_entry_start(struct pci_driver_entry, pci_driver_entry); 681 n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry); 682 for (entry = start; entry != start + n_ents; entry++) { 683 const struct pci_device_id *id; 684 struct udevice *dev; 685 const struct driver *drv; 686 687 for (id = entry->match; 688 id->vendor || id->subvendor || id->class_mask; 689 id++) { 690 if (!pci_match_one_id(id, find_id)) 691 continue; 692 693 drv = entry->driver; 694 695 /* 696 * In the pre-relocation phase, we only bind devices 697 * whose driver has the DM_FLAG_PRE_RELOC set, to save 698 * precious memory space as on some platforms as that 699 * space is pretty limited (ie: using Cache As RAM). 700 */ 701 if (!(gd->flags & GD_FLG_RELOC) && 702 !(drv->flags & DM_FLAG_PRE_RELOC)) 703 return -EPERM; 704 705 /* 706 * We could pass the descriptor to the driver as 707 * platdata (instead of NULL) and allow its bind() 708 * method to return -ENOENT if it doesn't support this 709 * device. That way we could continue the search to 710 * find another driver. For now this doesn't seem 711 * necesssary, so just bind the first match. 712 */ 713 ret = device_bind_ofnode(parent, drv, drv->name, NULL, 714 node, &dev); 715 if (ret) 716 goto error; 717 debug("%s: Match found: %s\n", __func__, drv->name); 718 dev->driver_data = id->driver_data; 719 *devp = dev; 720 return 0; 721 } 722 } 723 724 bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI; 725 /* 726 * In the pre-relocation phase, we only bind bridge devices to save 727 * precious memory space as on some platforms as that space is pretty 728 * limited (ie: using Cache As RAM). 729 */ 730 if (!(gd->flags & GD_FLG_RELOC) && !bridge) 731 return -EPERM; 732 733 /* Bind a generic driver so that the device can be used */ 734 sprintf(name, "pci_%x:%x.%x", parent->seq, PCI_DEV(bdf), 735 PCI_FUNC(bdf)); 736 str = strdup(name); 737 if (!str) 738 return -ENOMEM; 739 drv = bridge ? "pci_bridge_drv" : "pci_generic_drv"; 740 741 ret = device_bind_driver_to_node(parent, drv, str, node, devp); 742 if (ret) { 743 debug("%s: Failed to bind generic driver: %d\n", __func__, ret); 744 free(str); 745 return ret; 746 } 747 debug("%s: No match found: bound generic driver instead\n", __func__); 748 749 return 0; 750 751 error: 752 debug("%s: No match found: error %d\n", __func__, ret); 753 return ret; 754 } 755 756 int pci_bind_bus_devices(struct udevice *bus) 757 { 758 ulong vendor, device; 759 ulong header_type; 760 pci_dev_t bdf, end; 761 bool found_multi; 762 int ret; 763 764 found_multi = false; 765 end = PCI_BDF(bus->seq, PCI_MAX_PCI_DEVICES - 1, 766 PCI_MAX_PCI_FUNCTIONS - 1); 767 for (bdf = PCI_BDF(bus->seq, 0, 0); bdf <= end; 768 bdf += PCI_BDF(0, 0, 1)) { 769 struct pci_child_platdata *pplat; 770 struct udevice *dev; 771 ulong class; 772 773 if (!PCI_FUNC(bdf)) 774 found_multi = false; 775 if (PCI_FUNC(bdf) && !found_multi) 776 continue; 777 /* Check only the first access, we don't expect problems */ 778 ret = pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE, 779 &header_type, PCI_SIZE_8); 780 if (ret) 781 goto error; 782 pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor, 783 PCI_SIZE_16); 784 if (vendor == 0xffff || vendor == 0x0000) 785 continue; 786 787 if (!PCI_FUNC(bdf)) 788 found_multi = header_type & 0x80; 789 790 debug("%s: bus %d/%s: found device %x, function %d\n", __func__, 791 bus->seq, bus->name, PCI_DEV(bdf), PCI_FUNC(bdf)); 792 pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device, 793 PCI_SIZE_16); 794 pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class, 795 PCI_SIZE_32); 796 class >>= 8; 797 798 /* Find this device