xref: /openbmc/u-boot/drivers/net/tsec.c (revision e7670f6c)
1 /*
2  * Freescale Three Speed Ethernet Controller driver
3  *
4  * This software may be used and distributed according to the
5  * terms of the GNU Public License, Version 2, incorporated
6  * herein by reference.
7  *
8  * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9  * (C) Copyright 2003, Motorola, Inc.
10  * author Andy Fleming
11  *
12  */
13 
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define TX_BUF_CNT		2
27 
28 static uint rxIdx;		/* index of the current RX buffer */
29 static uint txIdx;		/* index of the current TX buffer */
30 
31 typedef volatile struct rtxbd {
32 	txbd8_t txbd[TX_BUF_CNT];
33 	rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35 
36 struct tsec_info_struct {
37 	unsigned int phyaddr;
38 	u32 flags;
39 	unsigned int phyregidx;
40 };
41 
42 /* The tsec_info structure contains 3 values which the
43  * driver uses to determine how to operate a given ethernet
44  * device. The information needed is:
45  *  phyaddr - The address of the PHY which is attached to
46  *	the given device.
47  *
48  *  flags - This variable indicates whether the device
49  *	supports gigabit speed ethernet, and whether it should be
50  *	in reduced mode.
51  *
52  *  phyregidx - This variable specifies which ethernet device
53  *	controls the MII Management registers which are connected
54  *	to the PHY.  For now, only TSEC1 (index 0) has
55  *	access to the PHYs, so all of the entries have "0".
56  *
57  * The values specified in the table are taken from the board's
58  * config file in include/configs/.  When implementing a new
59  * board with ethernet capability, it is necessary to define:
60  *   TSECn_PHY_ADDR
61  *   TSECn_PHYIDX
62  *
63  * for n = 1,2,3, etc.  And for FEC:
64  *   FEC_PHY_ADDR
65  *   FEC_PHYIDX
66  */
67 static struct tsec_info_struct tsec_info[] = {
68 #ifdef CONFIG_TSEC1
69 	{TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
70 #else
71 	{0, 0, 0},
72 #endif
73 #ifdef CONFIG_TSEC2
74 	{TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
75 #else
76 	{0, 0, 0},
77 #endif
78 #ifdef CONFIG_MPC85XX_FEC
79 	{FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
80 #else
81 #ifdef CONFIG_TSEC3
82 	{TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
83 #else
84 	{0, 0, 0},
85 #endif
86 #ifdef CONFIG_TSEC4
87 	{TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
88 #else
89 	{0, 0, 0},
90 #endif	/* CONFIG_TSEC4 */
91 #endif	/* CONFIG_MPC85XX_FEC */
92 };
93 
94 #define MAXCONTROLLERS	(4)
95 
96 static int relocated = 0;
97 
98 static struct tsec_private *privlist[MAXCONTROLLERS];
99 
100 #ifdef __GNUC__
101 static RTXBD rtx __attribute__ ((aligned(8)));
102 #else
103 #error "rtx must be 64-bit aligned"
104 #endif
105 
106 static int tsec_send(struct eth_device *dev,
107 		     volatile void *packet, int length);
108 static int tsec_recv(struct eth_device *dev);
109 static int tsec_init(struct eth_device *dev, bd_t * bd);
110 static void tsec_halt(struct eth_device *dev);
111 static void init_registers(volatile tsec_t * regs);
112 static void startup_tsec(struct eth_device *dev);
113 static int init_phy(struct eth_device *dev);
114 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
115 uint read_phy_reg(struct tsec_private *priv, uint regnum);
116 struct phy_info *get_phy_info(struct eth_device *dev);
117 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
118 static void adjust_link(struct eth_device *dev);
119 static void relocate_cmds(void);
120 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
121 	&& !defined(BITBANGMII)
122 static int tsec_miiphy_write(char *devname, unsigned char addr,
123 			     unsigned char reg, unsigned short value);
124 static int tsec_miiphy_read(char *devname, unsigned char addr,
125 			    unsigned char reg, unsigned short *value);
126 #endif
127 #ifdef CONFIG_MCAST_TFTP
128 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
129 #endif
130 
131 /* Initialize device structure. Returns success if PHY
132  * initialization succeeded (i.e. if it recognizes the PHY)
133  */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 	struct eth_device *dev;
137 	int i;
138 	struct tsec_private *priv;
139 
140 	dev = (struct eth_device *)malloc(sizeof *dev);
141 
142 	if (NULL == dev)
143 		return 0;
144 
145 	memset(dev, 0, sizeof *dev);
146 
147 	priv = (struct tsec_private *)malloc(sizeof(*priv));
148 
149 	if (NULL == priv)
150 		return 0;
151 
152 	privlist[index] = priv;
153 	priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 	priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 					    tsec_info[index].phyregidx *
156 					    TSEC_SIZE);
157 
158 	priv->phyaddr = tsec_info[index].phyaddr;
159 	priv->flags = tsec_info[index].flags;
160 
161 	sprintf(dev->name, devname);
162 	dev->iobase = 0;
163 	dev->priv = priv;
164 	dev->init = tsec_init;
165 	dev->halt = tsec_halt;
166 	dev->send = tsec_send;
167 	dev->recv = tsec_recv;
168 #ifdef CONFIG_MCAST_TFTP
169 	dev->mcast = tsec_mcast_addr;
170 #endif
171 
172 	/* Tell u-boot to get the addr from the env */
173 	for (i = 0; i < 6; i++)
174 		dev->enetaddr[i] = 0;
175 
176 	eth_register(dev);
177 
178 	/* Reset the MAC */
179 	priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
180 	priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
181 
182 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
183 	&& !defined(BITBANGMII)
184 	miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
185 #endif
186 
187 	/* Try to initialize PHY here, and return */
188 	return init_phy(dev);
189 }
190 
191 /* Initializes data structures and registers for the controller,
192  * and brings the interface up.	 Returns the link status, meaning
193  * that it returns success if the link is up, failure otherwise.
194  * This allows u-boot to find the first active controller.
195  */
196 int tsec_init(struct eth_device *dev, bd_t * bd)
197 {
198 	uint tempval;
199 	char tmpbuf[MAC_ADDR_LEN];
200 	int i;
201 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
202 	volatile tsec_t *regs = priv->regs;
203 
204 	/* Make sure the controller is stopped */
205 	tsec_halt(dev);
206 
207 	/* Init MACCFG2.  Defaults to GMII */
208 	regs->maccfg2 = MACCFG2_INIT_SETTINGS;
209 
210 	/* Init ECNTRL */
211 	regs->ecntrl = ECNTRL_INIT_SETTINGS;
212 
213 	/* Copy the station address into the address registers.
