xref: /openbmc/u-boot/drivers/net/tsec.c (revision a4145534)
1 /*
2  * Freescale Three Speed Ethernet Controller driver
3  *
4  * This software may be used and distributed according to the
5  * terms of the GNU Public License, Version 2, incorporated
6  * herein by reference.
7  *
8  * Copyright 2004-2009 Freescale Semiconductor, Inc.
9  * (C) Copyright 2003, Motorola, Inc.
10  * author Andy Fleming
11  *
12  */
13 
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 #include <tsec.h>
20 #include <asm/errno.h>
21 
22 #include "miiphy.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define TX_BUF_CNT		2
27 
28 static uint rxIdx;		/* index of the current RX buffer */
29 static uint txIdx;		/* index of the current TX buffer */
30 
31 typedef volatile struct rtxbd {
32 	txbd8_t txbd[TX_BUF_CNT];
33 	rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35 
36 #define MAXCONTROLLERS	(8)
37 
38 static struct tsec_private *privlist[MAXCONTROLLERS];
39 static int num_tsecs = 0;
40 
41 #ifdef __GNUC__
42 static RTXBD rtx __attribute__ ((aligned(8)));
43 #else
44 #error "rtx must be 64-bit aligned"
45 #endif
46 
47 static int tsec_send(struct eth_device *dev,
48 		     volatile void *packet, int length);
49 static int tsec_recv(struct eth_device *dev);
50 static int tsec_init(struct eth_device *dev, bd_t * bd);
51 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info);
52 static void tsec_halt(struct eth_device *dev);
53 static void init_registers(volatile tsec_t * regs);
54 static void startup_tsec(struct eth_device *dev);
55 static int init_phy(struct eth_device *dev);
56 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
57 uint read_phy_reg(struct tsec_private *priv, uint regnum);
58 static struct phy_info *get_phy_info(struct eth_device *dev);
59 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
60 static void adjust_link(struct eth_device *dev);
61 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
62 	&& !defined(BITBANGMII)
63 static int tsec_miiphy_write(char *devname, unsigned char addr,
64 			     unsigned char reg, unsigned short value);
65 static int tsec_miiphy_read(char *devname, unsigned char addr,
66 			    unsigned char reg, unsigned short *value);
67 #endif
68 #ifdef CONFIG_MCAST_TFTP
69 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
70 #endif
71 
72 /* Default initializations for TSEC controllers. */
73 
74 static struct tsec_info_struct tsec_info[] = {
75 #ifdef CONFIG_TSEC1
76 	STD_TSEC_INFO(1),	/* TSEC1 */
77 #endif
78 #ifdef CONFIG_TSEC2
79 	STD_TSEC_INFO(2),	/* TSEC2 */
80 #endif
81 #ifdef CONFIG_MPC85XX_FEC
82 	{
83 		.regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000),
84 		.miiregs = (tsec_mdio_t *)(MDIO_BASE_ADDR),
85 		.devname = CONFIG_MPC85XX_FEC_NAME,
86 		.phyaddr = FEC_PHY_ADDR,
87 		.flags = FEC_FLAGS
88 	},			/* FEC */
89 #endif
90 #ifdef CONFIG_TSEC3
91 	STD_TSEC_INFO(3),	/* TSEC3 */
92 #endif
93 #ifdef CONFIG_TSEC4
94 	STD_TSEC_INFO(4),	/* TSEC4 */
95 #endif
96 };
97 
98 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num)
99 {
100 	int i;
101 
102 	for (i = 0; i < num; i++)
103 		tsec_initialize(bis, &tsecs[i]);
104 
105 	return 0;
106 }
107 
108 int tsec_standard_init(bd_t *bis)
109 {
110 	return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info));
111 }
112 
113 /* Initialize device structure. Returns success if PHY
114  * initialization succeeded (i.e. if it recognizes the PHY)
115  */
116 static int tsec_initialize(bd_t * bis, struct tsec_info_struct *tsec_info)
