1 /*
2  * Copyright (C) 2011 Michal Simek <monstr@monstr.eu>
3  * Copyright (C) 2011 PetaLogix
4  * Copyright (C) 2010 Xilinx, Inc. All rights reserved.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <config.h>
10 #include <common.h>
11 #include <dm.h>
12 #include <net.h>
13 #include <malloc.h>
14 #include <asm/io.h>
15 #include <phy.h>
16 #include <miiphy.h>
17 #include <wait_bit.h>
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 /* Link setup */
22 #define XAE_EMMC_LINKSPEED_MASK	0xC0000000 /* Link speed */
23 #define XAE_EMMC_LINKSPD_10	0x00000000 /* Link Speed mask for 10 Mbit */
24 #define XAE_EMMC_LINKSPD_100	0x40000000 /* Link Speed mask for 100 Mbit */
25 #define XAE_EMMC_LINKSPD_1000	0x80000000 /* Link Speed mask for 1000 Mbit */
26 
27 /* Interrupt Status/Enable/Mask Registers bit definitions */
28 #define XAE_INT_RXRJECT_MASK	0x00000008 /* Rx frame rejected */
29 #define XAE_INT_MGTRDY_MASK	0x00000080 /* MGT clock Lock */
30 
31 /* Receive Configuration Word 1 (RCW1) Register bit definitions */
32 #define XAE_RCW1_RX_MASK	0x10000000 /* Receiver enable */
33 
34 /* Transmitter Configuration (TC) Register bit definitions */
35 #define XAE_TC_TX_MASK		0x10000000 /* Transmitter enable */
36 
37 #define XAE_UAW1_UNICASTADDR_MASK	0x0000FFFF
38 
39 /* MDIO Management Configuration (MC) Register bit definitions */
40 #define XAE_MDIO_MC_MDIOEN_MASK		0x00000040 /* MII management enable*/
41 
42 /* MDIO Management Control Register (MCR) Register bit definitions */
43 #define XAE_MDIO_MCR_PHYAD_MASK		0x1F000000 /* Phy Address Mask */
44 #define XAE_MDIO_MCR_PHYAD_SHIFT	24	   /* Phy Address Shift */
45 #define XAE_MDIO_MCR_REGAD_MASK		0x001F0000 /* Reg Address Mask */
46 #define XAE_MDIO_MCR_REGAD_SHIFT	16	   /* Reg Address Shift */
47 #define XAE_MDIO_MCR_OP_READ_MASK	0x00008000 /* Op Code Read Mask */
48 #define XAE_MDIO_MCR_OP_WRITE_MASK	0x00004000 /* Op Code Write Mask */
49 #define XAE_MDIO_MCR_INITIATE_MASK	0x00000800 /* Ready Mask */
50 #define XAE_MDIO_MCR_READY_MASK		0x00000080 /* Ready Mask */
51 
52 #define XAE_MDIO_DIV_DFT	29	/* Default MDIO clock divisor */
53 
54 #define XAXIDMA_BD_STS_ACTUAL_LEN_MASK	0x007FFFFF /* Actual len */
55 
56 /* DMA macros */
57 /* Bitmasks of XAXIDMA_CR_OFFSET register */
58 #define XAXIDMA_CR_RUNSTOP_MASK	0x00000001 /* Start/stop DMA channel */
59 #define XAXIDMA_CR_RESET_MASK	0x00000004 /* Reset DMA engine */
60 
61 /* Bitmasks of XAXIDMA_SR_OFFSET register */
62 #define XAXIDMA_HALTED_MASK	0x00000001  /* DMA channel halted */
63 
64 /* Bitmask for interrupts */
65 #define XAXIDMA_IRQ_IOC_MASK	0x00001000 /* Completion intr */
66 #define XAXIDMA_IRQ_DELAY_MASK	0x00002000 /* Delay interrupt */
67 #define XAXIDMA_IRQ_ALL_MASK	0x00007000 /* All interrupts */
68 
69 /* Bitmasks of XAXIDMA_BD_CTRL_OFFSET register */
70 #define XAXIDMA_BD_CTRL_TXSOF_MASK	0x08000000 /* First tx packet */
71 #define XAXIDMA_BD_CTRL_TXEOF_MASK	0x04000000 /* Last tx packet */
72 
73 #define DMAALIGN	128
74 
75 static u8 rxframe[PKTSIZE_ALIGN] __attribute((aligned(DMAALIGN)));
