1 /* 2 * Copyright (C) 2011 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2011 PetaLogix 4 * Copyright (C) 2010 Xilinx, Inc. All rights reserved. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 #include <config.h> 10 #include <common.h> 11 #include <dm.h> 12 #include <net.h> 13 #include <malloc.h> 14 #include <asm/io.h> 15 #include <phy.h> 16 #include <miiphy.h> 17 #include <wait_bit.h> 18 19 DECLARE_GLOBAL_DATA_PTR; 20 21 /* Link setup */ 22 #define XAE_EMMC_LINKSPEED_MASK 0xC0000000 /* Link speed */ 23 #define XAE_EMMC_LINKSPD_10 0x00000000 /* Link Speed mask for 10 Mbit */ 24 #define XAE_EMMC_LINKSPD_100 0x40000000 /* Link Speed mask for 100 Mbit */ 25 #define XAE_EMMC_LINKSPD_1000 0x80000000 /* Link Speed mask for 1000 Mbit */ 26 27 /* Interrupt Status/Enable/Mask Registers bit definitions */ 28 #define XAE_INT_RXRJECT_MASK 0x00000008 /* Rx frame rejected */ 29 #define XAE_INT_MGTRDY_MASK 0x00000080 /* MGT clock Lock */ 30 31 /* Receive Configuration Word 1 (RCW1) Register bit definitions */ 32 #define XAE_RCW1_RX_MASK 0x10000000 /* Receiver enable */ 33 34 /* Transmitter Configuration (TC) Register bit definitions */ 35 #define XAE_TC_TX_MASK 0x10000000 /* Transmitter enable */ 36 37 #define XAE_UAW1_UNICASTADDR_MASK 0x0000FFFF 38 39 /* MDIO Management Configuration (MC) Register bit definitions */ 40 #define XAE_MDIO_MC_MDIOEN_MASK 0x00000040 /* MII management enable*/ 41 42 /* MDIO Management Control Register (MCR) Register bit definitions */ 43 #define XAE_MDIO_MCR_PHYAD_MASK 0x1F000000 /* Phy Address Mask */ 44 #define XAE_MDIO_MCR_PHYAD_SHIFT 24 /* Phy Address Shift */ 45 #define XAE_MDIO_MCR_REGAD_MASK 0x001F0000 /* Reg Address Mask */ 46 #define XAE_MDIO_MCR_REGAD_SHIFT 16 /* Reg Address Shift */ 47 #define XAE_MDIO_MCR_OP_READ_MASK 0x00008000 /* Op Code Read Mask */ 48 #define XAE_MDIO_MCR_OP_WRITE_MASK 0x00004000 /* Op Code Write Mask */ 49 #define XAE_MDIO_MCR_INITIATE_MASK 0x00000800 /* Ready Mask */ 50 #define XAE_MDIO_MCR_READY_MASK 0x00000080 /* Ready Mask */ 51 52 #define XAE_MDIO_DIV_DFT 29 /* Default MDIO clock divisor */ 53 54 #define XAXIDMA_BD_STS_ACTUAL_LEN_MASK 0x007FFFFF /* Actual len */ 55 56 /* DMA macros */ 57 /* Bitmasks of XAXIDMA_CR_OFFSET register */ 58 #define XAXIDMA_CR_RUNSTOP_MASK 0x00000001 /* Start/stop DMA channel */ 59 #define XAXIDMA_CR_RESET_MASK 0x00000004 /* Reset DMA engine */ 60 61 /* Bitmasks of XAXIDMA_SR_OFFSET register */ 62 #define XAXIDMA_HALTED_MASK 0x00000001 /* DMA channel halted */ 63 64 /* Bitmask for interrupts */ 65 #define XAXIDMA_IRQ_IOC_MASK 0x00001000 /* Completion intr */ 66 #define XAXIDMA_IRQ_DELAY_MASK 0x00002000 /* Delay interrupt */ 67 #define XAXIDMA_IRQ_ALL_MASK 0x00007000 /* All interrupts */ 68 69 /* Bitmasks of XAXIDMA_BD_CTRL_OFFSET register */ 70 #define XAXIDMA_BD_CTRL_TXSOF_MASK 0x08000000 /* First tx packet */ 71 #define XAXIDMA_BD_CTRL_TXEOF_MASK 0x04000000 /* Last tx packet */ 72 73 #define DMAALIGN 128 74 75 static u8 rxframe[PKTSIZE_ALIGN] __attribute((aligned(DMAALIGN))); 76 77 /* Reflect dma offsets */ 78 struct axidma_reg { 79 u32 control; /* DMACR */ 80 u32 status; /* DMASR */ 81 u32 