117 {
118 	struct eth_device *dev;
119 	int i;
120 	struct tsec_private *priv;
121 
122 	dev = (struct eth_device *)malloc(sizeof *dev);
123 
124 	if (NULL == dev)
125 		return 0;
126 
127 	memset(dev, 0, sizeof *dev);
128 
129 	priv = (struct tsec_private *)malloc(sizeof(*priv));
130 
131 	if (NULL == priv)
132 		return 0;
133 
134 	privlist[num_tsecs++] = priv;
135 	priv->regs = tsec_info->regs;
136 	priv->phyregs = tsec_info->miiregs;
137 	priv->phyregs_sgmii = tsec_info->miiregs_sgmii;
138 
139 	priv->phyaddr = tsec_info->phyaddr;
140 	priv->flags = tsec_info->flags;
141 
142 	sprintf(dev->name, tsec_info->devname);
143 	dev->iobase = 0;
144 	dev->priv = priv;
145 	dev->init = tsec_init;
146 	dev->halt = tsec_halt;
147 	dev->send = tsec_send;
148 	dev->recv = tsec_recv;
149 #ifdef CONFIG_MCAST_TFTP
150 	dev->mcast = tsec_mcast_addr;
151 #endif
152 
153 	/* Tell u-boot to get the addr from the env */
154 	for (i = 0; i < 6; i++)
155 		dev->enetaddr[i] = 0;
156 
157 	eth_register(dev);
158 
159 	/* Reset the MAC */
160 	priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
161 	udelay(2);  /* Soft Reset must be asserted for 3 TX clocks */
162 	priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
163 
164 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
165 	&& !defined(BITBANGMII)
166 	miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
167 #endif
168 
169 	/* Try to initialize PHY here, and return */
170 	return init_phy(dev);
171 }
172 
173 /* Initializes data structures and registers for the controller,
174  * and brings the interface up.	 Returns the link status, meaning
175  * that it returns success if the link is up, failure otherwise.
176  * This allows u-boot to find the first active controller.
177  */
178 static int tsec_init(struct eth_device *dev, bd_t * bd)
179 {
180 	uint tempval;
181 	char tmpbuf[MAC_ADDR_LEN];
182 	int i;
183 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
184 	volatile tsec_t *regs = priv->regs;
185 
186 	/* Make sure the controller is stopped */
187 	tsec_halt(dev);
188 
189 	/* Init MACCFG2.  Defaults to GMII */
190 	regs->maccfg2 = MACCFG2_INIT_SETTINGS;
191 
192 	/* Init ECNTRL */
193 	regs->ecntrl = ECNTRL_INIT_SETTINGS;
194 
195 	/* Copy the station address into the address registers.
196 	 * Backwards, because little endian MACS are dumb */
197 	for (i = 0; i < MAC_ADDR_LEN; i++) {
198 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
199 	}
200 	tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) |
201 		  tmpbuf[3];
202 
203 	regs->macstnaddr1 = tempval;
204 
205 	tempval = *((uint *) (tmpbuf + 4));
206 
207 	regs->macstnaddr2 = tempval;
208 
209 	/* reset the indices to zero */
210 	rxIdx = 0;
211 	txIdx = 0;
212 
213 	/* Clear out (for the most part) the other registers */
214 	init_registers(regs);
215 
216 	/* Ready the device for tx/rx */
217 	startup_tsec(dev);
218 
219 	/* If there's no link, fail */
220 	return (priv->link ? 0 : -1);
221 }
222 
223 /* Writes the given phy's reg with value, using the specified MDIO regs */
224 static void tsec_local_mdio_write(volatile tsec_mdio_t *phyregs, uint addr,
225 		uint reg, uint value)
226 {
227 	int timeout = 1000000;
228 
229 	phyregs->miimadd = (addr << 8) | reg;
230 	phyregs->miimcon = value;
231 	asm("sync");
232 
233 	timeout = 1000000;
234 	while ((phyregs->miimind & MIIMIND_BUSY) && timeout--) ;
235 }
236 
237 
238 /* Provide the default behavior of writing the PHY of this ethernet device */
