xref: /openbmc/u-boot/drivers/pci/pci-uclass.c (revision 1a68faac)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2014 Google, Inc
4  * Written by Simon Glass <sjg@chromium.org>
5  */
6 
7 #include <common.h>
8 #include <dm.h>
9 #include <errno.h>
10 #include <pci.h>
11 #include <asm/io.h>
12 #include <dm/device-internal.h>
13 #include <dm/lists.h>
14 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
15 #include <asm/fsp/fsp_support.h>
16 #endif
17 #include "pci_internal.h"
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 int pci_get_bus(int busnum, struct udevice **busp)
22 {
23 	int ret;
24 
25 	ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
26 
27 	/* Since buses may not be numbered yet try a little harder with bus 0 */
28 	if (ret == -ENODEV) {
29 		ret = uclass_first_device_err(UCLASS_PCI, busp);
30 		if (ret)
31 			return ret;
32 		ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
33 	}
34 
35 	return ret;
36 }
37 
38 struct udevice *pci_get_controller(struct udevice *dev)
39 {
40 	while (device_is_on_pci_bus(dev))
41 		dev = dev->parent;
42 
43 	return dev;
44 }
45 
46 pci_dev_t dm_pci_get_bdf(struct udevice *dev)
47 {
48 	struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
49 	struct udevice *bus = dev->parent;
50 
51 	return PCI_ADD_BUS(bus->seq, pplat->devfn);
52 }
53 
54 /**
55  * pci_get_bus_max() - returns the bus number of the last active bus
56  *
57  * @return last bus number, or -1 if no active buses
58  */
59 static int pci_get_bus_max(void)
60 {
61 	struct udevice *bus;
62 	struct uclass *uc;
63 	int ret = -1;
64 
65 	ret = uclass_get(UCLASS_PCI, &uc);
66 	uclass_foreach_dev(bus, uc) {
67 		if (bus->seq > ret)
68 			ret = bus->seq;
69 	}
70 
71 	debug("%s: ret=%d\n", __func__, ret);
72 
73 	return ret;
74 }
75 
76 int pci_last_busno(void)
77 {
78 	return pci_get_bus_max();
79 }
80 
81 int pci_get_ff(enum pci_size_t size)
82 {
83 	switch (size) {
84 	case PCI_SIZE_8:
85 		return 0xff;
86 	case PCI_SIZE_16:
87 		return 0xffff;
88 	default:
89 		return 0xffffffff;
90 	}
91 }
92 
93 static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf,
94 				ofnode *rnode)
95 {
96 	struct fdt_pci_addr addr;
97 	ofnode node;
98 	int ret;
99 
100 	dev_for_each_subnode(node, bus) {
101 		ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg",
102 					   &addr);
103 		if (ret)
104 			continue;
105 
106 		if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf))
107 			continue;
108 
109 		*rnode = node;
110 		break;
111 	}
112 };
113 
114 int pci_bus_find_devfn(struct udevice *bus, pci_dev_t find_devfn,
115 		       struct udevice **devp)
116 {
117 	struct udevice *dev;
118 
119 	for (device_find_first_child(bus, &dev);
120 	     dev;
121 	     device_find_next_child(&dev)) {
122 		struct pci_child_platdata *pplat;
123 
124 		pplat = dev_get_parent_platdata(dev);
125 		if (pplat && pplat->devfn == find_devfn) {
126 			*devp = dev;
127 			return 0;
128 		}
129 	}
130 
131 	return -ENODEV;
132 }
133 
134 int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
135 {
136 	struct udevice *bus;
137 	int ret;
138 
139 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
140 	if (ret)
141 		return ret;
142 	return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
143 }
144 
145 static int pci_device_matches_ids(struct udevice *dev,
146 				  struct pci_device_id *ids)
147 {
148 	struct pci_child_platdata *pplat;
149 	int i;
150 
151 	pplat = dev_get_parent_platdata(dev);
152 	if (!pplat)
153 		return -EINVAL;
154 	for (i = 0; ids[i].vendor != 0; i++) {
155 		if (pplat->vendor == ids[i].vendor &&
156 		    pplat->device == ids[i].device)
157 			return i;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 int pci_bus_find_devices(struct udevice *bus, struct pci_device_id *ids,
164 			 int *indexp, struct udevice **devp)
165 {
166 	struct udevice *dev;
167 
168 	/* Scan all devices on this bus */
169 	for (device_find_first_child(bus, &dev);
170 	     dev;
171 	     device_find_next_child(&dev)) {
172 		if (pci_device_matches_ids(dev, ids) >= 0) {
173 			if ((*indexp)-- <= 0) {
174 				*devp = dev;
175 				return 0;
176 			}
177 		}
178 	}
179 
180 	return -ENODEV;
181 }
182 
183 int pci_find_device_id(struct pci_device_id *ids, int index,
184 		       struct udevice **devp)
185 {
186 	struct udevice *bus;
187 
188 	/* Scan all known buses */
189 	for (uclass_first_device(UCLASS_PCI, &bus);
190 	     bus;
191 	     uclass_next_device(&bus)) {
192 		if (!pci_bus_find_devices(bus, ids, &index, devp))
193 			return 0;
194 	}
195 	*devp = NULL;
196 
197 	return -ENODEV;
198 }
199 
200 static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor,
201 				  unsigned int device, int *indexp,
202 				  struct udevice **devp)
203 {
204 	struct pci_child_platdata *pplat;
205 	struct udevice *dev;
206 
207 	for (device_find_first_child(bus, &dev);
208 	     dev;
209 	     device_find_next_child(&dev)) {
210 		pplat = dev_get_parent_platdata(dev);
211 		if (pplat->vendor == vendor && pplat->device == device) {
212 			if (!(*indexp)--) {
213 				*devp = dev;
214 				return 0;
215 			}
216 		}
217 	}
218 
219 	return -ENODEV;
220 }
221 
222 int dm_pci_find_device(unsigned int vendor, unsigned int device, int index,
223 		       struct udevice **devp)
224 {
225 	struct udevice *bus;
226 
227 	/* Scan all known buses */