current; /* CURDESC */ 82 u32 reserved; 83 u32 tail; /* TAILDESC */ 84 }; 85 86 /* Private driver structures */ 87 struct axidma_priv { 88 struct axidma_reg *dmatx; 89 struct axidma_reg *dmarx; 90 int phyaddr; 91 struct axi_regs *iobase; 92 phy_interface_t interface; 93 struct phy_device *phydev; 94 struct mii_dev *bus; 95 u8 eth_hasnobuf; 96 }; 97 98 /* BD descriptors */ 99 struct axidma_bd { 100 u32 next; /* Next descriptor pointer */ 101 u32 reserved1; 102 u32 phys; /* Buffer address */ 103 u32 reserved2; 104 u32 reserved3; 105 u32 reserved4; 106 u32 cntrl; /* Control */ 107 u32 status; /* Status */ 108 u32 app0; 109 u32 app1; /* TX start << 16 | insert */ 110 u32 app2; /* TX csum seed */ 111 u32 app3; 112 u32 app4; 113 u32 sw_id_offset; 114 u32 reserved5; 115 u32 reserved6; 116 }; 117 118 /* Static BDs - driver uses only one BD */ 119 static struct axidma_bd tx_bd __attribute((aligned(DMAALIGN))); 120 static struct axidma_bd rx_bd __attribute((aligned(DMAALIGN))); 121 122 struct axi_regs { 123 u32 reserved[3]; 124 u32 is; /* 0xC: Interrupt status */ 125 u32 reserved2; 126 u32 ie; /* 0x14: Interrupt enable */ 127 u32 reserved3[251]; 128 u32 rcw1; /* 0x404: Rx Configuration Word 1 */ 129 u32 tc; /* 0x408: Tx Configuration */ 130 u32 reserved4; 131 u32 emmc; /* 0x410: EMAC mode configuration */ 132 u32 reserved5[59]; 133 u32 mdio_mc; /* 0x500: MII Management Config */ 134 u32 mdio_mcr; /* 0x504: MII Management Control */ 135 u32 mdio_mwd; /* 0x508: MII Management Write Data */ 136 u32 mdio_mrd; /* 0x50C: MII Management Read Data */ 137 u32 reserved6[124]; 138 u32 uaw0; /* 0x700: Unicast address word 0 */ 139 u32 uaw1; /* 0x704: Unicast address word 1 */ 140 }; 141 142 /* Use MII register 1 (MII status register) to detect PHY */ 143 #define PHY_DETECT_REG 1 144 145 /* 146 * Mask used to verify certain PHY features (or register contents) 147 * in the register above: 148 * 0x1000: 10Mbps full duplex support 149 * 0x0800: 10Mbps half duplex support 150 * 0x0008: Auto-negotiation support 151 */ 152 #define PHY_DETECT_MASK 0x1808 153 154 static inline int mdio_wait(struct axi_regs *regs) 155 { 156 u32 timeout = 200; 157 158 /* Wait till MDIO interface is ready to accept a new transaction. */ 159 while (timeout && (!(readl(®s->mdio_mcr) 160 & XAE_MDIO_MCR_READY_MASK))) { 161 timeout--; 162 udelay(1); 163 } 164 if (!timeout) { 165 printf("%s: Timeout\n", __func__); 166 return 1; 167 } 168 return 0; 169 } 170 171 static u32 phyread(struct axidma_priv *priv, u32 phyaddress, u32 registernum, 172 u16 *val) 173 { 174 struct axi_regs *regs = priv->iobase; 175 u32 mdioctrlreg = 0; 176 177 if (mdio_wait(regs)) 178 return 1; 179 180 mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) & 181 XAE_MDIO_MCR_PHYAD_MASK) | 182 ((registernum << XAE_MDIO_MCR_REGAD_SHIFT) 183 & XAE_MDIO_MCR_REGAD_MASK) | 184 XAE_MDIO_MCR_INITIATE_MASK | 185 XAE_MDIO_MCR_OP_READ_MASK; 186 187 writel(mdioctrlreg, ®s->mdio_mcr); 188 189 if (mdio_wait(regs)) 190 return 1; 191 192 /* Read data */ 193 *val = readl(®s->mdio_mrd); 194 return 0; 195 } 196 197 static u32 phywrite(struct axidma_priv *priv, u32 phyaddress, u32 registernum, 198 u32 