239 #define write_phy_reg(priv, regnum, value) \
240 	tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value)
241 
242 /* Reads register regnum on the device's PHY through the
243  * specified registers.	 It lowers and raises the read
244  * command, and waits for the data to become valid (miimind
245  * notvalid bit cleared), and the bus to cease activity (miimind
246  * busy bit cleared), and then returns the value
247  */
248 static uint tsec_local_mdio_read(volatile tsec_mdio_t *phyregs,
249 				uint phyid, uint regnum)
250 {
251 	uint value;
252 
253 	/* Put the address of the phy, and the register
254 	 * number into MIIMADD */
255 	phyregs->miimadd = (phyid << 8) | regnum;
256 
257 	/* Clear the command register, and wait */
258 	phyregs->miimcom = 0;
259 	asm("sync");
260 
261 	/* Initiate a read command, and wait */
262 	phyregs->miimcom = MIIM_READ_COMMAND;
263 	asm("sync");
264 
265 	/* Wait for the the indication that the read is done */
266 	while ((phyregs->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
267 
268 	/* Grab the value read from the PHY */
269 	value = phyregs->miimstat;
270 
271 	return value;
272 }
273 
274 /* #define to provide old read_phy_reg functionality without duplicating code */
275 #define read_phy_reg(priv,regnum) \
276 	tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum)
277 
278 #define TBIANA_SETTINGS ( \
279 		TBIANA_ASYMMETRIC_PAUSE \
280 		| TBIANA_SYMMETRIC_PAUSE \
281 		| TBIANA_FULL_DUPLEX \
282 		)
283 
284 /* Force the TBI PHY into 1000Mbps full duplex when in SGMII mode */
285 #define TBICR_SETTINGS ( \
286 		TBICR_PHY_RESET \
287 		| TBICR_FULL_DUPLEX \
288 		| TBICR_SPEED1_SET \
289 		)
290 
291 /* Configure the TBI for SGMII operation */
292 static void tsec_configure_serdes(struct tsec_private *priv)
293 {
294 	/* Access TBI PHY registers at given TSEC register offset as opposed
295 	 * to the register offset used for external PHY accesses */
296 	tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_ANA,
297 			TBIANA_SETTINGS);
298 	tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_TBICON,
299 			TBICON_CLK_SELECT);
300 	tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_CR,
301 			TBICR_SETTINGS);
302 }
303 
304 /* Discover which PHY is attached to the device, and configure it
305  * properly.  If the PHY is not recognized, then return 0
306  * (failure).  Otherwise, return 1
307  */
308 static int init_phy(struct eth_device *dev)
309 {
310 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
311 	struct phy_info *curphy;
312 	volatile tsec_t *regs = priv->regs;
313 
314 	/* Assign a Physical address to the TBI */
315 	regs->tbipa = CONFIG_SYS_TBIPA_VALUE;
316 	asm("sync");
317 
318 	/* Reset MII (due to new addresses) */
319 	priv->phyregs->miimcfg = MIIMCFG_RESET;
320 	asm("sync");
321 	priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
322 	asm("sync");
323 	while (priv->phyregs->miimind & MIIMIND_BUSY) ;
324 
325 	/* Get the cmd structure corresponding to the attached
326 	 * PHY */
327 	curphy = get_phy_info(dev);
328 
329 	if (curphy == NULL) {
330 		priv->phyinfo = NULL;
331 		printf("%s: No PHY found\n", dev->name);
332 
333 		return 0;
334 	}
335 
336 	if (regs->ecntrl & ECNTRL_SGMII_MODE)
337 		tsec_configure_serdes(priv);
338 
339 	priv->phyinfo = curphy;
340 
341 	phy_run_commands(priv, priv->phyinfo->config);
342 
343 	return 1;
344 }
345 
346 /*
347  * Returns which value to write to the control register.