214 	 * Backwards, because little endian MACS are dumb */
215 	for (i = 0; i < MAC_ADDR_LEN; i++) {
216 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
217 	}
218 	regs->macstnaddr1 = *((uint *) (tmpbuf));
219 
220 	tempval = *((uint *) (tmpbuf + 4));
221 
222 	regs->macstnaddr2 = tempval;
223 
224 	/* reset the indices to zero */
225 	rxIdx = 0;
226 	txIdx = 0;
227 
228 	/* Clear out (for the most part) the other registers */
229 	init_registers(regs);
230 
231 	/* Ready the device for tx/rx */
232 	startup_tsec(dev);
233 
234 	/* If there's no link, fail */
235 	return (priv->link ? 0 : -1);
236 
237 }
238 
239 /* Write value to the device's PHY through the registers
240  * specified in priv, modifying the register specified in regnum.
241  * It will wait for the write to be done (or for a timeout to
242  * expire) before exiting
243  */
244 void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value)
245 {
246 	volatile tsec_t *regbase = priv->phyregs;
247 	int timeout = 1000000;
248 
249 	regbase->miimadd = (phyid << 8) | regnum;
250 	regbase->miimcon = value;
251 	asm("sync");
252 
253 	timeout = 1000000;
254 	while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
255 }
256 
257 /* #define to provide old write_phy_reg functionality without duplicating code */
258 #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value)
259 
260 /* Reads register regnum on the device's PHY through the
261  * registers specified in priv.	 It lowers and raises the read
262  * command, and waits for the data to become valid (miimind
263  * notvalid bit cleared), and the bus to cease activity (miimind
264  * busy bit cleared), and then returns the value
265  */
266 uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum)
267 {
268 	uint value;
269 	volatile tsec_t *regbase = priv->phyregs;
270 
271 	/* Put the address of the phy, and the register
272 	 * number into MIIMADD */
273 	regbase->miimadd = (phyid << 8) | regnum;
274 
275 	/* Clear the command register, and wait */
276 	regbase->miimcom = 0;
277 	asm("sync");
278 
279 	/* Initiate a read command, and wait */
280 	regbase->miimcom = MIIM_READ_COMMAND;
281 	asm("sync");
282 
283 	/* Wait for the the indication that the read is done */
284 	while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
285 
286 	/* Grab the value read from the PHY */
287 	value = regbase->miimstat;
288 
289 	return value;
290 }
291 
292 /* #define to provide old read_phy_reg functionality without duplicating code */
293 #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum)
294 
295 /* Discover which PHY is attached to the device, and configure it
296  * properly.  If the PHY is not recognized, then return 0
297  * (failure).  Otherwise, return 1
298  */
299 static int init_phy(struct eth_device *dev)
300 {
301 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
302 	struct phy_info *curphy;
303 	volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
304 
305 	/* Assign a Physical address to the TBI */
306 	regs->tbipa = CFG_TBIPA_VALUE;
307 	regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
308 	regs->tbipa = CFG_TBIPA_VALUE;
309 	asm("sync");
310 
311 	/* Reset MII (due to new addresses) */
312 	priv->phyregs->miimcfg = MIIMCFG_RESET;
313 	asm("sync");
314 	priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
315 	asm("sync");
316 	while (priv->phyregs->miimind & MIIMIND_BUSY) ;
317 
318 	if (0 == relocated)
319 		relocate_cmds();
320 
321 	/* Get the cmd structure corresponding to the attached
322 	 * PHY */
323 	curphy = get_phy_info(dev);
324 
325 	if (curphy == NULL) {
326 		priv->phyinfo = NULL;
327 		printf("%s: No PHY found\n", dev->name);
328 
329 		return 0;
330 	}
331 
332 	priv->phyinfo = curphy;
333 
334 	phy_run_commands(priv, priv->phyinfo->config);
335 
336 	return 1;
337 }
338 
339 /*
340  * Returns which value to write to the control register.
341  * For 10/100, the value is slightly different
342  */
343 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
344 {
345 	if (priv->flags & TSEC_GIGABIT)
346 		return MIIM_CONTROL_INIT;
347 	else
348 		return MIIM_CR_INIT;
349 }
350 
351 /* Parse the status register for link, and then do
352  * auto-negotiation
353  */
354 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
355 {
356 	/*
357 	 * Wait if the link is up, and autonegotiation is in progress
358 	 * (ie - we're capable and it's not done)
359 	 */
360 	mii_reg = read_phy_reg(priv, MIIM_STATUS);
361 	if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
362 	    && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
363 		int i = 0;
364 
365 		puts("Waiting for PHY auto negotiation to complete");
366 		while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
367 			/*
368 			 * Timeout reached ?
369 			 */
370 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
371 				puts(" TIMEOUT !\n");
372 				priv->link = 0;
373 				return 0;
374 			}
375 
376 			if ((i++ % 1000) == 0) {
377 				putc('.');
378 			}
379 			udelay(1000);	/* 1 ms */
380 			mii_reg = read_phy_reg(priv, MIIM_STATUS);
381 		}
382 		puts(" done\n");
383 		priv->link = 1;
384 		udelay(500000);	/* another 500 ms (results in faster booting) */
385 	} else {
386 		if (mii_reg & MIIM_STATUS_LINK)
387 			priv->link = 1;
388 		else
389 			priv->link = 0;
390 	}
391 
392 	return 0;
393 }
394 
395 /* Generic function which updates the speed and duplex.  If
396  * autonegotiation is enabled, it uses the AND of the link
397  * partner's advertised capabilities and our advertised
398  * capabilities.  If autonegotiation is disabled, we use the
399  * appropriate bits in the control register.