228 	for (uclass_first_device(UCLASS_PCI, &bus);
229 	     bus;
230 	     uclass_next_device(&bus)) {
231 		if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp))
232 			return device_probe(*devp);
233 	}
234 	*devp = NULL;
235 
236 	return -ENODEV;
237 }
238 
239 int dm_pci_find_class(uint find_class, int index, struct udevice **devp)
240 {
241 	struct udevice *dev;
242 
243 	/* Scan all known buses */
244 	for (pci_find_first_device(&dev);
245 	     dev;
246 	     pci_find_next_device(&dev)) {
247 		struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
248 
249 		if (pplat->class == find_class && !index--) {
250 			*devp = dev;
251 			return device_probe(*devp);
252 		}
253 	}
254 	*devp = NULL;
255 
256 	return -ENODEV;
257 }
258 
259 int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
260 			 unsigned long value, enum pci_size_t size)
261 {
262 	struct dm_pci_ops *ops;
263 
264 	ops = pci_get_ops(bus);
265 	if (!ops->write_config)
266 		return -ENOSYS;
267 	return ops->write_config(bus, bdf, offset, value, size);
268 }
269 
270 int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset,
271 			    u32 clr, u32 set)
272 {
273 	ulong val;
274 	int ret;
275 
276 	ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32);
277 	if (ret)
278 		return ret;
279 	val &= ~clr;
280 	val |= set;
281 
282 	return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32);
283 }
284 
285 int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
286 		     enum pci_size_t size)
287 {
288 	struct udevice *bus;
289 	int ret;
290 
291 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
292 	if (ret)
293 		return ret;
294 
295 	return pci_bus_write_config(bus, bdf, offset, value, size);
296 }
297 
298 int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value,
299 			enum pci_size_t size)
300 {
301 	struct udevice *bus;
302 
303 	for (bus = dev; device_is_on_pci_bus(bus);)
304 		bus = bus->parent;
305 	return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value,
306 				    size);
307 }
308 
309 int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
310 {
311 	return pci_write_config(bdf, offset, value, PCI_SIZE_32);
312 }
313 
314 int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
315 {
316 	return pci_write_config(bdf, offset, value, PCI_SIZE_16);
317 }
318 
319 int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
320 {
321 	return pci_write_config(bdf, offset, value, PCI_SIZE_8);
322 }
323 
324 int dm_pci_write_config8(struct udevice *dev, int offset, u8 value)
325 {
326 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_8);
327 }
328 
329 int dm_pci_write_config16(struct udevice *dev, int offset, u16 value)
330 {
331 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_16);
332 }
333 
334 int dm_pci_write_config32(struct udevice *dev, int offset, u32 value)
335 {
336 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_32);
337 }
338 
339 int pci_bus_read_config(struct udevice *bus, pci_dev_t bdf, int offset,
340 			unsigned long *valuep, enum pci_size_t size)
341 {
342 	struct dm_pci_ops *ops;
343 
344 	ops = pci_get_ops(bus);
345 	if (!ops->read_config)
346 		return -ENOSYS;
347 	return ops->read_config(bus, bdf, offset, valuep, size);
348 }
349 
350 int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
351 		    enum pci_size_t size)
352 {
353 	struct udevice *bus;
354 	int ret;
355 
356 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
357 	if (ret)
358 		return ret;
359 
360 	return pci_bus_read_config(bus, bdf, offset, valuep, size);
361 }
362 
363 int dm_pci_read_config(struct udevice *dev, int offset, unsigned long *valuep,
364 		       enum pci_size_t size)
365 {
366 	struct udevice *bus;
367 
368 	for (bus = dev; device_is_on_pci_bus(bus);)
369 		bus = bus->parent;
370 	return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep,
371 				   size);
372 }
373 
374 int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
375 {
376 	unsigned long value;
377 	int ret;
378 
379 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
380 	if (ret)
381 		return ret;
382 	*valuep = value;
383 
384 	return 0;
385 }
386 
387 int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
388 {
389 	unsigned long value;
390 	int ret;
391 
392 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
393 	if (ret)
394 		return ret;
395 	*valuep = value;
396 
397 	return 0;
398 }
399 
400 int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
401 {
402 	unsigned long value;
403 	int ret;
404 
405 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
406 	if (ret)
407 		return ret;
408 	*valuep = value;
409 
410 	return 0;
411 }
412 
413 int dm_pci_read_config8(struct udevice *dev, int offset, u8 *valuep)
414 {
415 	unsigned long value;
416 	int ret;
417 
418 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8);
419 	if (ret)
420 		return ret;
421 	*valuep = value;
422 
423 	return 0;
424 }
425 
426 int dm_pci_read_config16(struct udevice *dev, int offset, u16 *valuep)
427 {
428 	unsigned long value;
429 	int ret;
430 
431 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16);
432 	if (ret)
433 		return ret;
434 	*valuep = value;
435 
436 	return 0;
437 }
438 
439 int dm_pci_read_config32(struct udevice *dev, int offset, u32 *valuep)
440 {
441 	unsigned long value;
442 	int ret;
443 