data) 199 { 200 struct axi_regs *regs = priv->iobase; 201 u32 mdioctrlreg = 0; 202 203 if (mdio_wait(regs)) 204 return 1; 205 206 mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) & 207 XAE_MDIO_MCR_PHYAD_MASK) | 208 ((registernum << XAE_MDIO_MCR_REGAD_SHIFT) 209 & XAE_MDIO_MCR_REGAD_MASK) | 210 XAE_MDIO_MCR_INITIATE_MASK | 211 XAE_MDIO_MCR_OP_WRITE_MASK; 212 213 /* Write data */ 214 writel(data, ®s->mdio_mwd); 215 216 writel(mdioctrlreg, ®s->mdio_mcr); 217 218 if (mdio_wait(regs)) 219 return 1; 220 221 return 0; 222 } 223 224 static int axiemac_phy_init(struct udevice *dev) 225 { 226 u16 phyreg; 227 u32 i, ret; 228 struct axidma_priv *priv = dev_get_priv(dev); 229 struct axi_regs *regs = priv->iobase; 230 struct phy_device *phydev; 231 232 u32 supported = SUPPORTED_10baseT_Half | 233 SUPPORTED_10baseT_Full | 234 SUPPORTED_100baseT_Half | 235 SUPPORTED_100baseT_Full | 236 SUPPORTED_1000baseT_Half | 237 SUPPORTED_1000baseT_Full; 238 239 /* Set default MDIO divisor */ 240 writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, ®s->mdio_mc); 241 242 if (priv->phyaddr == -1) { 243 /* Detect the PHY address */ 244 for (i = 31; i >= 0; i--) { 245 ret = phyread(priv, i, PHY_DETECT_REG, &phyreg); 246 if (!ret && (phyreg != 0xFFFF) && 247 ((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) { 248 /* Found a valid PHY address */ 249 priv->phyaddr = i; 250 debug("axiemac: Found valid phy address, %x\n", 251 i); 252 break; 253 } 254 } 255 } 256 257 /* Interface - look at tsec */ 258 phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface); 259 260 phydev->supported &= supported; 261 phydev->advertising = phydev->supported; 262 priv->phydev = phydev; 263 phy_config(phydev); 264 265 return 0; 266 } 267 268 /* Setting axi emac and phy to proper setting */ 269 static int setup_phy(struct udevice *dev) 270 { 271 u16 temp; 272 u32 speed, emmc_reg, ret; 273 struct axidma_priv *priv = dev_get_priv(dev); 274 struct axi_regs *regs = priv->iobase; 275 struct phy_device *phydev = priv->phydev; 276 277 if (priv->interface == PHY_INTERFACE_MODE_SGMII) { 278 /* 279 * In SGMII cases the isolate bit might set 280 * after DMA and ethernet resets and hence 281 * check and clear if set. 282 */ 283 ret = phyread(priv, priv->phyaddr, MII_BMCR, &temp); 284 if (ret) 285 return 0; 286 if (temp & BMCR_ISOLATE) { 287 temp &= ~BMCR_ISOLATE; 288 ret = phywrite(priv, priv->phyaddr, MII_BMCR, temp); 289 if (ret) 290 return 0; 291 } 292 } 293 294 if (phy_startup(phydev)) { 295 printf("axiemac: could not initialize PHY %s\n", 296 phydev->dev->name); 297 return 0; 298 } 299 if (!phydev->link) { 300 printf("%s: No link.\n", phydev->dev->name); 301 return 0; 302 } 303 304 switch (phydev->speed) { 305 case 1000: 306 speed = XAE_EMMC_LINKSPD_1000; 307 break; 308 case 100: 309 speed = XAE_EMMC_LINKSPD_100; 310 break; 311 case 10: 312 speed = XAE_EMMC_LINKSPD_10; 313 break; 314 default: 315 return 0; 316 } 317 318 /* Setup the emac for the phy speed */ 319 emmc_reg = readl(®s->emmc); 320 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; 321 emmc_reg |= speed; 322 323 /* Write new speed setting out to Axi Ethernet */ 324 writel(emmc_reg, ®s->emmc); 325 326 /* 327 * Setting the operating speed of the MAC needs a delay. There 328 * doesn't seem to be register to poll, so please consider this 329 * during your application design. 