348  * For 10/100, the value is slightly different
349  */
350 static uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
351 {
352 	if (priv->flags & TSEC_GIGABIT)
353 		return MIIM_CONTROL_INIT;
354 	else
355 		return MIIM_CR_INIT;
356 }
357 
358 /*
359  * Wait for auto-negotiation to complete, then determine link
360  */
361 static uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
362 {
363 	/*
364 	 * Wait if the link is up, and autonegotiation is in progress
365 	 * (ie - we're capable and it's not done)
366 	 */
367 	mii_reg = read_phy_reg(priv, MIIM_STATUS);
368 	if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
369 		int i = 0;
370 
371 		puts("Waiting for PHY auto negotiation to complete");
372 		while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
373 			/*
374 			 * Timeout reached ?
375 			 */
376 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
377 				puts(" TIMEOUT !\n");
378 				priv->link = 0;
379 				return 0;
380 			}
381 
382 			if (ctrlc()) {
383 				puts("user interrupt!\n");
384 				priv->link = 0;
385 				return -EINTR;
386 			}
387 
388 			if ((i++ % 1000) == 0) {
389 				putc('.');
390 			}
391 			udelay(1000);	/* 1 ms */
392 			mii_reg = read_phy_reg(priv, MIIM_STATUS);
393 		}
394 		puts(" done\n");
395 
396 		/* Link status bit is latched low, read it again */
397 		mii_reg = read_phy_reg(priv, MIIM_STATUS);
398 
399 		udelay(500000);	/* another 500 ms (results in faster booting) */
400 	}
401 
402 	priv->link = mii_reg & MIIM_STATUS_LINK ? 1 : 0;
403 
404 	return 0;
405 }
406 
407 /* Generic function which updates the speed and duplex.  If
408  * autonegotiation is enabled, it uses the AND of the link
409  * partner's advertised capabilities and our advertised
410  * capabilities.  If autonegotiation is disabled, we use the
411  * appropriate bits in the control register.
412  *
413  * Stolen from Linux's mii.c and phy_device.c
414  */
415 static uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
416 {
417 	/* We're using autonegotiation */
418 	if (mii_reg & PHY_BMSR_AUTN_ABLE) {
419 		uint lpa = 0;
420 		uint gblpa = 0;
421 
422 		/* Check for gigabit capability */
423 		if (mii_reg & PHY_BMSR_EXT) {
424 			/* We want a list of states supported by
425 			 * both PHYs in the link
426 			 */
427 			gblpa = read_phy_reg(priv, PHY_1000BTSR);
428 			gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
429 		}
430 
431 		/* Set the baseline so we only have to set them
432 		 * if they're different
433 		 */
434 		priv->speed = 10;
435 		priv->duplexity = 0;
436 
437 		/* Check the gigabit fields */
438 		if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
439 			priv->speed = 1000;
440 
441 			if (gblpa & PHY_1000BTSR_1000FD)
442 				priv->duplexity = 1;
443 
444 			/* We're done! */
445 			return 0;
446 		}
447 
448 		lpa = read_phy_reg(priv, PHY_ANAR);
449 		lpa &= read_phy_reg(priv, PHY_ANLPAR);
450 
451 		if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
452 			priv->speed = 100;
453 
454 			if (lpa & PHY_ANLPAR_TXFD)
455 				priv->duplexity = 1;
456 
457 		} else if (lpa & PHY_ANLPAR_10FD)
458 			priv->duplexity = 1;
459 	} else {
460 		uint bmcr = read_phy_reg(priv, PHY_BMCR);
461 
462 		priv->speed = 10;
463 		priv->duplexity = 0;
464 
465 		if (bmcr & PHY_BMCR_DPLX)
466 			priv->duplexity = 1;
467 
468 		if (bmcr & PHY_BMCR_1000_MBPS)
469 			priv->speed = 1000;
470 		else if (bmcr & PHY_BMCR_100_MBPS)
471 			priv->speed = 100;
472 	}
473 
474 	return 0;
475 }
476 
477 /*
478  * "Ethernet@Wirespeed" needs to be enabled to achieve link in certain
479  * circumstances.  eg a gigabit TSEC connected to a gigabit switch with
480  * a 4-wire ethernet cable.  Both ends advertise gigabit, but can't
481  * link.  "Ethernet@Wirespeed" reduces advertised speed until link
482  * can be achieved.