444 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32);
445 	if (ret)
446 		return ret;
447 	*valuep = value;
448 
449 	return 0;
450 }
451 
452 int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set)
453 {
454 	u8 val;
455 	int ret;
456 
457 	ret = dm_pci_read_config8(dev, offset, &val);
458 	if (ret)
459 		return ret;
460 	val &= ~clr;
461 	val |= set;
462 
463 	return dm_pci_write_config8(dev, offset, val);
464 }
465 
466 int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set)
467 {
468 	u16 val;
469 	int ret;
470 
471 	ret = dm_pci_read_config16(dev, offset, &val);
472 	if (ret)
473 		return ret;
474 	val &= ~clr;
475 	val |= set;
476 
477 	return dm_pci_write_config16(dev, offset, val);
478 }
479 
480 int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set)
481 {
482 	u32 val;
483 	int ret;
484 
485 	ret = dm_pci_read_config32(dev, offset, &val);
486 	if (ret)
487 		return ret;
488 	val &= ~clr;
489 	val |= set;
490 
491 	return dm_pci_write_config32(dev, offset, val);
492 }
493 
494 static void set_vga_bridge_bits(struct udevice *dev)
495 {
496 	struct udevice *parent = dev->parent;
497 	u16 bc;
498 
499 	while (parent->seq != 0) {
500 		dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc);
501 		bc |= PCI_BRIDGE_CTL_VGA;
502 		dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc);
503 		parent = parent->parent;
504 	}
505 }
506 
507 int pci_auto_config_devices(struct udevice *bus)
508 {
509 	struct pci_controller *hose = bus->uclass_priv;
510 	struct pci_child_platdata *pplat;
511 	unsigned int sub_bus;
512 	struct udevice *dev;
513 	int ret;
514 
515 	sub_bus = bus->seq;
516 	debug("%s: start\n", __func__);
517 	pciauto_config_init(hose);
518 	for (ret = device_find_first_child(bus, &dev);
519 	     !ret && dev;
520 	     ret = device_find_next_child(&dev)) {
521 		unsigned int max_bus;
522 		int ret;
523 
524 		debug("%s: device %s\n", __func__, dev->name);
525 		ret = dm_pciauto_config_device(dev);
526 		if (ret < 0)
527 			return ret;
528 		max_bus = ret;
529 		sub_bus = max(sub_bus, max_bus);
530 
531 		pplat = dev_get_parent_platdata(dev);
532 		if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8))
533 			set_vga_bridge_bits(dev);
534 	}
535 	debug("%s: done\n", __func__);
536 
537 	return sub_bus;
538 }
539 
540 int pci_generic_mmap_write_config(
541 	struct udevice *bus,
542 	int (*addr_f)(struct udevice *bus, pci_dev_t bdf, uint offset, void **addrp),
543 	pci_dev_t bdf,
544 	uint offset,
545 	ulong value,
546 	enum pci_size_t size)
547 {
548 	void *address;
549 
550 	if (addr_f(bus, bdf, offset, &address) < 0)
551 		return 0;
552 
553 	switch (size) {
554 	case PCI_SIZE_8:
555 		writeb(value, address);
556 		return 0;
557 	case PCI_SIZE_16:
558 		writew(value, address);
559 		return 0;
560 	case PCI_SIZE_32:
561 		writel(value, address);
562 		return 0;
563 	default:
564 		return -EINVAL;
565 	}
566 }
567 
568 int pci_generic_mmap_read_config(
569 	struct udevice *bus,
570 	int (*addr_f)(struct udevice *bus, pci_dev_t bdf, uint offset, void **addrp),
571 	pci_dev_t bdf,
572 	uint offset,
573 	ulong *valuep,
574 	enum pci_size_t size)
575 {
576 	void *address;
577 
578 	if (addr_f(bus, bdf, offset, &address) < 0) {
579 		*valuep = pci_get_ff(size);
580 		return 0;
581 	}
582 
583 	switch (size) {
584 	case PCI_SIZE_8:
585 		*valuep = readb(address);
586 		return 0;
587 	case PCI_SIZE_16:
588 		*valuep = readw(address);
589 		return 0;
590 	case PCI_SIZE_32:
591 		*valuep = readl(address);
592 		return 0;
593 	default:
594 		return -EINVAL;
595 	}
596 }
597 
598 int dm_pci_hose_probe_bus(struct udevice *bus)
599 {
600 	int sub_bus;
601 	int ret;
602 
603 	debug("%s\n", __func__);
604 
605 	sub_bus = pci_get_bus_max() + 1;
606 	debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
607 	dm_pciauto_prescan_setup_bridge(bus, sub_bus);
608 
609 	ret = device_probe(bus);
610 	if (ret) {
611 		debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name,
612 		      ret);
613 		return ret;
614 	}
615 	if (sub_bus != bus->seq) {
616 		printf("%s: Internal error, bus '%s' got seq %d, expected %d\n",
617 		       __func__, bus->name, bus->seq, sub_bus);
618 		return -EPIPE;
619 	}
620 	sub_bus = pci_get_bus_max();
621 	dm_pciauto_postscan_setup_bridge(bus, sub_bus);
622 
623 	return sub_bus;
624 }
625 
626 /**
627  * pci_match_one_device - Tell if a PCI device structure has a matching
628  *                        PCI device id structure
629  * @id: single PCI device id structure to match
630  * @find: the PCI device id structure to match against
631  *
632  * Returns true if the finding pci_device_id structure matched or false if
633  * there is no match.
634  */
635 static bool pci_match_one_id(const struct pci_device_id *id,
636 			     const struct pci_device_id *find)
637 {
638 	if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) &&
639 	    (id->device == PCI_ANY_ID || id->device == find->device) &&
640 	    (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) &&
641 	    (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) &&
642 	    !((id->class ^ find->class) & id->class_mask))
643 		return true;
644 
645 	return false;
646 }
647 
648 /**
649  * pci_find_and_bind_driver() - Find and bind the right PCI driver
650  *
651  * This only looks at certain fields in the descriptor.