330 */ 331 udelay(1); 332 333 return 1; 334 } 335 336 /* STOP DMA transfers */ 337 static void axiemac_stop(struct udevice *dev) 338 { 339 struct axidma_priv *priv = dev_get_priv(dev); 340 u32 temp; 341 342 /* Stop the hardware */ 343 temp = readl(&priv->dmatx->control); 344 temp &= ~XAXIDMA_CR_RUNSTOP_MASK; 345 writel(temp, &priv->dmatx->control); 346 347 temp = readl(&priv->dmarx->control); 348 temp &= ~XAXIDMA_CR_RUNSTOP_MASK; 349 writel(temp, &priv->dmarx->control); 350 351 debug("axiemac: Halted\n"); 352 } 353 354 static int axi_ethernet_init(struct axidma_priv *priv) 355 { 356 struct axi_regs *regs = priv->iobase; 357 int err; 358 359 /* 360 * Check the status of the MgtRdy bit in the interrupt status 361 * registers. This must be done to allow the MGT clock to become stable 362 * for the Sgmii and 1000BaseX PHY interfaces. No other register reads 363 * will be valid until this bit is valid. 364 * The bit is always a 1 for all other PHY interfaces. 365 * Interrupt status and enable registers are not available in non 366 * processor mode and hence bypass in this mode 367 */ 368 if (!priv->eth_hasnobuf) { 369 err = wait_for_bit(__func__, (const u32 *)®s->is, 370 XAE_INT_MGTRDY_MASK, true, 200, false); 371 if (err) { 372 printf("%s: Timeout\n", __func__); 373 return 1; 374 } 375 376 /* 377 * Stop the device and reset HW 378 * Disable interrupts 379 */ 380 writel(0, ®s->ie); 381 } 382 383 /* Disable the receiver */ 384 writel(readl(®s->rcw1) & ~XAE_RCW1_RX_MASK, ®s->rcw1); 385 386 /* 387 * Stopping the receiver in mid-packet causes a dropped packet 388 * indication from HW. Clear it. 389 */ 390 if (!priv->eth_hasnobuf) { 391 /* Set the interrupt status register to clear the interrupt */ 392 writel(XAE_INT_RXRJECT_MASK, ®s->is); 393 } 394 395 /* Setup HW */ 396 /* Set default MDIO divisor */ 397 writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, ®s->mdio_mc); 398 399 debug("axiemac: InitHw done\n"); 400 return 0; 401 } 402 403 static int axiemac_write_hwaddr(struct udevice *dev) 404 { 405 struct eth_pdata *pdata = dev_get_platdata(dev); 406 struct axidma_priv *priv = dev_get_priv(dev); 407 struct axi_regs *regs = priv->iobase; 408 409 /* Set the MAC address */ 410 int val = ((pdata->enetaddr[3] << 24) | (pdata->enetaddr[2] << 16) | 411 (pdata->enetaddr[1] << 8) | (pdata->enetaddr[0])); 412 writel(val, ®s->uaw0); 413 414 val = (pdata->enetaddr[5] << 8) | pdata->enetaddr[4]; 415 val |= readl(®s->uaw1) & ~XAE_UAW1_UNICASTADDR_MASK; 416 writel(val, ®s->uaw1); 417 return 0; 418 } 419 420 /* Reset DMA engine */ 421 static void axi_dma_init(struct axidma_priv *priv) 422 { 423 u32 timeout = 500; 424 425 /* Reset the engine so the hardware starts from a known state */ 426 writel(XAXIDMA_CR_RESET_MASK, &priv->dmatx->control); 427 writel(XAXIDMA_CR_RESET_MASK, &priv->dmarx->control); 428 429 /* At the initialization time, hardware should finish reset quickly */ 430 while (timeout--) { 431 /* Check transmit/receive channel */ 432 /* Reset is done when the reset bit is low */ 433 if (!