400  *
401  * Stolen from Linux's mii.c and phy_device.c
402  */
403 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
404 {
405 	/* We're using autonegotiation */
406 	if (mii_reg & PHY_BMSR_AUTN_ABLE) {
407 		uint lpa = 0;
408 		uint gblpa = 0;
409 
410 		/* Check for gigabit capability */
411 		if (mii_reg & PHY_BMSR_EXT) {
412 			/* We want a list of states supported by
413 			 * both PHYs in the link
414 			 */
415 			gblpa = read_phy_reg(priv, PHY_1000BTSR);
416 			gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
417 		}
418 
419 		/* Set the baseline so we only have to set them
420 		 * if they're different
421 		 */
422 		priv->speed = 10;
423 		priv->duplexity = 0;
424 
425 		/* Check the gigabit fields */
426 		if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
427 			priv->speed = 1000;
428 
429 			if (gblpa & PHY_1000BTSR_1000FD)
430 				priv->duplexity = 1;
431 
432 			/* We're done! */
433 			return 0;
434 		}
435 
436 		lpa = read_phy_reg(priv, PHY_ANAR);
437 		lpa &= read_phy_reg(priv, PHY_ANLPAR);
438 
439 		if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
440 			priv->speed = 100;
441 
442 			if (lpa & PHY_ANLPAR_TXFD)
443 				priv->duplexity = 1;
444 
445 		} else if (lpa & PHY_ANLPAR_10FD)
446 			priv->duplexity = 1;
447 	} else {
448 		uint bmcr = read_phy_reg(priv, PHY_BMCR);
449 
450 		priv->speed = 10;
451 		priv->duplexity = 0;
452 
453 		if (bmcr & PHY_BMCR_DPLX)
454 			priv->duplexity = 1;
455 
456 		if (bmcr & PHY_BMCR_1000_MBPS)
457 			priv->speed = 1000;
458 		else if (bmcr & PHY_BMCR_100_MBPS)
459 			priv->speed = 100;
460 	}
461 
462 	return 0;
463 }
464 
465 /*
466  * Parse the BCM54xx status register for speed and duplex information.
467  * The linux sungem_phy has this information, but in a table format.
468  */
469 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
470 {
471 
472 	switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
473 
474 		case 1:
475 			printf("Enet starting in 10BT/HD\n");
476 			priv->duplexity = 0;
477 			priv->speed = 10;
478 			break;
479 
480 		case 2:
481 			printf("Enet starting in 10BT/FD\n");
482 			priv->duplexity = 1;
483 			priv->speed = 10;
484 			break;
485 
486 		case 3:
487 			printf("Enet starting in 100BT/HD\n");
488 			priv->duplexity = 0;
489 			priv->speed = 100;
490 			break;
491 
492 		case 5:
493 			printf("Enet starting in 100BT/FD\n");
494 			priv->duplexity = 1;
495 			priv->speed = 100;
496 			break;
497 
498 		case 6:
499 			printf("Enet starting in 1000BT/HD\n");
500 			priv->duplexity = 0;
501 			priv->speed = 1000;
502 			break;
503 
504 		case 7:
505 			printf("Enet starting in 1000BT/FD\n");
506 			priv->duplexity = 1;
507 			priv->speed = 1000;
508 			break;
509 
510 		default:
511 			printf("Auto-neg error, defaulting to 10BT/HD\n");
512 			priv->duplexity = 0;
513 			priv->speed = 10;
514 			break;
515 	}
516 
517 	return 0;
518 
519 }
520 /* Parse the 88E1011's status register for speed and duplex
521  * information
522  */
523 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
524 {
525 	uint speed;
526 
527 	mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
528 
529 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
530 		!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
531 		int i = 0;
532 
533 		puts("Waiting for PHY realtime link");
534 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
535 			/* Timeout reached ? */
536 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
537 				puts(" TIMEOUT !\n");
538 				priv->link = 0;
539 				break;
540 			}
541 
542 			if ((i++ % 1000) == 0) {
543 				putc('.');
544 			}
545 			udelay(1000);	/* 1 ms */
546 			mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
547 		}
548 		puts(" done\n");
549 		udelay(500000);	/* another 500 ms (results in faster booting) */
550 	} else {
551 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
552 			priv->link = 1;
553 		else
554 			priv->link = 0;
555 	}
556 
557 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
558 		priv->duplexity = 1;
559 	else
560 		priv->duplexity = 0;
561 
562 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
563 
564 	switch (speed) {
565 	case MIIM_88E1011_PHYSTAT_GBIT:
566 		priv->speed = 1000;
567 		break;
568 	case MIIM_88E1011_PHYSTAT_100:
569 		priv->speed = 100;
570 		break;
571 	default:
572 		priv->speed = 10;
573 	}
574 
575 	return 0;
576 }
577 
578 /* Parse the RTL8211B's status register for speed and duplex
579  * information
580  */
581 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
582 {
583 	uint speed;
584 
585 	mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
586 	if ((mii_reg & MIIM_RTL8211B_PHYSTAT_LINK) &&
587 		!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
588 		int i = 0;
589 
590 		puts("Waiting for PHY realtime link");
591 		while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
592 			/* Timeout reached ? */
593 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
594 				puts(" TIMEOUT !\n");
595 				priv->link = 0;
596 				break;
597 			}
598 
599 			if ((i++ % 1000) == 0) {
600 				putc('.');
601 			}
602 			udelay(1000);	/* 1 ms */
603 			mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
604 		}
605 		puts(" done\n");
606 		udelay(500000);	/* another 500 ms (results in faster booting) */
607 	} else {
608 		if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
609 			priv->link = 1;
610 		else
611 			priv->link = 0;
612 	}
613 
614 	if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
615 		priv->duplexity = 1;
616 	else
617 		priv->duplexity = 0;
618 
619 	speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
620 
621 	switch (speed) {
622 	case MIIM_RTL8211B_PHYSTAT_GBIT:
623 		priv->speed = 1000;
624 		break;
625 	case MIIM_RTL8211B_PHYSTAT_100:
626 		priv->speed = 100;
627 		break;
628 	default:
629 		priv->speed = 10;
630 	}
631 
632 	return 0;
633 }
634 
635 /* Parse the cis8201's status register for speed and duplex
636  * information
637  */
638 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
639 {
640 	uint speed;
641 
642 	if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
643 		priv->duplexity = 1;
644 	else
645 		priv->duplexity = 0;
646 