652  *
653  * @parent:	Parent bus
654  * @find_id:	Specification of the driver to find
655  * @bdf:	Bus/device/function addreess - see PCI_BDF()
656  * @devp:	Returns a pointer to the device created
657  * @return 0 if OK, -EPERM if the device is not needed before relocation and
658  *	   therefore was not created, other -ve value on error
659  */
660 static int pci_find_and_bind_driver(struct udevice *parent,
661 				    struct pci_device_id *find_id,
662 				    pci_dev_t bdf, struct udevice **devp)
663 {
664 	struct pci_driver_entry *start, *entry;
665 	ofnode node = ofnode_null();
666 	const char *drv;
667 	int n_ents;
668 	int ret;
669 	char name[30], *str;
670 	bool bridge;
671 
672 	*devp = NULL;
673 
674 	debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__,
675 	      find_id->vendor, find_id->device);
676 
677 	/* Determine optional OF node */
678 	pci_dev_find_ofnode(parent, bdf, &node);
679 
680 	start = ll_entry_start(struct pci_driver_entry, pci_driver_entry);
681 	n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry);
682 	for (entry = start; entry != start + n_ents; entry++) {
683 		const struct pci_device_id *id;
684 		struct udevice *dev;
685 		const struct driver *drv;
686 
687 		for (id = entry->match;
688 		     id->vendor || id->subvendor || id->class_mask;
689 		     id++) {
690 			if (!pci_match_one_id(id, find_id))
691 				continue;
692 
693 			drv = entry->driver;
694 
695 			/*
696 			 * In the pre-relocation phase, we only bind devices
697 			 * whose driver has the DM_FLAG_PRE_RELOC set, to save
698 			 * precious memory space as on some platforms as that
699 			 * space is pretty limited (ie: using Cache As RAM).
700 			 */
701 			if (!(gd->flags & GD_FLG_RELOC) &&
702 			    !(drv->flags & DM_FLAG_PRE_RELOC))
703 				return -EPERM;
704 
705 			/*
706 			 * We could pass the descriptor to the driver as
707 			 * platdata (instead of NULL) and allow its bind()
708 			 * method to return -ENOENT if it doesn't support this
709 			 * device. That way we could continue the search to
710 			 * find another driver. For now this doesn't seem
711 			 * necesssary, so just bind the first match.
712 			 */
713 			ret = device_bind_ofnode(parent, drv, drv->name, NULL,
714 						 node, &dev);
715 			if (ret)
716 				goto error;
717 			debug("%s: Match found: %s\n", __func__, drv->name);
718 			dev->driver_data = id->driver_data;
719 			*devp = dev;
720 			return 0;
721 		}
722 	}
723 
724 	bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI;
725 	/*
726 	 * In the pre-relocation phase, we only bind bridge devices to save
727 	 * precious memory space as on some platforms as that space is pretty
728 	 * limited (ie: using Cache As RAM).
729 	 */
730 	if (!(gd->flags & GD_FLG_RELOC) && !bridge)
731 		return -EPERM;
732 
733 	/* Bind a generic driver so that the device can be used */
734 	sprintf(name, "pci_%x:%x.%x", parent->seq, PCI_DEV(bdf),
735 		PCI_FUNC(bdf));
736 	str = strdup(name);
737 	if (!str)
738 		return -ENOMEM;
739 	drv = bridge ? "pci_bridge_drv" : "pci_generic_drv";
740 
741 	ret = device_bind_driver_to_node(parent, drv, str, node, devp);
742 	if (ret) {
743 		debug("%s: Failed to bind generic driver: %d\n", __func__, ret);
744 		free(str);
745 		return ret;
746 	}
747 	debug("%s: No match found: bound generic driver instead\n", __func__);
748 
749 	return 0;
750 
751 error:
752 	debug("%s: No match found: error %d\n", __func__, ret);
753 	return ret;
754 }
755 
756 int pci_bind_bus_devices(struct udevice *bus)
757 {
758 	ulong vendor, device;
759 	ulong header_type;
760 	pci_dev_t bdf, end;
761 	bool found_multi;
762 	int ret;
763 
764 	found_multi = false;
765 	end = PCI_BDF(bus->seq, PCI_MAX_PCI_DEVICES - 1,
766 		      PCI_MAX_PCI_FUNCTIONS - 1);
767 	for (bdf = PCI_BDF(bus->seq, 0, 0); bdf <= end;
768 	     bdf += PCI_BDF(0, 0, 1)) {
769 		struct pci_child_platdata *pplat;
770 		struct udevice *dev;
771 		ulong class;
772 
773 		if (!PCI_FUNC(bdf))
774 			found_multi = false;
775 		if (PCI_FUNC(bdf) && !found_multi)
776 			continue;
777 
778 		/* Check only the first access, we don't expect problems */
779 		ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor,
780 					  PCI_SIZE_16);
781 		if (ret)
782 			goto error;
783 
784 		if (vendor == 0xffff || vendor == 0x0000)
785 			continue;
786 
787 		pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE,
788 				    &header_type, PCI_SIZE_8);
789 
790 		if (!PCI_FUNC(bdf))
791 			found_multi = header_type & 0x80;
792 
793 		debug("%s: bus %d/%s: found device %x, function %d\n", __func__,
794 		      bus->seq, bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
795 		pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device,
796 				    PCI_SIZE_16);
797 		pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class,
798 				    PCI_SIZE_32);
799 		class >>= 8;
800 
801 		/* Find this device in the device tree */
802 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
803 
804 		/* If nothing in the device tree, bind a device */
805 		if (ret == -ENODEV) {
806 			struct pci_device_id find_id;
807 			ulong val;
808 
809 			memset(&find_id, '\0', sizeof(find_id));
810 			find_id.vendor = vendor;
811 			find_id.device = device;
812 			find_id.class = class;