((readl(&priv->dmatx->control) | 434 readl(&priv->dmarx->control)) 435 & XAXIDMA_CR_RESET_MASK)) { 436 break; 437 } 438 } 439 if (!timeout) 440 printf("%s: Timeout\n", __func__); 441 } 442 443 static int axiemac_start(struct udevice *dev) 444 { 445 struct axidma_priv *priv = dev_get_priv(dev); 446 struct axi_regs *regs = priv->iobase; 447 u32 temp; 448 449 debug("axiemac: Init started\n"); 450 /* 451 * Initialize AXIDMA engine. AXIDMA engine must be initialized before 452 * AxiEthernet. During AXIDMA engine initialization, AXIDMA hardware is 453 * reset, and since AXIDMA reset line is connected to AxiEthernet, this 454 * would ensure a reset of AxiEthernet. 455 */ 456 axi_dma_init(priv); 457 458 /* Initialize AxiEthernet hardware. */ 459 if (axi_ethernet_init(priv)) 460 return -1; 461 462 /* Disable all RX interrupts before RxBD space setup */ 463 temp = readl(&priv->dmarx->control); 464 temp &= ~XAXIDMA_IRQ_ALL_MASK; 465 writel(temp, &priv->dmarx->control); 466 467 /* Start DMA RX channel. Now it's ready to receive data.*/ 468 writel((u32)&rx_bd, &priv->dmarx->current); 469 470 /* Setup the BD. */ 471 memset(&rx_bd, 0, sizeof(rx_bd)); 472 rx_bd.next = (u32)&rx_bd; 473 rx_bd.phys = (u32)&rxframe; 474 rx_bd.cntrl = sizeof(rxframe); 475 /* Flush the last BD so DMA core could see the updates */ 476 flush_cache((u32)&rx_bd, sizeof(rx_bd)); 477 478 /* It is necessary to flush rxframe because if you don't do it 479 * then cache can contain uninitialized data */ 480 flush_cache((u32)&rxframe, sizeof(rxframe)); 481 482 /* Start the hardware */ 483 temp = readl(&priv->dmarx->control); 484 temp |= XAXIDMA_CR_RUNSTOP_MASK; 485 writel(temp, &priv->dmarx->control); 486 487 /* Rx BD is ready - start */ 488 writel((u32)&rx_bd, &priv->dmarx->tail); 489 490 /* Enable TX */ 491 writel(XAE_TC_TX_MASK, ®s->tc); 492 /* Enable RX */ 493 writel(XAE_RCW1_RX_MASK, ®s->rcw1); 494 495 /* PHY setup */ 496 if (!setup_phy(dev)) { 497 axiemac_stop(dev); 498 return -1; 499 } 500 501 debug("axiemac: Init complete\n"); 502 return 0; 503 } 504 505 static int axiemac_send(struct udevice *dev, void *ptr, int len) 506 { 507 struct axidma_priv *priv = dev_get_priv(dev); 508 u32 timeout; 509 510 if (len > PKTSIZE_ALIGN) 511 len = PKTSIZE_ALIGN; 512 513 /* Flush packet to main memory to be trasfered by DMA */ 514 flush_cache((u32)ptr, len); 515 516 /* Setup Tx BD */ 517 memset(&tx_bd, 0, sizeof(tx_bd)); 518 /* At the end of the ring, link the last BD back to the top */ 519 tx_bd.next = (u32)&tx_bd; 520 tx_bd.phys = (u32)ptr; 521 /* Save len */ 522 tx_bd.cntrl = len | XAXIDMA_BD_CTRL_TXSOF_MASK | 523 XAXIDMA_BD_CTRL_TXEOF_MASK; 524 525 /* Flush the last BD so DMA core could see the updates */ 526 flush_cache((u32)&tx_bd, sizeof(tx_bd)); 527 528 if (readl(&priv->dmatx->status) & XAXIDMA_HALTED_MASK) { 529 u32 temp; 530 writel((u32)&tx_bd, &priv->dmatx->current); 531 /* Start the hardware */ 532 temp = readl(&priv->dmatx->control); 533 temp |= XAXIDMA_CR_RUNSTOP_MASK; 534 writel(temp, &priv->dmatx->control); 535 } 536 537 /* Start transfer */ 538 writel((u32)&tx_bd, &priv->dmatx->tail); 539 540 /* Wait for transmission to complete */ 541 debug("axiemac: Waiting for tx to be done\n"); 542 timeout = 200; 543 while (timeout && (!