647 	speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
648 	switch (speed) {
649 	case MIIM_CIS8201_AUXCONSTAT_GBIT:
650 		priv->speed = 1000;
651 		break;
652 	case MIIM_CIS8201_AUXCONSTAT_100:
653 		priv->speed = 100;
654 		break;
655 	default:
656 		priv->speed = 10;
657 		break;
658 	}
659 
660 	return 0;
661 }
662 
663 /* Parse the vsc8244's status register for speed and duplex
664  * information
665  */
666 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
667 {
668 	uint speed;
669 
670 	if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
671 		priv->duplexity = 1;
672 	else
673 		priv->duplexity = 0;
674 
675 	speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
676 	switch (speed) {
677 	case MIIM_VSC8244_AUXCONSTAT_GBIT:
678 		priv->speed = 1000;
679 		break;
680 	case MIIM_VSC8244_AUXCONSTAT_100:
681 		priv->speed = 100;
682 		break;
683 	default:
684 		priv->speed = 10;
685 		break;
686 	}
687 
688 	return 0;
689 }
690 
691 /* Parse the DM9161's status register for speed and duplex
692  * information
693  */
694 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
695 {
696 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
697 		priv->speed = 100;
698 	else
699 		priv->speed = 10;
700 
701 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
702 		priv->duplexity = 1;
703 	else
704 		priv->duplexity = 0;
705 
706 	return 0;
707 }
708 
709 /*
710  * Hack to write all 4 PHYs with the LED values
711  */
712 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
713 {
714 	uint phyid;
715 	volatile tsec_t *regbase = priv->phyregs;
716 	int timeout = 1000000;
717 
718 	for (phyid = 0; phyid < 4; phyid++) {
719 		regbase->miimadd = (phyid << 8) | mii_reg;
720 		regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
721 		asm("sync");
722 
723 		timeout = 1000000;
724 		while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
725 	}
726 
727 	return MIIM_CIS8204_SLEDCON_INIT;
728 }
729 
730 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
731 {
732 	if (priv->flags & TSEC_REDUCED)
733 		return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
734 	else
735 		return MIIM_CIS8204_EPHYCON_INIT;
736 }
737 
738 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
739 {
740 	uint mii_data = read_phy_reg(priv, mii_reg);
741 
742 	if (priv->flags & TSEC_REDUCED)
743 		mii_data = (mii_data & 0xfff0) | 0x000b;
744 	return mii_data;
745 }
746 
747 /* Initialized required registers to appropriate values, zeroing
748  * those we don't care about (unless zero is bad, in which case,
749  * choose a more appropriate value)
750  */
751 static void init_registers(volatile tsec_t * regs)
752 {
753 	/* Clear IEVENT */
754 	regs->ievent = IEVENT_INIT_CLEAR;
755 
756 	regs->imask = IMASK_INIT_CLEAR;
757 
758 	regs->hash.iaddr0 = 0;
759 	regs->hash.iaddr1 = 0;
760 	regs->hash.iaddr2 = 0;
761 	regs->hash.iaddr3 = 0;
762 	regs->hash.iaddr4 = 0;
763 	regs->hash.iaddr5 = 0;
764 	regs->hash.iaddr6 = 0;
765 	regs->hash.iaddr7 = 0;
766 
767 	regs->hash.gaddr0 = 0;
768 	regs->hash.gaddr1 = 0;
769 	regs->hash.gaddr2 = 0;
770 	regs->hash.gaddr3 = 0;
771 	regs->hash.gaddr4 = 0;
772 	regs->hash.gaddr5 = 0;
773 	regs->hash.gaddr6 = 0;
774 	regs->hash.gaddr7 = 0;
775 
776 	regs->rctrl = 0x00000000;
777 
778 	/* Init RMON mib registers */
779 	memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
780 
781 	regs->rmon.cam1 = 0xffffffff;
782 	regs->rmon.cam2 = 0xffffffff;
783 
784 	regs->mrblr = MRBLR_INIT_SETTINGS;
785 
786 	regs->minflr = MINFLR_INIT_SETTINGS;
787 
788 	regs->attr = ATTR_INIT_SETTINGS;
789 	regs->attreli = ATTRELI_INIT_SETTINGS;
790 
791 }
792 
793 /* Configure maccfg2 based on negotiated speed and duplex
794  * reported by PHY handling code
795  */
796 static void adjust_link(struct eth_device *dev)
797 {
798 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
799 	volatile tsec_t *regs = priv->regs;
800 
801 	if (priv->link) {
802 		if (priv->duplexity != 0)
803 			regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
804 		else
805 			regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
806 
807 		switch (priv->speed) {
808 		case 1000:
809 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
810 					 | MACCFG2_GMII);
811 			break;
812 		case 100:
813 		case 10:
814 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
815 					 | MACCFG2_MII);
816 
817 			/* Set R100 bit in all modes although
818 			 * it is only used in RGMII mode
819 			 */
820 			if (priv->speed == 100)
821 				regs->ecntrl |= ECNTRL_R100;
822 			else
823 				regs->ecntrl &= ~(ECNTRL_R100);
824 			break;
825 		default:
826 			printf("%s: Speed was bad\n", dev->name);
827 			break;
828 		}
829 
830 		printf("Speed: %d, %s duplex\n", priv->speed,
831 		       (priv->duplexity) ? "full" : "half");
832 
833 	} else {
834 		printf("%s: No link.\n", dev->name);
835 	}
836 }
837 
838 /* Set up the buffers and their descriptors, and bring up the
839  * interface
840  */
841 static void startup_tsec(struct eth_device *dev)
842 {
843 	int i;
844 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
845 	volatile tsec_t *regs = priv->regs;
846 
847 	/* Point to the buffer descriptors */
848 	regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
849 	regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
850 
851 	/* Initialize the Rx Buffer descriptors */
852 	for (i = 0; i < PKTBUFSRX; i++) {
853 		rtx.rxbd[i].status = RXBD_EMPTY;
854 		rtx.rxbd[i].length = 0;
855 		rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
856 	}
857 	rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
858 
859 	/* Initialize the TX Buffer Descriptors */
860 	for (i = 0; i < TX_BUF_CNT; i++) {
861 		rtx.txbd[i].status = 0;
862 		rtx.txbd[i].length = 0;
863 		rtx.txbd[i].bufPtr = 0;
864 	}
865 	rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
866 
867 	/* Start up the PHY */
868 	if(priv->phyinfo)
869 		phy_run_commands(priv, priv->phyinfo->startup);
870 
871 	adjust_link(dev);
872 
873 	/* Enable Transmit and Receive */
874 	regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
875 
876 	/* Tell the DMA it is clear to go */
877 	regs->dmactrl |= DMACTRL_INIT_SETTINGS;
878 	regs->tstat = TSTAT_CLEAR_THALT;
879 	regs->rstat = RSTAT_CLEAR_RHALT;