813 			if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) {
814 				pci_bus_read_config(bus, bdf,
815 						    PCI_SUBSYSTEM_VENDOR_ID,
816 						    &val, PCI_SIZE_32);
817 				find_id.subvendor = val & 0xffff;
818 				find_id.subdevice = val >> 16;
819 			}
820 			ret = pci_find_and_bind_driver(bus, &find_id, bdf,
821 						       &dev);
822 		}
823 		if (ret == -EPERM)
824 			continue;
825 		else if (ret)
826 			return ret;
827 
828 		/* Update the platform data */
829 		pplat = dev_get_parent_platdata(dev);
830 		pplat->devfn = PCI_MASK_BUS(bdf);
831 		pplat->vendor = vendor;
832 		pplat->device = device;
833 		pplat->class = class;
834 	}
835 
836 	return 0;
837 error:
838 	printf("Cannot read bus configuration: %d\n", ret);
839 
840 	return ret;
841 }
842 
843 static void decode_regions(struct pci_controller *hose, ofnode parent_node,
844 			   ofnode node)
845 {
846 	int pci_addr_cells, addr_cells, size_cells;
847 	int cells_per_record;
848 	const u32 *prop;
849 	int len;
850 	int i;
851 
852 	prop = ofnode_get_property(node, "ranges", &len);
853 	if (!prop) {
854 		debug("%s: Cannot decode regions\n", __func__);
855 		return;
856 	}
857 
858 	pci_addr_cells = ofnode_read_simple_addr_cells(node);
859 	addr_cells = ofnode_read_simple_addr_cells(parent_node);
860 	size_cells = ofnode_read_simple_size_cells(node);
861 
862 	/* PCI addresses are always 3-cells */
863 	len /= sizeof(u32);
864 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
865 	hose->region_count = 0;
866 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
867 	      cells_per_record);
868 	for (i = 0; i < MAX_PCI_REGIONS; i++, len -= cells_per_record) {
869 		u64 pci_addr, addr, size;
870 		int space_code;
871 		u32 flags;
872 		int type;
873 		int pos;
874 
875 		if (len < cells_per_record)
876 			break;
877 		flags = fdt32_to_cpu(prop[0]);
878 		space_code = (flags >> 24) & 3;
879 		pci_addr = fdtdec_get_number(prop + 1, 2);
880 		prop += pci_addr_cells;
881 		addr = fdtdec_get_number(prop, addr_cells);
882 		prop += addr_cells;
883 		size = fdtdec_get_number(prop, size_cells);
884 		prop += size_cells;
885 		debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n",
886 		      __func__, hose->region_count, pci_addr, addr, size, space_code);
887 		if (space_code & 2) {
888 			type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
889 					PCI_REGION_MEM;
890 		} else if (space_code & 1) {
891 			type = PCI_REGION_IO;
892 		} else {
893 			continue;
894 		}
895 
896 		if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) &&
897 		    type == PCI_REGION_MEM && upper_32_bits(pci_addr)) {
898 			debug(" - beyond the 32-bit boundary, ignoring\n");
899 			continue;
900 		}
901 
902 		pos = -1;
903 		for (i = 0; i < hose->region_count; i++) {
904 			if (hose->regions[i].flags == type)
905 				pos = i;
906 		}
907 		if (pos == -1)
908 			pos = hose->region_count++;
909 		debug(" - type=%d, pos=%d\n", type, pos);
910 		pci_set_region(hose->regions + pos, pci_addr, addr, size, type);
911 	}
912 
913 	/* Add a region for our local memory */
914 #ifdef CONFIG_NR_DRAM_BANKS
915 	bd_t *bd = gd->bd;
916 
917 	if (!bd)
918 		return;
919 
920 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) {
921 		if (bd->bi_dram[i].size) {
922 			pci_set_region(hose->regions + hose->region_count++,
923 				       bd->bi_dram[i].start,
924 				       bd->bi_dram[i].start,
925 				       bd->bi_dram[i].size,
926 				       PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
927 		}
928 	}
929 #else
930 	phys_addr_t base = 0, size;
931 
932 	size = gd->ram_size;
933 #ifdef CONFIG_SYS_SDRAM_BASE
934 	base = CONFIG_SYS_SDRAM_BASE;
935 #endif
936 	if (gd->pci_ram_top && gd->pci_ram_top < base + size)
937 		size = gd->pci_ram_top - base;
938 	if (size)
939 		pci_set_region(hose->regions + hose->region_count++, base,
940 			base, size, PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
941 #endif
942 
943 	return;
944 }
945 
946 static int pci_uclass_pre_probe(struct udevice *bus)
947 {
948 	struct pci_controller *hose;
949 
950 	debug("%s, bus=%d/%s, parent=%s\n", __func__, bus->seq, bus->name,
951 	      bus->parent->name);
952 	hose = bus->uclass_priv;
953 
954 	/* For bridges, use the top-level PCI controller */
955 	if (!device_is_on_pci_bus(bus)) {
956 		hose->ctlr = bus;
957 		decode_regions(hose, dev_ofnode(bus->parent), dev_ofnode(bus));
958 	} else {
959 		struct pci_controller *parent_hose;
960 
961 		parent_hose = dev_get_uclass_priv(bus->parent);
962 		hose->ctlr = parent_hose->bus;
963 	}
964 	hose->bus = bus;
965 	hose->first_busno = bus->seq;
966 	hose->last_busno = bus->seq;
967 
968 	return 0;
969 }
970 
971 static int pci_uclass_post_probe(struct udevice *bus)
972 {
973 	int ret;
974 
975 	debug("%s: probing bus %d\n", __func__, bus->seq);
976 	ret = pci_bind_bus_devices(bus);
977 	if (ret)
978 		return ret;
979 
980 #ifdef CONFIG_PCI_PNP
981 	ret = pci_auto_config_devices(bus);
982 	if (ret < 0)
983 		return ret;
984 #endif
985 
986 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
987 	/*
988 	 * Per Intel FSP specification, we should call FSP notify API to
989 	 * inform FSP that PCI enumeration has been done so that FSP will
990 	 * do any necessary initialization as required by the chipset's
991 	 * BIOS Writer's Guide (BWG).