in the device tree */ 799 ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev); 800 801 /* If nothing in the device tree, bind a device */ 802 if (ret == -ENODEV) { 803 struct pci_device_id find_id; 804 ulong val; 805 806 memset(&find_id, '\0', sizeof(find_id)); 807 find_id.vendor = vendor; 808 find_id.device = device; 809 find_id.class = class; 810 if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) { 811 pci_bus_read_config(bus, bdf, 812 PCI_SUBSYSTEM_VENDOR_ID, 813 &val, PCI_SIZE_32); 814 find_id.subvendor = val & 0xffff; 815 find_id.subdevice = val >> 16; 816 } 817 ret = pci_find_and_bind_driver(bus, &find_id, bdf, 818 &dev); 819 } 820 if (ret == -EPERM) 821 continue; 822 else if (ret) 823 return ret; 824 825 /* Update the platform data */ 826 pplat = dev_get_parent_platdata(dev); 827 pplat->devfn = PCI_MASK_BUS(bdf); 828 pplat->vendor = vendor; 829 pplat->device = device; 830 pplat->class = class; 831 } 832 833 return 0; 834 error: 835 printf("Cannot read bus configuration: %d\n", ret); 836 837 return ret; 838 } 839 840 static void decode_regions(struct pci_controller *hose, ofnode parent_node, 841 ofnode node) 842 { 843 int pci_addr_cells, addr_cells, size_cells; 844 int cells_per_record; 845 const u32 *prop; 846 int len; 847 int i; 848 849 prop = ofnode_get_property(node, "ranges", &len); 850 if (!prop) { 851 debug("%s: Cannot decode regions\n", __func__); 852 return; 853 } 854 855 pci_addr_cells = ofnode_read_simple_addr_cells(node); 856 addr_cells = ofnode_read_simple_addr_cells(parent_node); 857 size_cells = ofnode_read_simple_size_cells(node); 858 859 /* PCI addresses are always 3-cells */ 860 len /= sizeof(u32); 861 cells_per_record = pci_addr_cells + addr_cells + size_cells; 862 hose->region_count = 0; 863 debug("%s: len=%d, cells_per_record=%d\n", __func__, len, 864 cells_per_record); 865 for (i = 0; i < MAX_PCI_REGIONS; i++, len -= cells_per_record) { 866 u64 pci_addr, addr, size; 867 int space_code; 868 u32 flags; 869 int type; 870 int pos; 871 872 if (len < cells_per_record) 873 break; 874 flags = fdt32_to_cpu(prop[0]); 875 space_code = (flags >> 24) & 3; 876 pci_addr = fdtdec_get_number(prop + 1, 2); 877 prop += pci_addr_cells; 878 addr = fdtdec_get_number(prop, addr_cells); 879 prop += addr_cells; 880 size = fdtdec_get_number(prop, size_cells); 881 prop += size_cells; 882 debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n", 883 __func__, hose->region_count, pci_addr, addr, size, space_code); 884 if (space_code & 2) { 885 type = flags & (1U << 30) ? PCI_REGION_PREFETCH : 886 PCI_REGION_MEM; 887 } else if (space_code & 1) { 888 type = PCI_REGION_IO; 889 } else { 890 continue; 891 } 892 893 if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) && 894 type == PCI_REGION_MEM && upper_32_bits(pci_addr)) { 895 debug(" - beyond the 32-bit boundary, ignoring\n"); 896 continue; 897 } 898 899 pos = -1; 900 for (i = 0; i < hose->region_count; i++) { 901 if (hose->regions[i].flags == type) 902 pos = i; 903 } 904 if (pos == -1) 905 pos = hose->region_count++; 906 debug(" - type=%d, pos=%d\n", type, pos); 907 pci_set_region(hose->regions + pos, pci_addr, addr, size, type); 908 } 909 910 /* Add a region for our local memory */ 911 #ifdef CONFIG_NR_DRAM_BANKS 912 bd_t *bd = gd->bd; 913 914 if (!bd) 915 return; 916 917 for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) { 918 if (bd->bi_dram[i].size) { 919 pci_set_region(hose->regions + hose->region_count++, 920 bd->bi_dram[i].start, 921 bd->bi_dram[i].start, 922 bd->bi_dram[i].size, 923 PCI_REGION_MEM | PCI_REGION_SYS_MEMORY); 924 } 925 } 926 #else 927 phys_addr_t base = 0, size; 928 929 size = gd->ram_size; 930 #ifdef CONFIG_SYS_SDRAM_BASE 931 base = CONFIG_SYS_SDRAM_BASE; 932 #endif 933 if (gd->pci_ram_top && gd->pci_ram_top < base + size) 934 size = gd->pci_ram_top - base; 935 if (size) 936 pci_set_region(hose->regions + hose->region_count++, base, 937 base, size, PCI_REGION_MEM | PCI_REGION_SYS_MEMORY); 938 #endif 939 940 return; 941 } 942 943 static int pci_uclass_pre_probe(struct udevice *bus) 944 { 945 struct pci_controller *hose; 946 947 debug("%s, bus=%d/%s, parent=%s\n", __func__, bus->seq, bus->name, 948 bus->parent->name); 949 hose = bus->uclass_priv; 950 951 /* For bridges, use the top-level PCI controller */ 952 if (!device_is_on_pci_bus(bus)) { 953 hose->ctlr = bus; 954 decode_regions(hose, dev_ofnode(bus->parent), dev_ofnode(bus)); 955 } else { 956 struct pci_controller *parent_hose; 957 958 parent_hose = dev_get_uclass_priv(bus->parent); 959 hose->ctlr = parent_hose->bus; 960 } 961 hose->bus = bus; 962 hose->first_busno = bus->seq; 963 hose->last_busno = bus->seq; 964 965 return 0; 966 } 967 968 static int pci_uclass_post_probe(struct udevice *bus) 969 { 970 int ret; 971 972 debug("%s: probing bus %d\n", __func__, bus->seq); 973 ret = pci_bind_bus_devices(bus); 974 if (ret) 975 return ret; 976 977 #ifdef CONFIG_PCI_PNP 978 ret = pci_auto_config_devices(bus); 979 if (ret < 0) 980 return ret; 981 #endif 982 983 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP) 984 /* 985 * Per Intel FSP specification, we should call FSP notify API to 986 * inform FSP that PCI enumeration has been done so that FSP will 987 * do any necessary initialization as required by the chipset's 988 * BIOS Writer's Guide (BWG). 989 * 990 * Unfortunately we have to put this call here as with driver model, 991 * the enumeration is all done on a lazy basis as needed, so until 992 * something is touched on PCI it won't happen. 993 * 994 * Note we only call this 1) after U-Boot is relocated, and 2) 995 * root bus has finished probing. 996 */ 997 if ((gd->flags & GD_FLG_RELOC) && (bus->seq == 0)) { 998 ret = fsp_init_phase_pci(); 999 if (ret) 1000 return ret; 1001 } 1002 #endif 1003 1004 return 0; 1005 } 1006 1007 static int pci_uclass_child_post_bind(struct udevice *dev) 1008 { 1009 struct pci_child_platdata *pplat; 1010 struct fdt_pci_addr addr; 1011 int ret; 1012 1013 if (!dev_of_valid(dev)) 1014 return 0; 1015 1016 pplat = dev_get_parent_platdata(dev); 1017 1018 /* Extract vendor id and device id if available */ 1019 ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device); 1020 1021 /* Extract the devfn from fdt_pci_addr */ 1022 ret = ofnode_read_pci_addr(dev_ofnode(dev), FDT_PCI_SPACE_CONFIG, "reg", 1023 &addr); 1024 if (ret) { 1025 if (ret != -ENOENT) 1026 return -EINVAL; 1027 } else { 1028 pplat->devfn = addr.phys_hi & 0xff00; 1029 } 1030 1031 return 0; 1032 } 1033 1034 static int pci_bridge_read_config(struct udevice *bus, pci_dev_t bdf, 1035 uint offset, ulong *valuep, 1036 enum pci_size_t size) 1037 { 1038 struct pci_controller *hose = bus->uclass_priv; 1039 1040 return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size); 1041 } 1042 1043 static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf, 1044 uint offset, ulong value, 1045 enum pci_size_t size) 1046 { 1047 struct pci_controller *hose = bus->uclass_priv; 1048 1049 return pci_bus_write_config(hose->ctlr, bdf, offset, value, size); 1050 } 1051 1052 static int skip_to_next_device(struct udevice *bus, struct udevice **devp) 1053 { 1054 struct udevice *dev; 1055 int ret = 0; 1056 1057 /* 1058 * Scan through all the PCI controllers. On x86 there will only be one 1059 * but that is not necessarily true on other hardware. 