880 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
881 }
882 
883 /* This returns the status bits of the device.	The return value
884  * is never checked, and this is what the 8260 driver did, so we
885  * do the same.	 Presumably, this would be zero if there were no
886  * errors
887  */
888 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
889 {
890 	int i;
891 	int result = 0;
892 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
893 	volatile tsec_t *regs = priv->regs;
894 
895 	/* Find an empty buffer descriptor */
896 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
897 		if (i >= TOUT_LOOP) {
898 			debug("%s: tsec: tx buffers full\n", dev->name);
899 			return result;
900 		}
901 	}
902 
903 	rtx.txbd[txIdx].bufPtr = (uint) packet;
904 	rtx.txbd[txIdx].length = length;
905 	rtx.txbd[txIdx].status |=
906 	    (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
907 
908 	/* Tell the DMA to go */
909 	regs->tstat = TSTAT_CLEAR_THALT;
910 
911 	/* Wait for buffer to be transmitted */
912 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
913 		if (i >= TOUT_LOOP) {
914 			debug("%s: tsec: tx error\n", dev->name);
915 			return result;
916 		}
917 	}
918 
919 	txIdx = (txIdx + 1) % TX_BUF_CNT;
920 	result = rtx.txbd[txIdx].status & TXBD_STATS;
921 
922 	return result;
923 }
924 
925 static int tsec_recv(struct eth_device *dev)
926 {
927 	int length;
928 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
929 	volatile tsec_t *regs = priv->regs;
930 
931 	while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
932 
933 		length = rtx.rxbd[rxIdx].length;
934 
935 		/* Send the packet up if there were no errors */
936 		if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
937 			NetReceive(NetRxPackets[rxIdx], length - 4);
938 		} else {
939 			printf("Got error %x\n",
940 			       (rtx.rxbd[rxIdx].status & RXBD_STATS));
941 		}
942 
943 		rtx.rxbd[rxIdx].length = 0;
944 
945 		/* Set the wrap bit if this is the last element in the list */
946 		rtx.rxbd[rxIdx].status =
947 		    RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
948 
949 		rxIdx = (rxIdx + 1) % PKTBUFSRX;
950 	}
951 
952 	if (regs->ievent & IEVENT_BSY) {
953 		regs->ievent = IEVENT_BSY;
954 		regs->rstat = RSTAT_CLEAR_RHALT;
955 	}
956 
957 	return -1;
958 
959 }
960 
961 /* Stop the interface */
962 static void tsec_halt(struct eth_device *dev)
963 {
964 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
965 	volatile tsec_t *regs = priv->regs;
966 
967 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
968 	regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
969 
970 	while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
971 
972 	regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
973 
974 	/* Shut down the PHY, as needed */
975 	if(priv->phyinfo)
976 		phy_run_commands(priv, priv->phyinfo->shutdown);
977 }
978 
979 struct phy_info phy_info_M88E1149S = {
980 	0x1410ca,
981 	"Marvell 88E1149S",
982 	4,
983 	(struct phy_cmd[]){     /* config */
984 		/* Reset and configure the PHY */
985 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
986 		{0x1d, 0x1f, NULL},
987 		{0x1e, 0x200c, NULL},
988 		{0x1d, 0x5, NULL},
989 		{0x1e, 0x0, NULL},
990 		{0x1e, 0x100, NULL},
991 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
992 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
993 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
994 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
995 		{miim_end,}
996 	},
997 	(struct phy_cmd[]){     /* startup */
998 		/* Status is read once to clear old link state */
999 		{MIIM_STATUS, miim_read, NULL},
1000 		/* Auto-negotiate */
1001 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1002 		/* Read the status */
1003 		{MIIM_88E1011_PHY_STATUS, miim_read,
1004 		 &mii_parse_88E1011_psr},
1005 		{miim_end,}
1006 	},
1007 	(struct phy_cmd[]){     /* shutdown */
1008 		{miim_end,}
1009 	},
1010 };
1011 
1012 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1013 struct phy_info phy_info_BCM5461S = {
1014 	0x02060c1,	/* 5461 ID */
1015 	"Broadcom BCM5461S",
1016 	0, /* not clear to me what minor revisions we can shift away */
1017 	(struct phy_cmd[]) { /* config */
1018 		/* Reset and configure the PHY */
1019 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1020 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1021 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1022 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1023 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1024 		{miim_end,}
1025 	},
1026 	(struct phy_cmd[]) { /* startup */
1027 		/* Status is read once to clear old link state */
1028 		{MIIM_STATUS, miim_read, NULL},
1029 		/* Auto-negotiate */
1030 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1031 		/* Read the status */
1032 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1033 		{miim_end,}
1034 	},
1035 	(struct phy_cmd[]) { /* shutdown */
1036 		{miim_end,}
1037 	},
1038 };
1039 
1040 struct phy_info phy_info_BCM5464S = {
1041 	0x02060b1,	/* 5464 ID */
1042 	"Broadcom BCM5464S",
1043 	0, /* not clear to me what minor revisions we can shift away */
1044 	(struct phy_cmd[]) { /* config */
1045 		/* Reset and configure the PHY */
1046 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1047 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1048 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1049 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1050 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1051 		{miim_end,}
1052 	},
1053 	(struct phy_cmd[]) { /* startup */
1054 		/* Status is read once to clear old link state */
1055 		{MIIM_STATUS, miim_read, NULL},
1056 		/* Auto-negotiate */
1057 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1058 		/* Read the status */
1059 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1060 		{miim_end,}
1061 	},
1062 	(struct phy_cmd[]) { /* shutdown */
1063 		{miim_end,}
1064 	},
1065 };
1066 
1067 struct phy_info phy_info_M88E1011S = {
1068 	0x01410c6,
1069 	"Marvell 88E1011S",
1070 	4,
1071 	(struct phy_cmd[]){	/* config */
1072 			   /* Reset and configure the PHY */
1073 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1074 			   {0x1d, 0x1f, NULL},