992 	 *
993 	 * Unfortunately we have to put this call here as with driver model,
994 	 * the enumeration is all done on a lazy basis as needed, so until
995 	 * something is touched on PCI it won't happen.
996 	 *
997 	 * Note we only call this 1) after U-Boot is relocated, and 2)
998 	 * root bus has finished probing.
999 	 */
1000 	if ((gd->flags & GD_FLG_RELOC) && (bus->seq == 0)) {
1001 		ret = fsp_init_phase_pci();
1002 		if (ret)
1003 			return ret;
1004 	}
1005 #endif
1006 
1007 	return 0;
1008 }
1009 
1010 int pci_get_devfn(struct udevice *dev)
1011 {
1012 	struct fdt_pci_addr addr;
1013 	int ret;
1014 
1015 	/* Extract the devfn from fdt_pci_addr */
1016 	ret = ofnode_read_pci_addr(dev_ofnode(dev), FDT_PCI_SPACE_CONFIG,
1017 				   "reg", &addr);
1018 	if (ret) {
1019 		if (ret != -ENOENT)
1020 			return -EINVAL;
1021 	}
1022 
1023 	return addr.phys_hi & 0xff00;
1024 }
1025 
1026 static int pci_uclass_child_post_bind(struct udevice *dev)
1027 {
1028 	struct pci_child_platdata *pplat;
1029 
1030 	if (!dev_of_valid(dev))
1031 		return 0;
1032 
1033 	pplat = dev_get_parent_platdata(dev);
1034 
1035 	/* Extract vendor id and device id if available */
1036 	ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device);
1037 
1038 	/* Extract the devfn from fdt_pci_addr */
1039 	pplat->devfn = pci_get_devfn(dev);
1040 
1041 	return 0;
1042 }
1043 
1044 static int pci_bridge_read_config(struct udevice *bus, pci_dev_t bdf,
1045 				  uint offset, ulong *valuep,
1046 				  enum pci_size_t size)
1047 {
1048 	struct pci_controller *hose = bus->uclass_priv;
1049 
1050 	return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
1051 }
1052 
1053 static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf,
1054 				   uint offset, ulong value,
1055 				   enum pci_size_t size)
1056 {
1057 	struct pci_controller *hose = bus->uclass_priv;
1058 
1059 	return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
1060 }
1061 
1062 static int skip_to_next_device(struct udevice *bus, struct udevice **devp)
1063 {
1064 	struct udevice *dev;
1065 	int ret = 0;
1066 
1067 	/*
1068 	 * Scan through all the PCI controllers. On x86 there will only be one
1069 	 * but that is not necessarily true on other hardware.
1070 	 */
1071 	do {
1072 		device_find_first_child(bus, &dev);
1073 		if (dev) {
1074 			*devp = dev;
1075 			return 0;
1076 		}
1077 		ret = uclass_next_device(&bus);
1078 		if (ret)
1079 			return ret;
1080 	} while (bus);
1081 
1082 	return 0;
1083 }
1084 
1085 int pci_find_next_device(struct udevice **devp)
1086 {
1087 	struct udevice *child = *devp;
1088 	struct udevice *bus = child->parent;
1089 	int ret;
1090 
1091 	/* First try all the siblings */
1092 	*devp = NULL;
1093 	while (child) {
1094 		device_find_next_child(&child);
1095 		if (child) {
1096 			*devp = child;
1097 			return 0;
1098 		}
1099 	}
1100 
1101 	/* We ran out of siblings. Try the next bus */
1102 	ret = uclass_next_device(&bus);
1103 	if (ret)
1104 		return ret;
1105 
1106 	return bus ? skip_to_next_device(bus, devp) : 0;
1107 }
1108 
1109 int pci_find_first_device(struct udevice **devp)
1110 {
1111 	struct udevice *bus;
1112 	int ret;
1113 
1114 	*devp = NULL;
1115 	ret = uclass_first_device(UCLASS_PCI, &bus);
1116 	if (ret)
1117 		return ret;
1118 
1119 	return skip_to_next_device(bus, devp);
1120 }
1121 
1122 ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size)
1123 {
1124 	switch (size) {
1125 	case PCI_SIZE_8:
1126 		return (value >> ((offset & 3) * 8)) & 0xff;
1127 	case PCI_SIZE_16:
1128 		return (value >> ((offset & 2) * 8)) & 0xffff;
1129 	default:
1130 		return value;
1131 	}
1132 }
1133 
1134 ulong pci_conv_size_to_32(ulong old, ulong value, uint offset,
1135 			  enum pci_size_t size)
1136 {
1137 	uint off_mask;
1138 	uint val_mask, shift;
1139 	ulong ldata, mask;
1140 
1141 	switch (size) {
1142 	case PCI_SIZE_8:
1143 		off_mask = 3;
1144 		val_mask = 0xff;
1145 		break;
1146 	case PCI_SIZE_16:
1147 		off_mask = 2;
1148 		val_mask = 0xffff;
1149 		break;
1150 	default:
1151 		return value;
1152 	}
1153 	shift = (offset & off_mask) * 8;
1154 	ldata = (value & val_mask) << shift;
1155 	mask = val_mask << shift;
1156 	value = (old & ~mask) | ldata;
1157 
1158 	return value;
1159 }
1160 
1161 int pci_get_regions(struct udevice *dev, struct pci_region **iop,
1162 		    struct pci_region **memp, struct pci_region **prefp)
1163 {
1164 	struct udevice *bus = pci_get_controller(dev);
1165 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1166 	int i;
1167 
1168 	*iop = NULL;
1169 	*memp = NULL;
1170 	*prefp = NULL;
1171 	for (i = 0; i < hose->region_count; i++) {
1172 		switch (hose->regions[i].flags) {
1173 		case PCI_REGION_IO:
1174 			if (!*iop || (*iop)->size < hose->regions[i].size)
1175 				*iop = hose->regions + i;
1176 			break;
1177 		case PCI_REGION_MEM:
1178 			if (!*memp || (*memp)->size < hose->regions[i].size)