(readl(&priv->dmatx->status) & 544 (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))) { 545 timeout--; 546 udelay(1); 547 } 548 if (!timeout) { 549 printf("%s: Timeout\n", __func__); 550 return 1; 551 } 552 553 debug("axiemac: Sending complete\n"); 554 return 0; 555 } 556 557 static int isrxready(struct axidma_priv *priv) 558 { 559 u32 status; 560 561 /* Read pending interrupts */ 562 status = readl(&priv->dmarx->status); 563 564 /* Acknowledge pending interrupts */ 565 writel(status & XAXIDMA_IRQ_ALL_MASK, &priv->dmarx->status); 566 567 /* 568 * If Reception done interrupt is asserted, call RX call back function 569 * to handle the processed BDs and then raise the according flag. 570 */ 571 if ((status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK))) 572 return 1; 573 574 return 0; 575 } 576 577 static int axiemac_recv(struct udevice *dev, int flags, uchar **packetp) 578 { 579 u32 length; 580 struct axidma_priv *priv = dev_get_priv(dev); 581 u32 temp; 582 583 /* Wait for an incoming packet */ 584 if (!isrxready(priv)) 585 return -1; 586 587 debug("axiemac: RX data ready\n"); 588 589 /* Disable IRQ for a moment till packet is handled */ 590 temp = readl(&priv->dmarx->control); 591 temp &= ~XAXIDMA_IRQ_ALL_MASK; 592 writel(temp, &priv->dmarx->control); 593 if (!priv->eth_hasnobuf) 594 length = rx_bd.app4 & 0xFFFF; /* max length mask */ 595 else 596 length = rx_bd.status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; 597 598 #ifdef DEBUG 599 print_buffer(&rxframe, &rxframe[0], 1, length, 16); 600 #endif 601 602 *packetp = rxframe; 603 return length; 604 } 605 606 static int axiemac_free_pkt(struct udevice *dev, uchar *packet, int length) 607 { 608 struct axidma_priv *priv = dev_get_priv(dev); 609 610 #ifdef DEBUG 611 /* It is useful to clear buffer to be sure that it is consistent */ 612 memset(rxframe, 0, sizeof(rxframe)); 613 #endif 614 /* Setup RxBD */ 615 /* Clear the whole buffer and setup it again - all flags are cleared */ 616 memset(&rx_bd, 0, sizeof(rx_bd)); 617 rx_bd.next = (u32)&rx_bd; 618 rx_bd.phys = (u32)&rxframe; 619 rx_bd.cntrl = sizeof(rxframe); 620 621 /* Write bd to HW */ 622 flush_cache((u32)&rx_bd, sizeof(rx_bd)); 623 624 /* It is necessary to flush rxframe because if you don't do it 625 * then cache will contain previous packet */ 626 flush_cache((u32)&rxframe, sizeof(rxframe)); 627 628 /* Rx BD is ready - start again */ 629 writel((u32)&rx_bd, &priv->dmarx->tail); 630 631 debug("axiemac: RX completed, framelength = %d\n", length); 632 633 return 0; 634 } 635 636 static int axiemac_miiphy_read(struct mii_dev *bus, int addr, 637 int devad, int reg) 638 { 639 int ret; 640 u16 value; 641 642 ret = phyread(bus->priv, addr, reg, &value); 643 debug("axiemac: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg, 644 value, ret); 645 return value; 646 } 647 648 static int axiemac_miiphy_write(struct mii_dev *bus, int addr, int devad, 649 int reg, u16 value) 650 { 651 