1075 			   {0x1e, 0x200c, NULL},
1076 			   {0x1d, 0x5, NULL},
1077 			   {0x1e, 0x0, NULL},
1078 			   {0x1e, 0x100, NULL},
1079 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1080 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1081 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1082 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1083 			   {miim_end,}
1084 			   },
1085 	(struct phy_cmd[]){	/* startup */
1086 			   /* Status is read once to clear old link state */
1087 			   {MIIM_STATUS, miim_read, NULL},
1088 			   /* Auto-negotiate */
1089 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1090 			   /* Read the status */
1091 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1092 			    &mii_parse_88E1011_psr},
1093 			   {miim_end,}
1094 			   },
1095 	(struct phy_cmd[]){	/* shutdown */
1096 			   {miim_end,}
1097 			   },
1098 };
1099 
1100 struct phy_info phy_info_M88E1111S = {
1101 	0x01410cc,
1102 	"Marvell 88E1111S",
1103 	4,
1104 	(struct phy_cmd[]){	/* config */
1105 			   /* Reset and configure the PHY */
1106 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1107 			   {0x1b, 0x848f, &mii_m88e1111s_setmode},
1108 			   {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1109 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1110 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1111 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1112 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1113 			   {miim_end,}
1114 			   },
1115 	(struct phy_cmd[]){	/* startup */
1116 			   /* Status is read once to clear old link state */
1117 			   {MIIM_STATUS, miim_read, NULL},
1118 			   /* Auto-negotiate */
1119 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1120 			   /* Read the status */
1121 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1122 			    &mii_parse_88E1011_psr},
1123 			   {miim_end,}
1124 			   },
1125 	(struct phy_cmd[]){	/* shutdown */
1126 			   {miim_end,}
1127 			   },
1128 };
1129 
1130 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1131 {
1132 	uint mii_data = read_phy_reg(priv, mii_reg);
1133 
1134 	/* Setting MIIM_88E1145_PHY_EXT_CR */
1135 	if (priv->flags & TSEC_REDUCED)
1136 		return mii_data |
1137 		    MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1138 	else
1139 		return mii_data;
1140 }
1141 
1142 static struct phy_info phy_info_M88E1145 = {
1143 	0x01410cd,
1144 	"Marvell 88E1145",
1145 	4,
1146 	(struct phy_cmd[]){	/* config */
1147 			   /* Reset the PHY */
1148 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1149 
1150 			   /* Errata E0, E1 */
1151 			   {29, 0x001b, NULL},
1152 			   {30, 0x418f, NULL},
1153 			   {29, 0x0016, NULL},
1154 			   {30, 0xa2da, NULL},
1155 
1156 			   /* Configure the PHY */
1157 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1158 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1159 			   {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1160 			    NULL},
1161 			   {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1162 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1163 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1164 			   {miim_end,}
1165 			   },
1166 	(struct phy_cmd[]){	/* startup */
1167 			   /* Status is read once to clear old link state */
1168 			   {MIIM_STATUS, miim_read, NULL},
1169 			   /* Auto-negotiate */
1170 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1171 			   {MIIM_88E1111_PHY_LED_CONTROL,
1172 			    MIIM_88E1111_PHY_LED_DIRECT, NULL},
1173 			   /* Read the Status */
1174 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1175 			    &mii_parse_88E1011_psr},
1176 			   {miim_end,}
1177 			   },
1178 	(struct phy_cmd[]){	/* shutdown */
1179 			   {miim_end,}
1180 			   },
1181 };
1182 
1183 struct phy_info phy_info_cis8204 = {
1184 	0x3f11,
1185 	"Cicada Cis8204",
1186 	6,
1187 	(struct phy_cmd[]){	/* config */
1188 			   /* Override PHY config settings */
1189 			   {MIIM_CIS8201_AUX_CONSTAT,
1190 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1191 			   /* Configure some basic stuff */
1192 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1193 			   {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1194 			    &mii_cis8204_fixled},
1195 			   {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1196 			    &mii_cis8204_setmode},
1197 			   {miim_end,}
1198 			   },
1199 	(struct phy_cmd[]){	/* startup */
1200 			   /* Read the Status (2x to make sure link is right) */
1201 			   {MIIM_STATUS, miim_read, NULL},
1202 			   /* Auto-negotiate */
1203 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1204 			   /* Read the status */
1205 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1206 			    &mii_parse_cis8201},
1207 			   {miim_end,}
1208 			   },
1209 	(struct phy_cmd[]){	/* shutdown */
1210 			   {miim_end,}
1211 			   },
1212 };
1213 
1214 /* Cicada 8201 */
1215 struct phy_info phy_info_cis8201 = {
1216 	0xfc41,
1217 	"CIS8201",
1218 	4,
1219 	(struct phy_cmd[]){	/* config */
1220 			   /* Override PHY config settings */
1221 			   {MIIM_CIS8201_AUX_CONSTAT,
1222 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1223 			   /* Set up the interface mode */
1224 			   {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1225 			    NULL},
1226 			   /* Configure some basic stuff */
1227 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1228 			   {miim_end,}
1229 			   },
1230 	(struct phy_cmd[]){	/* startup */
1231 			   /* Read the Status (2x to make sure link is right) */
1232 			   {MIIM_STATUS, miim_read, NULL},
1233 			   /* Auto-negotiate */
1234 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1235 			   /* Read the status */
1236 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1237 			    &mii_parse_cis8201},
1238 			   {miim_end,}
1239 			   },
1240 	(struct phy_cmd[]){	/* shutdown */
1241 			   {miim_end,}
1242 			   },
1243 };
1244 struct phy_info phy_info_VSC8244 = {
1245 	0x3f1b,
1246 	"Vitesse VSC8244",
1247 	6,
1248 	(struct phy_cmd[]){	/* config */
1249 			   /* Override PHY config settings */
1250 			   /* Configure some basic stuff */
1251 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1252 			   {miim_end,}
1253 			   },