1179 				*memp = hose->regions + i;
1180 			break;
1181 		case (PCI_REGION_MEM | PCI_REGION_PREFETCH):
1182 			if (!*prefp || (*prefp)->size < hose->regions[i].size)
1183 				*prefp = hose->regions + i;
1184 			break;
1185 		}
1186 	}
1187 
1188 	return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL);
1189 }
1190 
1191 u32 dm_pci_read_bar32(struct udevice *dev, int barnum)
1192 {
1193 	u32 addr;
1194 	int bar;
1195 
1196 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1197 	dm_pci_read_config32(dev, bar, &addr);
1198 	if (addr & PCI_BASE_ADDRESS_SPACE_IO)
1199 		return addr & PCI_BASE_ADDRESS_IO_MASK;
1200 	else
1201 		return addr & PCI_BASE_ADDRESS_MEM_MASK;
1202 }
1203 
1204 void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr)
1205 {
1206 	int bar;
1207 
1208 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1209 	dm_pci_write_config32(dev, bar, addr);
1210 }
1211 
1212 static int _dm_pci_bus_to_phys(struct udevice *ctlr,
1213 			       pci_addr_t bus_addr, unsigned long flags,
1214 			       unsigned long skip_mask, phys_addr_t *pa)
1215 {
1216 	struct pci_controller *hose = dev_get_uclass_priv(ctlr);
1217 	struct pci_region *res;
1218 	int i;
1219 
1220 	if (hose->region_count == 0) {
1221 		*pa = bus_addr;
1222 		return 0;
1223 	}
1224 
1225 	for (i = 0; i < hose->region_count; i++) {
1226 		res = &hose->regions[i];
1227 
1228 		if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1229 			continue;
1230 
1231 		if (res->flags & skip_mask)
1232 			continue;
1233 
1234 		if (bus_addr >= res->bus_start &&
1235 		    (bus_addr - res->bus_start) < res->size) {
1236 			*pa = (bus_addr - res->bus_start + res->phys_start);
1237 			return 0;
1238 		}
1239 	}
1240 
1241 	return 1;
1242 }
1243 
1244 phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr,
1245 			       unsigned long flags)
1246 {
1247 	phys_addr_t phys_addr = 0;
1248 	struct udevice *ctlr;
1249 	int ret;
1250 
1251 	/* The root controller has the region information */
1252 	ctlr = pci_get_controller(dev);
1253 
1254 	/*
1255 	 * if PCI_REGION_MEM is set we do a two pass search with preference
1256 	 * on matches that don't have PCI_REGION_SYS_MEMORY set
1257 	 */
1258 	if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1259 		ret = _dm_pci_bus_to_phys(ctlr, bus_addr,
1260 					  flags, PCI_REGION_SYS_MEMORY,
1261 					  &phys_addr);
1262 		if (!ret)
1263 			return phys_addr;
1264 	}
1265 
1266 	ret = _dm_pci_bus_to_phys(ctlr, bus_addr, flags, 0, &phys_addr);
1267 
1268 	if (ret)
1269 		puts("pci_hose_bus_to_phys: invalid physical address\n");
1270 
1271 	return phys_addr;
1272 }
1273 
1274 int _dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1275 			unsigned long flags, unsigned long skip_mask,
1276 			pci_addr_t *ba)
1277 {
1278 	struct pci_region *res;
1279 	struct udevice *ctlr;
1280 	pci_addr_t bus_addr;
1281 	int i;
1282 	struct pci_controller *hose;
1283 
1284 	/* The root controller has the region information */
1285 	ctlr = pci_get_controller(dev);
1286 	hose = dev_get_uclass_priv(ctlr);
1287 
1288 	if (hose->region_count == 0) {
1289 		*ba = phys_addr;
1290 		return 0;
1291 	}
1292 
1293 	for (i = 0; i < hose->region_count; i++) {
1294 		res = &hose->regions[i];
1295 
1296 		if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1297 			continue;
1298 
1299 		if (res->flags & skip_mask)
1300 			continue;
1301 
1302 		bus_addr = phys_addr - res->phys_start + res->bus_start;
1303 
1304 		if (bus_addr >= res->bus_start &&
1305 		    (bus_addr - res->bus_start) < res->size) {
1306 			*ba = bus_addr;
1307 			return 0;
1308 		}
1309 	}
1310 
1311 	return 1;
1312 }
1313 
1314 pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1315 			      unsigned long flags)
1316 {
1317 	pci_addr_t bus_addr = 0;
1318 	int ret;
1319 
1320 	/*
1321 	 * if PCI_REGION_MEM is set we do a two pass search with preference
1322 	 * on matches that don't have PCI_REGION_SYS_MEMORY set
1323 	 */
1324 	if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1325 		ret = _dm_pci_phys_to_bus(dev, phys_addr, flags,
1326 					  PCI_REGION_SYS_MEMORY, &bus_addr);
1327 		if (!ret)
1328 			return bus_addr;
1329 	}
1330 
1331 	ret = _dm_pci_phys_to_bus(dev, phys_addr, flags, 0, &bus_addr);
1332 
1333 	if (ret)
1334 		puts("pci_hose_phys_to_bus: invalid physical address\n");
1335 
1336 	return bus_addr;
1337 }
1338 
1339 void *dm_pci_map_bar(struct udevice *dev, int bar, int flags)
1340 {
1341 	pci_addr_t pci_bus_addr;
1342 	u32 bar_response;
1343 
1344 	/* read BAR address */
1345 	dm_pci_read_config32(dev, bar, &bar_response);
1346 	pci_bus_addr = (pci_addr_t)(bar_response & ~0xf);
1347 
1348 	/*
1349 	 * Pass "0" as the length argument to pci_bus_to_virt.  The arg
1350 	 * isn't actualy used on any platform because u-boot assumes a static
1351 	 * linear mapping.  In the future, this could read the BAR size
1352 	 * and pass that as the size if needed.