1060 */ 1061 do { 1062 device_find_first_child(bus, &dev); 1063 if (dev) { 1064 *devp = dev; 1065 return 0; 1066 } 1067 ret = uclass_next_device(&bus); 1068 if (ret) 1069 return ret; 1070 } while (bus); 1071 1072 return 0; 1073 } 1074 1075 int pci_find_next_device(struct udevice **devp) 1076 { 1077 struct udevice *child = *devp; 1078 struct udevice *bus = child->parent; 1079 int ret; 1080 1081 /* First try all the siblings */ 1082 *devp = NULL; 1083 while (child) { 1084 device_find_next_child(&child); 1085 if (child) { 1086 *devp = child; 1087 return 0; 1088 } 1089 } 1090 1091 /* We ran out of siblings. Try the next bus */ 1092 ret = uclass_next_device(&bus); 1093 if (ret) 1094 return ret; 1095 1096 return bus ? skip_to_next_device(bus, devp) : 0; 1097 } 1098 1099 int pci_find_first_device(struct udevice **devp) 1100 { 1101 struct udevice *bus; 1102 int ret; 1103 1104 *devp = NULL; 1105 ret = uclass_first_device(UCLASS_PCI, &bus); 1106 if (ret) 1107 return ret; 1108 1109 return skip_to_next_device(bus, devp); 1110 } 1111 1112 ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size) 1113 { 1114 switch (size) { 1115 case PCI_SIZE_8: 1116 return (value >> ((offset & 3) * 8)) & 0xff; 1117 case PCI_SIZE_16: 1118 return (value >> ((offset & 2) * 8)) & 0xffff; 1119 default: 1120 return value; 1121 } 1122 } 1123 1124 ulong pci_conv_size_to_32(ulong old, ulong value, uint offset, 1125 enum pci_size_t size) 1126 { 1127 uint off_mask; 1128 uint val_mask, shift; 1129 ulong ldata, mask; 1130 1131 switch (size) { 1132 case PCI_SIZE_8: 1133 off_mask = 3; 1134 val_mask = 0xff; 1135 break; 1136 case PCI_SIZE_16: 1137 off_mask = 2; 1138 val_mask = 0xffff; 1139 break; 1140 default: 1141 return value; 1142 } 1143 shift = (offset & off_mask) * 8; 1144 ldata = (value & val_mask) << shift; 1145 mask = val_mask << shift; 1146 value = (old & ~mask) | ldata; 1147 1148 return value; 1149 } 1150 1151 int pci_get_regions(struct udevice *dev, struct pci_region **iop, 1152 struct pci_region **memp, struct pci_region **prefp) 1153 { 1154 struct udevice *bus = pci_get_controller(dev); 1155 struct pci_controller *hose = dev_get_uclass_priv(bus); 1156 int i; 1157 1158 *iop = NULL; 1159 *memp = NULL; 1160 *prefp = NULL; 1161 for (i = 0; i < hose->region_count; i++) { 1162 switch (hose->regions[i].flags) { 1163 case PCI_REGION_IO: 1164 if (!*iop || (*iop)->size < hose->regions[i].size) 1165 *iop = hose->regions + i; 1166 break; 1167 case PCI_REGION_MEM: 1168 if (!*memp || (*memp)->size < hose->regions[i].size) 1169 *memp = hose->regions + i; 1170 break; 1171 case (PCI_REGION_MEM | PCI_REGION_PREFETCH): 1172 if (!*prefp || (*prefp)->size < hose->regions[i].size) 1173 *prefp = hose->regions + i; 1174 break; 1175 } 1176 } 1177 1178 return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL); 1179 } 1180 1181 u32 dm_pci_read_bar32(struct udevice *dev, int barnum) 1182 { 1183 u32 addr; 1184 int bar; 1185 1186 bar = PCI_BASE_ADDRESS_0 + barnum * 4; 1187 dm_pci_read_config32(dev, bar, &addr); 1188 if (addr & PCI_BASE_ADDRESS_SPACE_IO) 1189 return addr & PCI_BASE_ADDRESS_IO_MASK; 1190 else 1191 return addr & PCI_BASE_ADDRESS_MEM_MASK; 1192 } 1193 1194 void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr) 1195 { 1196 int bar; 1197 1198 bar = PCI_BASE_ADDRESS_0 + barnum * 4; 1199 dm_pci_write_config32(dev, bar, addr); 1200 } 1201 1202 static int _dm_pci_bus_to_phys(struct udevice *ctlr, 1203 pci_addr_t bus_addr, unsigned long flags, 1204 unsigned long skip_mask, phys_addr_t *pa) 1205 { 1206 struct pci_controller *hose = dev_get_uclass_priv(ctlr); 1207 struct pci_region *res; 1208 int