1254 	(struct phy_cmd[]){	/* startup */
1255 			   /* Read the Status (2x to make sure link is right) */
1256 			   {MIIM_STATUS, miim_read, NULL},
1257 			   /* Auto-negotiate */
1258 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1259 			   /* Read the status */
1260 			   {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1261 			    &mii_parse_vsc8244},
1262 			   {miim_end,}
1263 			   },
1264 	(struct phy_cmd[]){	/* shutdown */
1265 			   {miim_end,}
1266 			   },
1267 };
1268 
1269 struct phy_info phy_info_dm9161 = {
1270 	0x0181b88,
1271 	"Davicom DM9161E",
1272 	4,
1273 	(struct phy_cmd[]){	/* config */
1274 			   {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1275 			   /* Do not bypass the scrambler/descrambler */
1276 			   {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1277 			   /* Clear 10BTCSR to default */
1278 			   {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1279 			    NULL},
1280 			   /* Configure some basic stuff */
1281 			   {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1282 			   /* Restart Auto Negotiation */
1283 			   {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1284 			   {miim_end,}
1285 			   },
1286 	(struct phy_cmd[]){	/* startup */
1287 			   /* Status is read once to clear old link state */
1288 			   {MIIM_STATUS, miim_read, NULL},
1289 			   /* Auto-negotiate */
1290 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1291 			   /* Read the status */
1292 			   {MIIM_DM9161_SCSR, miim_read,
1293 			    &mii_parse_dm9161_scsr},
1294 			   {miim_end,}
1295 			   },
1296 	(struct phy_cmd[]){	/* shutdown */
1297 			   {miim_end,}
1298 			   },
1299 };
1300 /* a generic flavor.  */
1301 struct phy_info phy_info_generic =  {
1302 	0,
1303 	"Unknown/Generic PHY",
1304 	32,
1305 	(struct phy_cmd[]) { /* config */
1306 		{PHY_BMCR, PHY_BMCR_RESET, NULL},
1307 		{PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1308 		{miim_end,}
1309 	},
1310 	(struct phy_cmd[]) { /* startup */
1311 		{PHY_BMSR, miim_read, NULL},
1312 		{PHY_BMSR, miim_read, &mii_parse_sr},
1313 		{PHY_BMSR, miim_read, &mii_parse_link},
1314 		{miim_end,}
1315 	},
1316 	(struct phy_cmd[]) { /* shutdown */
1317 		{miim_end,}
1318 	}
1319 };
1320 
1321 
1322 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1323 {
1324 	unsigned int speed;
1325 	if (priv->link) {
1326 		speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1327 
1328 		switch (speed) {
1329 		case MIIM_LXT971_SR2_10HDX:
1330 			priv->speed = 10;
1331 			priv->duplexity = 0;
1332 			break;
1333 		case MIIM_LXT971_SR2_10FDX:
1334 			priv->speed = 10;
1335 			priv->duplexity = 1;
1336 			break;
1337 		case MIIM_LXT971_SR2_100HDX:
1338 			priv->speed = 100;
1339 			priv->duplexity = 0;
1340 			break;
1341 		default:
1342 			priv->speed = 100;
1343 			priv->duplexity = 1;
1344 		}
1345 	} else {
1346 		priv->speed = 0;
1347 		priv->duplexity = 0;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static struct phy_info phy_info_lxt971 = {
1354 	0x0001378e,
1355 	"LXT971",
1356 	4,
1357 	(struct phy_cmd[]){	/* config */
1358 			   {MIIM_CR, MIIM_CR_INIT, mii_cr_init},	/* autonegotiate */
1359 			   {miim_end,}
1360 			   },
1361 	(struct phy_cmd[]){	/* startup - enable interrupts */
1362 			   /* { 0x12, 0x00f2, NULL }, */
1363 			   {MIIM_STATUS, miim_read, NULL},
1364 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1365 			   {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1366 			   {miim_end,}
1367 			   },
1368 	(struct phy_cmd[]){	/* shutdown - disable interrupts */
1369 			   {miim_end,}
1370 			   },
1371 };
1372 
1373 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1374  * information
1375  */
1376 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1377 {
1378 	switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1379 
1380 	case MIIM_DP83865_SPD_1000:
1381 		priv->speed = 1000;
1382 		break;
1383 
1384 	case MIIM_DP83865_SPD_100:
1385 		priv->speed = 100;
1386 		break;
1387 
1388 	default:
1389 		priv->speed = 10;
1390 		break;
1391 
1392 	}
1393 
1394 	if (mii_reg & MIIM_DP83865_DPX_FULL)
1395 		priv->duplexity = 1;
1396 	else
1397 		priv->duplexity = 0;
1398 
1399 	return 0;
1400 }
1401 
1402 struct phy_info phy_info_dp83865 = {
1403 	0x20005c7,
1404 	"NatSemi DP83865",
1405 	4,
1406 	(struct phy_cmd[]){	/* config */
1407 			   {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1408 			   {miim_end,}
1409 			   },
1410 	(struct phy_cmd[]){	/* startup */
1411 			   /* Status is read once to clear old link state */
1412 			   {MIIM_STATUS, miim_read, NULL},
1413 			   /* Auto-negotiate */
1414 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1415 			   /* Read the link and auto-neg status */
1416 			   {MIIM_DP83865_LANR, miim_read,
1417 			    &mii_parse_dp83865_lanr},
1418 			   {miim_end,}
1419 			   },
1420 	(struct phy_cmd[]){	/* shutdown */
1421 			   {miim_end,}
1422 			   },
1423 };
1424 
1425 struct phy_info phy_info_rtl8211b = {
1426 	0x001cc91,
1427 	"RealTek RTL8211B",
1428 	4,
1429 	(struct phy_cmd[]){	/* config */
1430 		/* Reset and configure the PHY */
1431 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1432 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1433 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1434 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1435 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1436 		{miim_end,}
1437 	},
1438 	(struct phy_cmd[]){	/* startup */
1439 		/* Status is read once to clear old link state */
1440 		{MIIM_STATUS, miim_read, NULL},
1441 		/* Auto-negotiate */
1442 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1443 		/* Read the status */
1444 		{MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1445 		{miim_end,}
1446 	},
1447 	(struct phy_cmd[]){	/* shutdown */
1448 		{miim_end,}
1449 	},
1450 };
1451 
1452 struct phy_info *phy_info[] = {
1453 	&phy_info_cis8204,
1454 	&phy_info_cis8201,
1455 	&phy_info_BCM5461S,
1456 	&phy_info_BCM5464S,
1457 	&phy_info_M88E1011S,
1458 	&phy_info_M88E1111S,
1459 	&phy_info_M88E1145,
1460 	&phy_info_M88E1149S,
1461 	&phy_info_dm9161,
1462 	&phy_info_lxt971,
1463 	&phy_info_VSC8244,
1464 	&phy_info_dp83865,
1465 	&phy_info_rtl8211b,
1466 	&phy_info_generic,