debug("axiemac: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value); 652 return phywrite(bus->priv, addr, reg, value); 653 } 654 655 static int axi_emac_probe(struct udevice *dev) 656 { 657 struct axidma_priv *priv = dev_get_priv(dev); 658 int ret; 659 660 priv->bus = mdio_alloc(); 661 priv->bus->read = axiemac_miiphy_read; 662 priv->bus->write = axiemac_miiphy_write; 663 priv->bus->priv = priv; 664 665 ret = mdio_register_seq(priv->bus, dev->seq); 666 if (ret) 667 return ret; 668 669 axiemac_phy_init(dev); 670 671 return 0; 672 } 673 674 static int axi_emac_remove(struct udevice *dev) 675 { 676 struct axidma_priv *priv = dev_get_priv(dev); 677 678 free(priv->phydev); 679 mdio_unregister(priv->bus); 680 mdio_free(priv->bus); 681 682 return 0; 683 } 684 685 static const struct eth_ops axi_emac_ops = { 686 .start = axiemac_start, 687 .send = axiemac_send, 688 .recv = axiemac_recv, 689 .free_pkt = axiemac_free_pkt, 690 .stop = axiemac_stop, 691 .write_hwaddr = axiemac_write_hwaddr, 692 }; 693 694 static int axi_emac_ofdata_to_platdata(struct udevice *dev) 695 { 696 struct eth_pdata *pdata = dev_get_platdata(dev); 697 struct axidma_priv *priv = dev_get_priv(dev); 698 int node = dev_of_offset(dev); 699 int offset = 0; 700 const char *phy_mode; 701 702 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev); 703 priv->iobase = (struct axi_regs *)pdata->iobase; 704 705 offset = fdtdec_lookup_phandle(gd->fdt_blob, node, 706 "axistream-connected"); 707 if (offset <= 0) { 708 printf("%s: axistream is not found\n", __func__); 709 return -EINVAL; 710 } 711 priv->dmatx = (struct axidma_reg *)fdtdec_get_addr(gd->fdt_blob, 712 offset, "reg"); 713 if (!priv->dmatx) { 714 printf("%s: axi_dma register space not found\n", __func__); 715 return -EINVAL; 716 } 717 /* RX channel offset is 0x30 */ 718 priv->dmarx = (struct axidma_reg *)((u32)priv->dmatx + 0x30); 719 720 priv->phyaddr = -1; 721 722 offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle"); 723 if (offset > 0) 724 priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1); 725 726 phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL); 727 if (phy_mode) 728 pdata->phy_interface = phy_get_interface_by_name(phy_mode); 729 if (pdata->phy_interface == -1) { 730 printf("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); 731 return -EINVAL; 732 } 733 priv->interface = pdata->phy_interface; 734 735 priv->eth_hasnobuf = fdtdec_get_bool(gd->fdt_blob, node, 736 "xlnx,eth-hasnobuf"); 737 738 printf("AXI EMAC: %lx, phyaddr %d, interface %s\n", (ulong)priv->iobase, 739 priv->phyaddr, phy_string_for_interface(priv->interface)); 740 741 return 0; 742 } 743 744 static const struct udevice_id axi_emac_ids[] = { 745 { .compatible = "xlnx,axi-ethernet-1.00.a" }, 746 { } 747 }; 748 749 U_BOOT_DRIVER(axi_emac) = { 750 .name = "axi_emac", 751 .id = UCLASS_ETH, 752 .of_match = axi_emac_ids, 753 .ofdata_to_platdata = axi_emac_ofdata_to_platdata, 754 .probe = axi_emac_probe, 755 .remove = axi_emac_remove, 756 .ops = &axi_emac_ops, 757 .priv_auto_alloc_size = sizeof(struct axidma_priv), 758 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 759 }; 760