483  */
484 static uint mii_BCM54xx_wirespeed(uint mii_reg, struct tsec_private *priv)
485 {
486 	return (read_phy_reg(priv, mii_reg) & 0x8FFF) | 0x8010;
487 }
488 
489 /*
490  * Parse the BCM54xx status register for speed and duplex information.
491  * The linux sungem_phy has this information, but in a table format.
492  */
493 static uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
494 {
495 	/* If there is no link, speed and duplex don't matter */
496 	if (!priv->link)
497 		return 0;
498 
499 	switch ((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >>
500 		MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT) {
501 	case 1:
502 		priv->duplexity = 0;
503 		priv->speed = 10;
504 		break;
505 	case 2:
506 		priv->duplexity = 1;
507 		priv->speed = 10;
508 		break;
509 	case 3:
510 		priv->duplexity = 0;
511 		priv->speed = 100;
512 		break;
513 	case 5:
514 		priv->duplexity = 1;
515 		priv->speed = 100;
516 		break;
517 	case 6:
518 		priv->duplexity = 0;
519 		priv->speed = 1000;
520 		break;
521 	case 7:
522 		priv->duplexity = 1;
523 		priv->speed = 1000;
524 		break;
525 	default:
526 		printf("Auto-neg error, defaulting to 10BT/HD\n");
527 		priv->duplexity = 0;
528 		priv->speed = 10;
529 		break;
530 	}
531 
532 	return 0;
533 }
534 
535 /*
536  * Find out if PHY is in copper or serdes mode by looking at Expansion Reg
537  * 0x42 - "Operating Mode Status Register"
538  */
539 static int BCM8482_is_serdes(struct tsec_private *priv)
540 {
541 	u16 val;
542 	int serdes = 0;
543 
544 	write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42);
545 	val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
546 
547 	switch (val & 0x1f) {
548 	case 0x0d:	/* RGMII-to-100Base-FX */
549 	case 0x0e:	/* RGMII-to-SGMII */
550 	case 0x0f:	/* RGMII-to-SerDes */
551 	case 0x12:	/* SGMII-to-SerDes */
552 	case 0x13:	/* SGMII-to-100Base-FX */
553 	case 0x16:	/* SerDes-to-Serdes */
554 		serdes = 1;
555 		break;
556 	case 0x6:	/* RGMII-to-Copper */
557 	case 0x14:	/* SGMII-to-Copper */
558 	case 0x17:	/* SerDes-to-Copper */
559 		break;
560 	default:
561 		printf("ERROR, invalid PHY mode (0x%x\n)", val);
562 		break;
563 	}
564 
565 	return serdes;
566 }
567 
568 /*
569  * Determine SerDes link speed and duplex from Expansion reg 0x42 "Operating
570  * Mode Status Register"
571  */
572 uint mii_parse_BCM5482_serdes_sr(struct tsec_private *priv)
573 {
574 	u16 val;
575 	int i = 0;
576 
577 	/* Wait 1s for link - Clause 37 autonegotiation happens very fast */
578 	while (1) {
579 		write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL,
580 				MIIM_BCM54XX_EXP_SEL_ER | 0x42);
581 		val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA);
582 
583 		if (val & 0x8000)
584 			break;
585 
586 		if (i++ > 1000) {
587 			priv->link = 0;
588 			return 1;
589 		}
590 
591 		udelay(1000);	/* 1 ms */
592 	}
593 
594 	priv->link = 1;
595 	switch ((val >> 13) & 0x3) {
596 	case (0x00):
597 		priv->speed = 10;
598 		break;
599 	case (0x01):
600 		priv->speed = 100;
601 		break;
602 	case (0x02):
603 		priv->speed = 1000;
604 		break;
605 	}
606 
607 	priv->duplexity = (val & 0x1000) == 0x1000;
608 
609 	return 0;
610 }
611 
612 /*
613  * Figure out if BCM5482 is in serdes or copper mode and determine link
614  * configuration accordingly
615  */
616 static uint mii_parse_BCM5482_sr(uint mii_reg, struct tsec_private *priv)
617 {
618 	if (BCM8482_is_serdes(priv)) {
619 		mii_parse_BCM5482_serdes_sr(priv);
620 		priv->flags |= TSEC_FIBER;
621 	} else {
622 		/* Wait for auto-negotiation to complete or fail */
623 		mii_parse_sr(mii_reg, priv);
624 
625 		/* Parse BCM54xx copper aux status register */
626 		mii_reg = read_phy_reg(priv, MIIM_BCM54xx_AUXSTATUS);
627 		mii_parse_BCM54xx_sr(mii_reg, priv);
628 	}
629 