76 
77 /* Reflect dma offsets */
78 struct axidma_reg {
79 	u32 control; /* DMACR */
80 	u32 status; /* DMASR */
81 	u32 current; /* CURDESC low 32 bit */
82 	u32 current_hi; /* CURDESC high 32 bit */
83 	u32 tail; /* TAILDESC low 32 bit */
84 	u32 tail_hi; /* TAILDESC high 32 bit */
85 };
86 
87 /* Private driver structures */
88 struct axidma_priv {
89 	struct axidma_reg *dmatx;
90 	struct axidma_reg *dmarx;
91 	int phyaddr;
92 	struct axi_regs *iobase;
93 	phy_interface_t interface;
94 	struct phy_device *phydev;
95 	struct mii_dev *bus;
96 	u8 eth_hasnobuf;
97 };
98 
99 /* BD descriptors */
100 struct axidma_bd {
101 	u32 next;	/* Next descriptor pointer */
102 	u32 reserved1;
103 	u32 phys;	/* Buffer address */
104 	u32 reserved2;
105 	u32 reserved3;
106 	u32 reserved4;
107 	u32 cntrl;	/* Control */
108 	u32 status;	/* Status */
109 	u32 app0;
110 	u32 app1;	/* TX start << 16 | insert */
111 	u32 app2;	/* TX csum seed */
112 	u32 app3;
113 	u32 app4;
114 	u32 sw_id_offset;
115 	u32 reserved5;
116 	u32 reserved6;
117 };
118 
119 /* Static BDs - driver uses only one BD */
120 static struct axidma_bd tx_bd __attribute((aligned(DMAALIGN)));
121 static struct axidma_bd rx_bd __attribute((aligned(DMAALIGN)));
122 
123 struct axi_regs {
124 	u32 reserved[3];
125 	u32 is; /* 0xC: Interrupt status */
126 	u32 reserved2;
127 	u32 ie; /* 0x14: Interrupt enable */
128 	u32 reserved3[251];
129 	u32 rcw1; /* 0x404: Rx Configuration Word 1 */
130 	u32 tc; /* 0x408: Tx Configuration */
131 	u32 reserved4;
132 	u32 emmc; /* 0x410: EMAC mode configuration */
133 	u32 reserved5[59];
134 	u32 mdio_mc; /* 0x500: MII Management Config */
135 	u32 mdio_mcr; /* 0x504: MII Management Control */
136 	u32 mdio_mwd; /* 0x508: MII Management Write Data */
137 	u32 mdio_mrd; /* 0x50C: MII Management Read Data */
138 	u32 reserved6[124];
139 	u32 uaw0; /* 0x700: Unicast address word 0 */
140 	u32 uaw1; /* 0x704: Unicast address word 1 */
141 };
142 
143 /* Use MII register 1 (MII status register) to detect PHY */
144 #define PHY_DETECT_REG  1
145 
146 /*
147  * Mask used to verify certain PHY features (or register contents)
148  * in the register above:
149  *  0x1000: 10Mbps full duplex support
150  *  0x0800: 10Mbps half duplex support
151  *  0x0008: Auto-negotiation support
152  */
153 #define PHY_DETECT_MASK 0x1808
154 
155 static inline int mdio_wait(struct axi_regs *regs)
156 {
157 	u32 timeout = 200;
158 
159 	/* Wait till MDIO interface is ready to accept a new transaction. */
160 	while (timeout && (!(readl(&regs->mdio_mcr)
161 						& XAE_MDIO_MCR_READY_MASK))) {
162 		timeout--;
163 		udelay(1);
164 	}
165 	if (!timeout) {
166 		printf("%s: Timeout\n", __func__);
167 		return 1;
168 	}
169 	return 0;
170 }
171 
172 /**
173  * axienet_dma_write -	Memory mapped Axi DMA register Buffer Descriptor write.
174  * @bd:		pointer to BD descriptor structure
175  * @desc:	Address offset of DMA descriptors
176  *
177  * This function writes the value into the corresponding Axi DMA register.