1467 	NULL
1468 };
1469 
1470 /* Grab the identifier of the device's PHY, and search through
1471  * all of the known PHYs to see if one matches.	 If so, return
1472  * it, if not, return NULL
1473  */
1474 struct phy_info *get_phy_info(struct eth_device *dev)
1475 {
1476 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1477 	uint phy_reg, phy_ID;
1478 	int i;
1479 	struct phy_info *theInfo = NULL;
1480 
1481 	/* Grab the bits from PHYIR1, and put them in the upper half */
1482 	phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1483 	phy_ID = (phy_reg & 0xffff) << 16;
1484 
1485 	/* Grab the bits from PHYIR2, and put them in the lower half */
1486 	phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1487 	phy_ID |= (phy_reg & 0xffff);
1488 
1489 	/* loop through all the known PHY types, and find one that */
1490 	/* matches the ID we read from the PHY. */
1491 	for (i = 0; phy_info[i]; i++) {
1492 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1493 			theInfo = phy_info[i];
1494 			break;
1495 		}
1496 	}
1497 
1498 	if (theInfo == NULL) {
1499 		printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1500 		return NULL;
1501 	} else {
1502 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1503 	}
1504 
1505 	return theInfo;
1506 }
1507 
1508 /* Execute the given series of commands on the given device's
1509  * PHY, running functions as necessary
1510  */
1511 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1512 {
1513 	int i;
1514 	uint result;
1515 	volatile tsec_t *phyregs = priv->phyregs;
1516 
1517 	phyregs->miimcfg = MIIMCFG_RESET;
1518 
1519 	phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1520 
1521 	while (phyregs->miimind & MIIMIND_BUSY) ;
1522 
1523 	for (i = 0; cmd->mii_reg != miim_end; i++) {
1524 		if (cmd->mii_data == miim_read) {
1525 			result = read_phy_reg(priv, cmd->mii_reg);
1526 
1527 			if (cmd->funct != NULL)
1528 				(*(cmd->funct)) (result, priv);
1529 
1530 		} else {
1531 			if (cmd->funct != NULL)
1532 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
1533 			else
1534 				result = cmd->mii_data;
1535 
1536 			write_phy_reg(priv, cmd->mii_reg, result);
1537 
1538 		}
1539 		cmd++;
1540 	}
1541 }
1542 
1543 /* Relocate the function pointers in the phy cmd lists */
1544 static void relocate_cmds(void)
1545 {
1546 	struct phy_cmd **cmdlistptr;
1547 	struct phy_cmd *cmd;
1548 	int i, j, k;
1549 
1550 	for (i = 0; phy_info[i]; i++) {
1551 		/* First thing's first: relocate the pointers to the
1552 		 * PHY command structures (the structs were done) */
1553 		phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1554 						  + gd->reloc_off);
1555 		phy_info[i]->name += gd->reloc_off;
1556 		phy_info[i]->config =
1557 		    (struct phy_cmd *)((uint) phy_info[i]->config
1558 				       + gd->reloc_off);
1559 		phy_info[i]->startup =
1560 		    (struct phy_cmd *)((uint) phy_info[i]->startup
1561 				       + gd->reloc_off);
1562 		phy_info[i]->shutdown =
1563 		    (struct phy_cmd *)((uint) phy_info[i]->shutdown
1564 				       + gd->reloc_off);
1565 
1566 		cmdlistptr = &phy_info[i]->config;
1567 		j = 0;
1568 		for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1569 			k = 0;
1570 			for (cmd = *cmdlistptr;
1571 			     cmd->mii_reg != miim_end;
1572 			     cmd++) {
1573 				/* Only relocate non-NULL pointers */
1574 				if (cmd->funct)
1575 					cmd->funct += gd->reloc_off;
1576 
1577 				k++;
1578 			}
1579 			j++;
1580 		}
1581 	}
1582 
1583 	relocated = 1;
1584 }
1585 
1586 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1587 	&& !defined(BITBANGMII)
1588 
1589 /*
1590  * Read a MII PHY register.
1591  *
1592  * Returns:
1593  *  0 on success
1594  */
1595 static int tsec_miiphy_read(char *devname, unsigned char addr,
1596 			    unsigned char reg, unsigned short *value)
1597 {
1598 	unsigned short ret;
1599 	struct tsec_private *priv = privlist[0];
1600 
1601 	if (NULL == priv) {
1602 		printf("Can't read PHY at address %d\n", addr);
1603 		return -1;
1604 	}
1605 
1606 	ret = (unsigned short)read_any_phy_reg(priv, addr, reg);
1607 	*value = ret;
1608 
1609 	return 0;
1610 }
1611 
1612 /*
1613  * Write a MII PHY register.
1614  *
1615  * Returns:
1616  *  0 on success
1617  */
1618 static int tsec_miiphy_write(char *devname, unsigned char addr,
1619 			     unsigned char reg, unsigned short value)
1620 {
1621 	struct tsec_private *priv = privlist[0];
1622 
1623 	if (NULL == priv) {
1624 		printf("Can't write PHY at address %d\n", addr);
1625 		return -1;
1626 	}
1627 
1628 	write_any_phy_reg(priv, addr, reg, value);
1629 
1630 	return 0;
1631 }
1632 
1633 #endif
1634 
1635 #ifdef CONFIG_MCAST_TFTP
1636 
1637 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1638 
1639 /* Set the appropriate hash bit for the given addr */
1640 
1641 /* The algorithm works like so:
1642  * 1) Take the Destination Address (ie the multicast address), and
1643  * do a CRC on it (little endian), and reverse the bits of the
1644  * result.
1645  * 2) Use the 8 most significant bits as a hash into a 256-entry
1646  * table.  The table is controlled through 8 32-bit registers:
1647  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1648  * gaddr7.  This means that the 3 most significant bits in the
1649  * hash index which gaddr register to use, and the 5 other bits
1650  * indicate which bit (assuming an IBM numbering scheme, which
1651  * for PowerPC (tm) is usually the case) in the tregister holds
1652  * the entry. */
1653 static int
1654 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1655 {
1656  struct tsec_private *priv = privlist[1];
1657  volatile tsec_t *regs = priv->regs;
1658  volatile u32  *reg_array, value;
1659  u8 result, whichbit, whichreg;
1660 
1661 	result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1662 	whichbit = result & 0x1f;	/* the 5 LSB = which bit to set */
1663 	whichreg = result >> 5;		/* the 3 MSB = which reg to set it in */
1664 	value = (1 << (31-whichbit));
1665 
1666 	reg_array = &(regs->hash.gaddr0);
1667 
1668 	if (set) {
1669 		reg_array[whichreg] |= value;
1670 	} else {
1671 		reg_array[whichreg] &= ~value;
1672 	}
1673 	return 0;
1674 }
1675 #endif /* Multicast TFTP ? */
1676 
1677 #endif /* CONFIG_TSEC_ENET */
1678