1353 	 */
1354 	return dm_pci_bus_to_virt(dev, pci_bus_addr, flags, 0, MAP_NOCACHE);
1355 }
1356 
1357 static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap)
1358 {
1359 	int ttl = PCI_FIND_CAP_TTL;
1360 	u8 id;
1361 	u16 ent;
1362 
1363 	dm_pci_read_config8(dev, pos, &pos);
1364 
1365 	while (ttl--) {
1366 		if (pos < PCI_STD_HEADER_SIZEOF)
1367 			break;
1368 		pos &= ~3;
1369 		dm_pci_read_config16(dev, pos, &ent);
1370 
1371 		id = ent & 0xff;
1372 		if (id == 0xff)
1373 			break;
1374 		if (id == cap)
1375 			return pos;
1376 		pos = (ent >> 8);
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap)
1383 {
1384 	return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT,
1385 					    cap);
1386 }
1387 
1388 int dm_pci_find_capability(struct udevice *dev, int cap)
1389 {
1390 	u16 status;
1391 	u8 header_type;
1392 	u8 pos;
1393 
1394 	dm_pci_read_config16(dev, PCI_STATUS, &status);
1395 	if (!(status & PCI_STATUS_CAP_LIST))
1396 		return 0;
1397 
1398 	dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type);
1399 	if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
1400 		pos = PCI_CB_CAPABILITY_LIST;
1401 	else
1402 		pos = PCI_CAPABILITY_LIST;
1403 
1404 	return _dm_pci_find_next_capability(dev, pos, cap);
1405 }
1406 
1407 int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap)
1408 {
1409 	u32 header;
1410 	int ttl;
1411 	int pos = PCI_CFG_SPACE_SIZE;
1412 
1413 	/* minimum 8 bytes per capability */
1414 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
1415 
1416 	if (start)
1417 		pos = start;
1418 
1419 	dm_pci_read_config32(dev, pos, &header);
1420 	/*
1421 	 * If we have no capabilities, this is indicated by cap ID,
1422 	 * cap version and next pointer all being 0.
1423 	 */
1424 	if (header == 0)
1425 		return 0;
1426 
1427 	while (ttl--) {
1428 		if (PCI_EXT_CAP_ID(header) == cap)
1429 			return pos;
1430 
1431 		pos = PCI_EXT_CAP_NEXT(header);
1432 		if (pos < PCI_CFG_SPACE_SIZE)
1433 			break;
1434 
1435 		dm_pci_read_config32(dev, pos, &header);
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 int dm_pci_find_ext_capability(struct udevice *dev, int cap)
1442 {
1443 	return dm_pci_find_next_ext_capability(dev, 0, cap);
1444 }
1445 
1446 UCLASS_DRIVER(pci) = {
1447 	.id		= UCLASS_PCI,
1448 	.name		= "pci",
1449 	.flags		= DM_UC_FLAG_SEQ_ALIAS,
1450 	.post_bind	= dm_scan_fdt_dev,
1451 	.pre_probe	= pci_uclass_pre_probe,
1452 	.post_probe	= pci_uclass_post_probe,
1453 	.child_post_bind = pci_uclass_child_post_bind,
1454 	.per_device_auto_alloc_size = sizeof(struct pci_controller),
1455 	.per_child_platdata_auto_alloc_size =
1456 			sizeof(struct pci_child_platdata),
1457 };
1458 
1459 static const struct dm_pci_ops pci_bridge_ops = {
1460 	.read_config	= pci_bridge_read_config,
1461 	.write_config	= pci_bridge_write_config,
1462 };
1463 
1464 static const struct udevice_id pci_bridge_ids[] = {
1465 	{ .compatible = "pci-bridge" },
1466 	{ }
1467 };
1468 
1469 U_BOOT_DRIVER(pci_bridge_drv) = {
1470 	.name		= "pci_bridge_drv",
1471 	.id		= UCLASS_PCI,
1472 	.of_match	= pci_bridge_ids,
1473 	.ops		= &pci_bridge_ops,
1474 };
1475 
1476 UCLASS_DRIVER(pci_generic) = {
1477 	.id		= UCLASS_PCI_GENERIC,
1478 	.name		= "pci_generic",
1479 };
1480 
1481 static const struct udevice_id pci_generic_ids[] = {
1482 	{ .compatible = "pci-generic" },
1483 	{ }
1484 };
1485 
1486 U_BOOT_DRIVER(pci_generic_drv) = {
1487 	.name		= "pci_generic_drv",
1488 	.id		= UCLASS_PCI_GENERIC,
1489 	.of_match	= pci_generic_ids,
1490 };
1491 
1492 void pci_init(void)
1493 {
1494 	struct udevice *bus;
1495 
1496 	/*
1497 	 * Enumerate all known controller devices. Enumeration has the side-
1498 	 * effect of probing them, so PCIe devices will be enumerated too.
1499 	 */
1500 	for (uclass_first_device(UCLASS_PCI, &bus);
1501 	     bus;
1502 	     uclass_next_device(&bus)) {
1503 		;
1504 	}
1505 }
1506