630 	return 0;
631 }
632 
633 /* Parse the 88E1011's status register for speed and duplex
634  * information
635  */
636 static uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
637 {
638 	uint speed;
639 
640 	mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
641 
642 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
643 		!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
644 		int i = 0;
645 
646 		puts("Waiting for PHY realtime link");
647 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
648 			/* Timeout reached ? */
649 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
650 				puts(" TIMEOUT !\n");
651 				priv->link = 0;
652 				break;
653 			}
654 
655 			if ((i++ % 1000) == 0) {
656 				putc('.');
657 			}
658 			udelay(1000);	/* 1 ms */
659 			mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
660 		}
661 		puts(" done\n");
662 		udelay(500000);	/* another 500 ms (results in faster booting) */
663 	} else {
664 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
665 			priv->link = 1;
666 		else
667 			priv->link = 0;
668 	}
669 
670 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
671 		priv->duplexity = 1;
672 	else
673 		priv->duplexity = 0;
674 
675 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
676 
677 	switch (speed) {
678 	case MIIM_88E1011_PHYSTAT_GBIT:
679 		priv->speed = 1000;
680 		break;
681 	case MIIM_88E1011_PHYSTAT_100:
682 		priv->speed = 100;
683 		break;
684 	default:
685 		priv->speed = 10;
686 	}
687 
688 	return 0;
689 }
690 
691 /* Parse the RTL8211B's status register for speed and duplex
692  * information
693  */
694 static uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
695 {
696 	uint speed;
697 
698 	mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
699 	if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
700 		int i = 0;
701 
702 		/* in case of timeout ->link is cleared */
703 		priv->link = 1;
704 		puts("Waiting for PHY realtime link");
705 		while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
706 			/* Timeout reached ? */
707 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
708 				puts(" TIMEOUT !\n");
709 				priv->link = 0;
710 				break;
711 			}
712 
713 			if ((i++ % 1000) == 0) {
714 				putc('.');
715 			}
716 			udelay(1000);	/* 1 ms */
717 			mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
718 		}
719 		puts(" done\n");
720 		udelay(500000);	/* another 500 ms (results in faster booting) */
721 	} else {
722 		if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
723 			priv->link = 1;
724 		else
725 			priv->link = 0;
726 	}
727 
728 	if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
729 		priv->duplexity = 1;
730 	else
731 		priv->duplexity = 0;
732 
733 	speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
734 
735 	switch (speed) {
736 	case MIIM_RTL8211B_PHYSTAT_GBIT:
737 		priv->speed = 1000;
738 		break;
739 	case MIIM_RTL8211B_PHYSTAT_100:
740 		priv->speed = 100;
741 		break;
742 	default:
743 		priv->speed = 10;
744 	}
745 
746 	return 0;
747 }
748 
749 /* Parse the cis8201's status register for speed and duplex
750  * information
751  */
752 static uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
753 {
754 	uint speed;
755 
756 	if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
757 		priv->duplexity = 1;
758 	else
759 		priv->duplexity = 0;
760 
761 	speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
762 	switch (speed) {
763 	case MIIM_CIS8201_AUXCONSTAT_GBIT:
764 		priv->speed = 1000;
765 		break;
766 	case MIIM_CIS8201_AUXCONSTAT_100:
767 		priv->speed = 100;
768 		break;
769 	default:
770 		priv->speed = 10;
771 		break;
772 	}
773 
774 	return 0;
775 }
776 
777 /* Parse the vsc8244's status register for speed and duplex
778  * information
779  */