178  */
179 static inline void axienet_dma_write(struct axidma_bd *bd, u32 *desc)
180 {
181 #if defined(CONFIG_PHYS_64BIT)
182 	writeq(bd, desc);
183 #else
184 	writel((u32)bd, desc);
185 #endif
186 }
187 
188 static u32 phyread(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
189 		   u16 *val)
190 {
191 	struct axi_regs *regs = priv->iobase;
192 	u32 mdioctrlreg = 0;
193 
194 	if (mdio_wait(regs))
195 		return 1;
196 
197 	mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
198 			XAE_MDIO_MCR_PHYAD_MASK) |
199 			((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
200 			& XAE_MDIO_MCR_REGAD_MASK) |
201 			XAE_MDIO_MCR_INITIATE_MASK |
202 			XAE_MDIO_MCR_OP_READ_MASK;
203 
204 	writel(mdioctrlreg, &regs->mdio_mcr);
205 
206 	if (mdio_wait(regs))
207 		return 1;
208 
209 	/* Read data */
210 	*val = readl(&regs->mdio_mrd);
211 	return 0;
212 }
213 
214 static u32 phywrite(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
215 		    u32 data)
216 {
217 	struct axi_regs *regs = priv->iobase;
218 	u32 mdioctrlreg = 0;
219 
220 	if (mdio_wait(regs))
221 		return 1;
222 
223 	mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
224 			XAE_MDIO_MCR_PHYAD_MASK) |
225 			((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
226 			& XAE_MDIO_MCR_REGAD_MASK) |
227 			XAE_MDIO_MCR_INITIATE_MASK |
228 			XAE_MDIO_MCR_OP_WRITE_MASK;
229 
230 	/* Write data */
231 	writel(data, &regs->mdio_mwd);
232 
233 	writel(mdioctrlreg, &regs->mdio_mcr);
234 
235 	if (mdio_wait(regs))
236 		return 1;
237 
238 	return 0;
239 }
240 
241 static int axiemac_phy_init(struct udevice *dev)
242 {
243 	u16 phyreg;
244 	u32 i, ret;
245 	struct axidma_priv *priv = dev_get_priv(dev);
246 	struct axi_regs *regs = priv->iobase;
247 	struct phy_device *phydev;
248 
249 	u32 supported = SUPPORTED_10baseT_Half |
250 			SUPPORTED_10baseT_Full |
251 			SUPPORTED_100baseT_Half |
252 			SUPPORTED_100baseT_Full |
253 			SUPPORTED_1000baseT_Half |
254 			SUPPORTED_1000baseT_Full;
255 
256 	/* Set default MDIO divisor */
257 	writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
258 
259 	if (priv->phyaddr == -1) {
260 		/* Detect the PHY address */
261 		for (i = 31; i >= 0; i--) {
262 			ret = phyread(priv, i, PHY_DETECT_REG, &phyreg);
263 			if (!ret && (phyreg != 0xFFFF) &&
264 			((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
265 				/* Found a valid PHY address */
266 				priv->phyaddr = i;
267 				debug("axiemac: Found valid phy address, %x\n",
268 				      i);
269 				break;
270 			}
271 		}
272 	}
273 
274 	/* Interface - look at tsec */
275 	phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
276 
277 	phydev->supported &= supported;
278 	phydev->advertising = phydev->supported;
279 	priv->phydev = phydev;
280 	phy_config(phydev);
281 
282 	return 0;
283 }
284 
285 /* Setting axi emac and phy to proper setting */
286 static int setup_phy(struct udevice *dev)
287 {
288 	u16 temp;
289 	u32 speed, emmc_reg, ret;
290 	struct axidma_priv *priv = dev_get_priv(dev);
291 	struct axi_regs *regs = priv->iobase;
292 	struct phy_device *phydev = priv->phydev;
293 
294 	if (priv->interface == PHY_INTERFACE_MODE_SGMII) {
295 		/*
296 		 * In SGMII cases the isolate bit might set
297 		 * after DMA and ethernet resets and hence
298 		 * check and clear if set.