i; 1209 1210 if (hose->region_count == 0) { 1211 *pa = bus_addr; 1212 return 0; 1213 } 1214 1215 for (i = 0; i < hose->region_count; i++) { 1216 res = &hose->regions[i]; 1217 1218 if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0) 1219 continue; 1220 1221 if (res->flags & skip_mask) 1222 continue; 1223 1224 if (bus_addr >= res->bus_start && 1225 (bus_addr - res->bus_start) < res->size) { 1226 *pa = (bus_addr - res->bus_start + res->phys_start); 1227 return 0; 1228 } 1229 } 1230 1231 return 1; 1232 } 1233 1234 phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr, 1235 unsigned long flags) 1236 { 1237 phys_addr_t phys_addr = 0; 1238 struct udevice *ctlr; 1239 int ret; 1240 1241 /* The root controller has the region information */ 1242 ctlr = pci_get_controller(dev); 1243 1244 /* 1245 * if PCI_REGION_MEM is set we do a two pass search with preference 1246 * on matches that don't have PCI_REGION_SYS_MEMORY set 1247 */ 1248 if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) { 1249 ret = _dm_pci_bus_to_phys(ctlr, bus_addr, 1250 flags, PCI_REGION_SYS_MEMORY, 1251 &phys_addr); 1252 if (!ret) 1253 return phys_addr; 1254 } 1255 1256 ret = _dm_pci_bus_to_phys(ctlr, bus_addr, flags, 0, &phys_addr); 1257 1258 if (ret) 1259 puts("pci_hose_bus_to_phys: invalid physical address\n"); 1260 1261 return phys_addr; 1262 } 1263 1264 int _dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr, 1265 unsigned long flags, unsigned long skip_mask, 1266 pci_addr_t *ba) 1267 { 1268 struct pci_region *res; 1269 struct udevice *ctlr; 1270 pci_addr_t bus_addr; 1271 int i; 1272 struct pci_controller *hose; 1273 1274 /* The root controller has the region information */ 1275 ctlr = pci_get_controller(dev); 1276 hose = dev_get_uclass_priv(ctlr); 1277 1278 if (hose->region_count == 0) { 1279 *ba = phys_addr; 1280 return 0; 1281 } 1282 1283 for (i = 0; i < hose->region_count; i++) { 1284 res = &hose->regions[i]; 1285 1286 if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0) 1287 continue; 1288 1289 if (res->flags & skip_mask) 1290 continue; 1291 1292 bus_addr = phys_addr - res->phys_start + res->bus_start; 1293 1294 if (bus_addr >= res->bus_start && 1295 (bus_addr - res->bus_start) < res->size) { 1296 *ba = bus_addr; 1297 return 0; 1298 } 1299 } 1300 1301 return 1; 1302 } 1303 1304 pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr, 1305 unsigned long flags) 1306 { 1307 pci_addr_t bus_addr = 0; 1308 int ret; 1309 1310 /* 1311 * if PCI_REGION_MEM is set we do a two pass search with preference 1312 * on matches that don't have PCI_REGION_SYS_MEMORY set 1313 */ 1314 if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) { 1315 ret = _dm_pci_phys_to_bus(dev, phys_addr, flags, 1316 PCI_REGION_SYS_MEMORY, &bus_addr); 1317 if (!ret) 1318 return bus_addr; 1319 } 1320 1321 ret = _dm_pci_phys_to_bus(dev, phys_addr, flags, 0, &bus_addr); 1322 1323 if (ret) 1324 puts("pci_hose_phys_to_bus: invalid physical address\n"); 1325 1326 return bus_addr; 1327 } 1328 1329 void *dm_pci_map_bar(struct udevice *dev, int bar, int flags) 1330 { 1331 pci_addr_t pci_bus_addr; 1332 u32 bar_response; 1333 1334 /* read BAR address */ 1335 dm_pci_read_config32(dev, bar, &bar_response); 1336 pci_bus_addr = (pci_addr_t)(bar_response & ~0xf); 1337 1338 /* 1339 * Pass "0" as the length argument to pci_bus_to_virt. The arg 1340 * isn't actualy used on any platform because u-boot assumes a static 1341 * linear mapping. In the future, this could read the BAR size 1342 * and pass that as the size if needed. 