299 		 */
300 		ret = phyread(priv, priv->phyaddr, MII_BMCR, &temp);
301 		if (ret)
302 			return 0;
303 		if (temp & BMCR_ISOLATE) {
304 			temp &= ~BMCR_ISOLATE;
305 			ret = phywrite(priv, priv->phyaddr, MII_BMCR, temp);
306 			if (ret)
307 				return 0;
308 		}
309 	}
310 
311 	if (phy_startup(phydev)) {
312 		printf("axiemac: could not initialize PHY %s\n",
313 		       phydev->dev->name);
314 		return 0;
315 	}
316 	if (!phydev->link) {
317 		printf("%s: No link.\n", phydev->dev->name);
318 		return 0;
319 	}
320 
321 	switch (phydev->speed) {
322 	case 1000:
323 		speed = XAE_EMMC_LINKSPD_1000;
324 		break;
325 	case 100:
326 		speed = XAE_EMMC_LINKSPD_100;
327 		break;
328 	case 10:
329 		speed = XAE_EMMC_LINKSPD_10;
330 		break;
331 	default:
332 		return 0;
333 	}
334 
335 	/* Setup the emac for the phy speed */
336 	emmc_reg = readl(&regs->emmc);
337 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
338 	emmc_reg |= speed;
339 
340 	/* Write new speed setting out to Axi Ethernet */
341 	writel(emmc_reg, &regs->emmc);
342 
343 	/*
344 	* Setting the operating speed of the MAC needs a delay. There
345 	* doesn't seem to be register to poll, so please consider this
346 	* during your application design.
347 	*/
348 	udelay(1);
349 
350 	return 1;
351 }
352 
353 /* STOP DMA transfers */
354 static void axiemac_stop(struct udevice *dev)
355 {
356 	struct axidma_priv *priv = dev_get_priv(dev);
357 	u32 temp;
358 
359 	/* Stop the hardware */
360 	temp = readl(&priv->dmatx->control);
361 	temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
362 	writel(temp, &priv->dmatx->control);
363 
364 	temp = readl(&priv->dmarx->control);
365 	temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
366 	writel(temp, &priv->dmarx->control);
367 
368 	debug("axiemac: Halted\n");
369 }
370 
371 static int axi_ethernet_init(struct axidma_priv *priv)
372 {
373 	struct axi_regs *regs = priv->iobase;
374 	int err;
375 
376 	/*
377 	 * Check the status of the MgtRdy bit in the interrupt status
378 	 * registers. This must be done to allow the MGT clock to become stable
379 	 * for the Sgmii and 1000BaseX PHY interfaces. No other register reads
380 	 * will be valid until this bit is valid.
381 	 * The bit is always a 1 for all other PHY interfaces.
382 	 * Interrupt status and enable registers are not available in non
383 	 * processor mode and hence bypass in this mode
384 	 */
385 	if (!priv->eth_hasnobuf) {
386 		err = wait_for_bit_le32(&regs->is, XAE_INT_MGTRDY_MASK,
387 					true, 200, false);
388 		if (err) {
389 			printf("%s: Timeout\n", __func__);
390 			return 1;
391 		}
392 
393 		/*
394 		 * Stop the device and reset HW
395 		 * Disable interrupts
396 		 */
397 		writel(0, &regs->ie);
398 	}
399 
400 	/* Disable the receiver */
401 	writel(readl(&regs->rcw1) & ~XAE_RCW1_RX_MASK, &regs->rcw1);
402 
403 	/*
404 	 * Stopping the receiver in mid-packet causes a dropped packet
405 	 * indication from HW. Clear it.
406 	 */
407 	if (!priv->eth_hasnobuf) {
408 		/* Set the interrupt status register to clear the interrupt */
409 		writel(XAE_INT_RXRJECT_MASK, &regs->is);
410 	}
411 
412 	/* Setup HW */
413 	/* Set default MDIO divisor */
414 	writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
415 
416 	debug("axiemac: InitHw done\n");
417 	return 0;
418 }
419 
420 static int axiemac_write_hwaddr(struct udevice *dev)
421 {
422 	struct eth_pdata *pdata = dev_get_platdata(dev);
423 	struct axidma_priv *priv = dev_get_priv(dev);
424 	struct axi_regs *regs = priv->iobase;
425 
426 	/* Set the MAC address */
427 	int val = ((pdata->enetaddr[3] << 24) | (pdata->enetaddr[2] << 16) |
428 		(pdata->enetaddr[1] << 8) | (pdata->enetaddr[0]));
429 	writel(val, &regs->uaw0);
430 
431 	val = (pdata->enetaddr[5] << 8) | pdata->enetaddr[4];
432 	val |= readl(&regs->uaw1) & ~XAE_UAW1_UNICASTADDR_MASK;
433 	writel(val, &regs->uaw1);
434 	return 0;
435 }
436 
437 /* Reset DMA engine */
438 static void axi_dma_init(struct axidma_priv *priv)
439 {
440 	u32 timeout = 500;
441 
442 	/* Reset the engine so the hardware starts from a known state */
443 	writel(XAXIDMA_CR_RESET_MASK, &priv->dmatx->control);
444 	writel(XAXIDMA_CR_RESET_MASK, &priv->dmarx->control);
445 
446 	/* At the initialization time, hardware should finish reset quickly */
447 	while (timeout--) {
448 		/* Check transmit/receive channel */
449 		/* Reset is done when the reset bit is low */
450 		if (!((readl(&priv->dmatx->control) |
451 				readl(&priv->dmarx->control))
452 						& XAXIDMA_CR_RESET_MASK)) {
453 			break;
454 		}
455 	}
456 	if (!timeout)
457 		printf("%s: Timeout\n", __func__);
458 }
459 
460 static int axiemac_start(struct udevice *dev)
461 {
462 	struct axidma_priv *priv = dev_get_priv(dev);
463 	struct axi_regs *regs = priv->iobase;
464 	u32 temp;
465 
466 	debug("axiemac: Init started\n");
467 	/*
468 	 * Initialize AXIDMA engine. AXIDMA engine must be initialized before
469 	 * AxiEthernet. During AXIDMA engine initialization, AXIDMA hardware is
470 	 * reset, and since AXIDMA reset line is connected to AxiEthernet, this
471 	 * would ensure a reset of AxiEthernet.
472 	 */
473 	axi_dma_init(priv);
474 
475 	/* Initialize AxiEthernet hardware. */
476 	if (axi_ethernet_init(priv))
477 		return -1;
478 
479 	/* Disable all RX interrupts before RxBD space setup */
480 	temp = readl(&priv->dmarx->control);
481 	temp &= ~XAXIDMA_IRQ_ALL_MASK;
482 	writel(temp, &priv->dmarx->control);
483 
484 	/* Start DMA RX channel. Now it's ready to receive data.*/
485 	axienet_dma_write(&rx_bd, &priv->dmarx->current);
486 
487 	/* Setup the BD. */
488 	memset(&rx_bd, 0, sizeof(rx_bd));
489 	rx_bd.next = (u32)&rx_bd;
490 	rx_bd.phys = (u32)&rxframe;
491 	rx_bd.cntrl = sizeof(rxframe);
492 	/* Flush the last BD so DMA core could see the updates */
493 	flush_cache((u32)&rx_bd, sizeof(rx_bd));
494 
495 	/* It is necessary to flush rxframe because if you don't do it
496 	 * then cache can contain uninitialized data */
497 	flush_cache((u32)&rxframe, sizeof(rxframe));
498 
499 	/* Start the hardware */
500 	temp = readl(&priv->dmarx->control);
501 	temp |= XAXIDMA_CR_RUNSTOP_MASK;
502 	writel(temp, &priv->dmarx->control);
503 
504 	/* Rx BD is ready - start */
505 	axienet_dma_write(&rx_bd, &priv->dmarx->tail);
506 
507 	/* Enable TX */
508 	writel(XAE_TC_TX_MASK, &regs->tc);
509 	/* Enable RX */
510 	writel(XAE_RCW1_RX_MASK, &regs->rcw1);
511 
512 	/* PHY setup */
513 	if (!setup_phy(dev)) {
514 		axiemac_stop(dev);
515 		return -1;
516 	}
517 
518 	debug("axiemac: Init complete\n");
519 	return 0;
520 }
521 
522 static int axiemac_send(struct udevice *dev, void *ptr, int len)
523 {
524 	struct axidma_priv *priv = dev_get_priv(dev);