1343 */ 1344 return dm_pci_bus_to_virt(dev, pci_bus_addr, flags, 0, MAP_NOCACHE); 1345 } 1346 1347 static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap) 1348 { 1349 int ttl = PCI_FIND_CAP_TTL; 1350 u8 id; 1351 u16 ent; 1352 1353 dm_pci_read_config8(dev, pos, &pos); 1354 1355 while (ttl--) { 1356 if (pos < PCI_STD_HEADER_SIZEOF) 1357 break; 1358 pos &= ~3; 1359 dm_pci_read_config16(dev, pos, &ent); 1360 1361 id = ent & 0xff; 1362 if (id == 0xff) 1363 break; 1364 if (id == cap) 1365 return pos; 1366 pos = (ent >> 8); 1367 } 1368 1369 return 0; 1370 } 1371 1372 int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap) 1373 { 1374 return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT, 1375 cap); 1376 } 1377 1378 int dm_pci_find_capability(struct udevice *dev, int cap) 1379 { 1380 u16 status; 1381 u8 header_type; 1382 u8 pos; 1383 1384 dm_pci_read_config16(dev, PCI_STATUS, &status); 1385 if (!(status & PCI_STATUS_CAP_LIST)) 1386 return 0; 1387 1388 dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type); 1389 if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS) 1390 pos = PCI_CB_CAPABILITY_LIST; 1391 else 1392 pos = PCI_CAPABILITY_LIST; 1393 1394 return _dm_pci_find_next_capability(dev, pos, cap); 1395 } 1396 1397 int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap) 1398 { 1399 u32 header; 1400 int ttl; 1401 int pos = PCI_CFG_SPACE_SIZE; 1402 1403 /* minimum 8 bytes per capability */ 1404 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 1405 1406 if (start) 1407 pos = start; 1408 1409 dm_pci_read_config32(dev, pos, &header); 1410 /* 1411 * If we have no capabilities, this is indicated by cap ID, 1412 * cap version and next pointer all being 0. 1413 */ 1414 if (header == 0) 1415 return 0; 1416 1417 while (ttl--) { 1418 if (PCI_EXT_CAP_ID(header) == cap) 1419 return pos; 1420 1421 pos = PCI_EXT_CAP_NEXT(header); 1422 if (pos < PCI_CFG_SPACE_SIZE) 1423 break; 1424 1425 dm_pci_read_config32(dev, pos, &header); 1426 } 1427 1428 return 0; 1429 } 1430 1431 int dm_pci_find_ext_capability(struct udevice *dev, int cap) 1432 { 1433 return dm_pci_find_next_ext_capability(dev, 0, cap); 1434 } 1435 1436 UCLASS_DRIVER(pci) = { 1437 .id = UCLASS_PCI, 1438 .name = "pci", 1439 .flags = DM_UC_FLAG_SEQ_ALIAS, 1440 .post_bind = dm_scan_fdt_dev, 1441 .pre_probe = pci_uclass_pre_probe, 1442 .post_probe = pci_uclass_post_probe, 1443 .child_post_bind = pci_uclass_child_post_bind, 1444 .per_device_auto_alloc_size = sizeof(struct pci_controller), 1445 .per_child_platdata_auto_alloc_size = 1446 sizeof(struct pci_child_platdata), 1447 }; 1448 1449 static const struct dm_pci_ops pci_bridge_ops = { 1450 .read_config = pci_bridge_read_config, 1451 .write_config = pci_bridge_write_config, 1452 }; 1453 1454 static const struct udevice_id pci_bridge_ids[] = { 1455 { .compatible = "pci-bridge" }, 1456 { } 1457 }; 1458 1459 U_BOOT_DRIVER(pci_bridge_drv) = { 1460 .name = "pci_bridge_drv", 1461 .id = UCLASS_PCI, 1462 .of_match = pci_bridge_ids, 1463 .ops = &pci_bridge_ops, 1464 }; 1465 1466 UCLASS_DRIVER(pci_generic) = { 1467 .id = UCLASS_PCI_GENERIC, 1468 .name = "pci_generic", 1469 }; 1470 1471 static const struct udevice_id pci_generic_ids[] = { 1472 { .compatible = "pci-generic" }, 1473 { } 1474 }; 1475 1476 U_BOOT_DRIVER(pci_generic_drv) = { 1477 .name = "pci_generic_drv", 1478 .id = UCLASS_PCI_GENERIC, 1479 .of_match = pci_generic_ids, 1480 }; 1481 1482 void pci_init(void) 1483 { 1484 struct udevice *bus; 1485 1486 /* 1487 * Enumerate all known controller devices. Enumeration has the side- 1488 * effect of probing them, so PCIe devices will be enumerated too. 1489 */ 1490 for (uclass_first_device(UCLASS_PCI, &bus); 1491 bus; 1492 uclass_next_device(&bus)) { 1493 ; 1494 } 1495 } 1496