525 	u32 timeout;
526 
527 	if (len > PKTSIZE_ALIGN)
528 		len = PKTSIZE_ALIGN;
529 
530 	/* Flush packet to main memory to be trasfered by DMA */
531 	flush_cache((u32)ptr, len);
532 
533 	/* Setup Tx BD */
534 	memset(&tx_bd, 0, sizeof(tx_bd));
535 	/* At the end of the ring, link the last BD back to the top */
536 	tx_bd.next = (u32)&tx_bd;
537 	tx_bd.phys = (u32)ptr;
538 	/* Save len */
539 	tx_bd.cntrl = len | XAXIDMA_BD_CTRL_TXSOF_MASK |
540 						XAXIDMA_BD_CTRL_TXEOF_MASK;
541 
542 	/* Flush the last BD so DMA core could see the updates */
543 	flush_cache((u32)&tx_bd, sizeof(tx_bd));
544 
545 	if (readl(&priv->dmatx->status) & XAXIDMA_HALTED_MASK) {
546 		u32 temp;
547 		axienet_dma_write(&tx_bd, &priv->dmatx->current);
548 		/* Start the hardware */
549 		temp = readl(&priv->dmatx->control);
550 		temp |= XAXIDMA_CR_RUNSTOP_MASK;
551 		writel(temp, &priv->dmatx->control);
552 	}
553 
554 	/* Start transfer */
555 	axienet_dma_write(&tx_bd, &priv->dmatx->tail);
556 
557 	/* Wait for transmission to complete */
558 	debug("axiemac: Waiting for tx to be done\n");
559 	timeout = 200;
560 	while (timeout && (!(readl(&priv->dmatx->status) &
561 			(XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))) {
562 		timeout--;
563 		udelay(1);
564 	}
565 	if (!timeout) {
566 		printf("%s: Timeout\n", __func__);
567 		return 1;
568 	}
569 
570 	debug("axiemac: Sending complete\n");
571 	return 0;
572 }
573 
574 static int isrxready(struct axidma_priv *priv)
575 {
576 	u32 status;
577 
578 	/* Read pending interrupts */
579 	status = readl(&priv->dmarx->status);
580 
581 	/* Acknowledge pending interrupts */
582 	writel(status & XAXIDMA_IRQ_ALL_MASK, &priv->dmarx->status);
583 
584 	/*
585 	 * If Reception done interrupt is asserted, call RX call back function
586 	 * to handle the processed BDs and then raise the according flag.
587 	 */
588 	if ((status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))
589 		return 1;
590 
591 	return 0;
592 }
593 
594 static int axiemac_recv(struct udevice *dev, int flags, uchar **packetp)
595 {
596 	u32 length;
597 	struct axidma_priv *priv = dev_get_priv(dev);
598 	u32 temp;
599 
600 	/* Wait for an incoming packet */
601 	if (!isrxready(priv))
602 		return -1;
603 
604 	debug("axiemac: RX data ready\n");
605 
606 	/* Disable IRQ for a moment till packet is handled */
607 	temp = readl(&priv->dmarx->control);
608 	temp &= ~XAXIDMA_IRQ_ALL_MASK;
609 	writel(temp, &priv->dmarx->control);
610 	if (!priv->eth_hasnobuf)
611 		length = rx_bd.app4 & 0xFFFF; /* max length mask */
612 	else
613 		length = rx_bd.status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
614 
615 #ifdef DEBUG
616 	print_buffer(&rxframe, &rxframe[0], 1, length, 16);
617 #endif
618 
619 	*packetp = rxframe;
620 	return length;
621 }
622 
623 static int axiemac_free_pkt(struct udevice *dev, uchar *packet, int length)
624 {
625 	struct axidma_priv *priv = dev_get_priv(dev);
626 
627 #ifdef DEBUG
628 	/* It is useful to clear buffer to be sure that it is consistent */
629 	memset(rxframe, 0, sizeof(rxframe));
630 #endif
631 	/* Setup RxBD */
632 	/* Clear the whole buffer and setup it again - all flags are cleared */
633 	memset(&rx_bd, 0, sizeof(rx_bd));
634 	rx_bd.next = (u32)&rx_bd;
635 	rx_bd.phys = (u32)&rxframe;
636 	rx_bd.cntrl = sizeof(rxframe);
637 
638 	/* Write bd to HW */
639 	flush_cache((u32)&rx_bd, sizeof(rx_bd));
640 
641 	/* It is necessary to flush rxframe because if you don't do it
642 	 * then cache will contain previous packet */
643 	flush_cache((u32)&rxframe, sizeof(rxframe));
644 
645 	/* Rx BD is ready - start again */
646 	axienet_dma_write(&rx_bd, &priv->dmarx->tail);
647 
648 	debug("axiemac: RX completed, framelength = %d\n", length);
649 
650 	return 0;
651 }
652 
653 static int axiemac_miiphy_read(struct mii_dev *bus, int addr,
654 			       int devad, int reg)
655 {
656 	int ret;
657 	u16 value;
658 
659 	ret = phyread(bus->priv, addr, reg, &value);
660 	debug("axiemac: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg,
661 	      value, ret);
662 	return value;
663 }
664 
665 static int axiemac_miiphy_write(struct mii_dev *bus, int addr, int devad,
666 				int reg, u16 value)
667 {
668 	debug("axiemac: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value);
669 	return phywrite(bus->priv, addr, reg, value);
670 }
671 
672 static int axi_emac_probe(struct udevice *dev)
673 {
674 	struct axidma_priv *priv = dev_get_priv(dev);
675 	int ret;
676 
677 	priv->bus = mdio_alloc();
678 	priv->bus->read = axiemac_miiphy_read;
679 	priv->bus->write = axiemac_miiphy_write;
680 	priv->bus->priv = priv;
681 
682 	ret = mdio_register_seq(priv->bus, dev->seq);
683 	if (ret)
684 		return ret;
685 
686 	axiemac_phy_init(dev);
687 
688 	return 0;
689 }
690 
691 static int axi_emac_remove(struct udevice *dev)
692 {
693 	struct axidma_priv *priv = dev_get_priv(dev);
694 
695 	free(priv->phydev);
696 	mdio_unregister(priv->bus);
697 	mdio_free(priv->bus);
698 
699 	return 0;
700 }
701 
702 static const struct eth_ops axi_emac_ops = {
703 	.start			= axiemac_start,
704 	.send			= axiemac_send,
705 	.recv			= axiemac_recv,
706 	.free_pkt		= axiemac_free_pkt,
707 	.stop			= axiemac_stop,
708 	.write_hwaddr		= axiemac_write_hwaddr,
709 };
710 
711 static int axi_emac_ofdata_to_platdata(struct udevice *dev)
712 {
713 	struct eth_pdata *pdata = dev_get_platdata(dev);
714 	struct axidma_priv *priv = dev_get_priv(dev);
715 	int node = dev_of_offset(dev);
716 	int offset = 0;
717 	const char *phy_mode;
718 
719 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
720 	priv->iobase = (struct axi_regs *)pdata->iobase;
721 
722 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
723 				       "axistream-connected");
724 	if (offset <= 0) {
725 		printf("%s: axistream is not found\n", __func__);
726 		return -EINVAL;
727 	}
728 	priv->dmatx = (struct axidma_reg *)fdtdec_get_addr(gd->fdt_blob,
729 							  offset, "reg");
730 	if (!priv->dmatx) {
731 		printf("%s: axi_dma register space not found\n", __func__);
732 		return -EINVAL;
733 	}
734 	/* RX channel offset is 0x30 */
735 	priv->dmarx = (struct axidma_reg *)((u32)priv->dmatx + 0x30);
736 
737 	priv->phyaddr = -1;
738 
739 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
740 	if (offset > 0)
741 		priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
742 
743 	phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
744 	if (phy_mode)
745 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
746 	if (pdata->phy_interface == -1) {
747 		printf("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
748 		return -EINVAL;
749 	}
750 	priv->interface = pdata->phy_interface;
751 
752 	priv->eth_hasnobuf = fdtdec_get_bool(gd->fdt_blob, node,
753 					     "xlnx,eth-hasnobuf");
754 
755 	printf("AXI EMAC: %lx, phyaddr %d, interface %s\n", (ulong)priv->iobase,
756 	       priv->phyaddr, phy_string_for_interface(priv->interface));
757 
758 	return 0;
759 }
760 
761 static const struct udevice_id axi_emac_ids[] = {
762 	{ .compatible = "xlnx,axi-ethernet-1.00.a" },
763 	{ }
764 };
765 
766 U_BOOT_DRIVER(axi_emac) = {
767 	.name	= "axi_emac",
768 	.id	= UCLASS_ETH,
769 	.of_match = axi_emac_ids,
770 	.ofdata_to_platdata = axi_emac_ofdata_to_platdata,
771 	.probe	= axi_emac_probe,
772 	.remove	= axi_emac_remove,
773 	.ops	= &axi_emac_ops,
774 	.priv_auto_alloc_size = sizeof(struct axidma_priv),
775 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
776 };
777