780 static uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
781 {
782 	uint speed;
783 
784 	if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
785 		priv->duplexity = 1;
786 	else
787 		priv->duplexity = 0;
788 
789 	speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
790 	switch (speed) {
791 	case MIIM_VSC8244_AUXCONSTAT_GBIT:
792 		priv->speed = 1000;
793 		break;
794 	case MIIM_VSC8244_AUXCONSTAT_100:
795 		priv->speed = 100;
796 		break;
797 	default:
798 		priv->speed = 10;
799 		break;
800 	}
801 
802 	return 0;
803 }
804 
805 /* Parse the DM9161's status register for speed and duplex
806  * information
807  */
808 static uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
809 {
810 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
811 		priv->speed = 100;
812 	else
813 		priv->speed = 10;
814 
815 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
816 		priv->duplexity = 1;
817 	else
818 		priv->duplexity = 0;
819 
820 	return 0;
821 }
822 
823 /*
824  * Hack to write all 4 PHYs with the LED values
825  */
826 static uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
827 {
828 	uint phyid;
829 	volatile tsec_mdio_t *regbase = priv->phyregs;
830 	int timeout = 1000000;
831 
832 	for (phyid = 0; phyid < 4; phyid++) {
833 		regbase->miimadd = (phyid << 8) | mii_reg;
834 		regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
835 		asm("sync");
836 
837 		timeout = 1000000;
838 		while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
839 	}
840 
841 	return MIIM_CIS8204_SLEDCON_INIT;
842 }
843 
844 static uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
845 {
846 	if (priv->flags & TSEC_REDUCED)
847 		return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
848 	else
849 		return MIIM_CIS8204_EPHYCON_INIT;
850 }
851 
852 static uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
853 {
854 	uint mii_data = read_phy_reg(priv, mii_reg);
855 
856 	if (priv->flags & TSEC_REDUCED)
857 		mii_data = (mii_data & 0xfff0) | 0x000b;
858 	return mii_data;
859 }
860 
861 /* Initialized required registers to appropriate values, zeroing
862  * those we don't care about (unless zero is bad, in which case,
863  * choose a more appropriate value)
864  */
865 static void init_registers(volatile tsec_t * regs)
866 {
867 	/* Clear IEVENT */
868 	regs->ievent = IEVENT_INIT_CLEAR;
869 
870 	regs->imask = IMASK_INIT_CLEAR;
871 
872 	regs->hash.iaddr0 = 0;
873 	regs->hash.iaddr1 = 0;
874 	regs->hash.iaddr2 = 0;
875 	regs->hash.iaddr3 = 0;
876 	regs->hash.iaddr4 = 0;
877 	regs->hash.iaddr5 = 0;
878 	regs->hash.iaddr6 = 0;
879 	regs->hash.iaddr7 = 0;
880 
881 	regs->hash.gaddr0 = 0;
882 	regs->hash.gaddr1 = 0;
883 	regs->hash.gaddr2 = 0;
884 	regs->hash.gaddr3 = 0;
885 	regs->hash.gaddr4 = 0;
886 	regs->hash.gaddr5 = 0;
887 	regs->hash.gaddr6 = 0;
888 	regs->hash.gaddr7 = 0;
889 
890 	regs->rctrl = 0x00000000;
891 
892 	/* Init RMON mib registers */
893 	memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
894 
895 	regs->rmon.cam1 = 0xffffffff;
896 	regs->rmon.cam2 = 0xffffffff;
897 
898 	regs->mrblr = MRBLR_INIT_SETTINGS;
899 
900 	regs->minflr = MINFLR_INIT_SETTINGS;
901 
902 	regs->attr = ATTR_INIT_SETTINGS;
903 	regs->attreli = ATTRELI_INIT_SETTINGS;
904 
905 }
906 
907 /* Configure maccfg2 based on negotiated speed and duplex
908  * reported by PHY handling code
909  */
910 static void adjust_link(struct eth_device *dev)
911 {
912 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
913 	volatile tsec_t *regs = priv->regs;
914 
915 	if (priv->link) {
916 		if (priv->duplexity != 0)
917 			regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
918 		else
919 			regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
920 
921 		switch (priv->speed) {
922 		case 1000:
923 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
924 					 | MACCFG2_GMII);
925 			break;
926 		case 100:
927 		case 10:
928 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
929 					 | MACCFG2_MII);
930 
931 			/* Set R100 bit in all modes although
932 			 * it is only used in RGMII mode
933 			 */
934 			if (priv->speed == 100)
935 				regs->ecntrl |= ECNTRL_R100;
936 			else
937 				regs->ecntrl &= ~(ECNTRL_R100);
938 			break;
939 		default:
940 			printf("%s: Speed was bad\n", dev->name);
941 			break;
942 		}
943 
944 		printf("Speed: %d, %s duplex%s\n", priv->speed,
945 		       (priv->duplexity) ? "full" : "half",
946 		       (priv->flags & TSEC_FIBER) ? ", fiber mode" : "");
947 
948 	} else {
949 		printf("%s: No link.\n", dev->name);
950 	}
951 }
952 
953 /* Set up the buffers and their descriptors, and bring up the
954  * interface
955  */
956 static void startup_tsec(struct eth_device *dev)
957 {
958 	int i;
959 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
960 	volatile tsec_t *regs = priv->regs;
961 
962 	/* Point to the buffer descriptors */
963 	regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
964 	regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
965 
966 	/* Initialize the Rx Buffer descriptors */
967 	for (i = 0; i < PKTBUFSRX; i++) {
968 		rtx.rxbd[i].status = RXBD_EMPTY;
969 		rtx.rxbd[i].length = 0;
970 		rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
971 	}
972 	rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
973 
974 	/* Initialize the TX Buffer Descriptors */
975 	for (i = 0; i < TX_BUF_CNT; i++) {
976 		rtx.txbd[i].status = 0;
977 		rtx.txbd[i].length = 0;
978 		rtx.txbd[i].bufPtr = 0;
979 	}
980 	rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
981 
982 	/* Start up the PHY */
983 	if(priv->phyinfo)
984 		phy_run_commands(priv, priv->phyinfo->startup);
985 
986 	adjust_link(dev);
987 
988 	/* Enable Transmit and Receive */
989 	regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
990 
991 	/* Tell the DMA it is clear to go */
992 	regs->dmactrl |= DMACTRL_INIT_SETTINGS;
993 	regs->tstat = TSTAT_CLEAR_THALT;
994 	regs->rstat = RSTAT_CLEAR_RHALT;
995 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
996 }
997 
998 /* This returns the status bits of the device.	The return value
999  * is never checked, and this is what the 8260 driver did, so we
1000  * do the same.	 Presumably, this would be zero if there were no
1001  * errors
1002  */
1003 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
1004 {
1005 	int i;
1006 	int result = 0;
1007 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1008 	volatile tsec_t *regs = priv->regs;
1009 
1010 	/* Find an empty buffer descriptor */
1011 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1012 		if (i >= TOUT_LOOP) {
1013 			debug("%s: tsec: tx buffers full\n", dev->name);
1014 			return result;
1015 		}
1016 	}
1017 
1018 	rtx.txbd[txIdx].bufPtr = (uint) packet;
1019 	rtx.txbd[txIdx].length = length;
1020 	rtx.txbd[txIdx].status |=
1021 	    (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
1022 
1023 	/* Tell the DMA to go */
1024 	regs->tstat = TSTAT_CLEAR_THALT;
1025 
1026 	/* Wait for buffer to be transmitted */
1027 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
1028 		if (i >= TOUT_LOOP) {
1029 			debug("%s: tsec: tx error\n", dev->name);
1030 			return result;
1031 		}
1032 	}
1033 
1034 	txIdx = (txIdx + 1) % TX_BUF_CNT;
1035 	result = rtx.txbd[txIdx].status & TXBD_STATS;
1036 
1037 	return result;
1038 }
1039 
1040 static int tsec_recv(struct eth_device *dev)
1041 {
1042 	int length;
1043 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1044 	volatile tsec_t *regs = priv->regs;
1045 
1046 	while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
1047 
1048 		length = rtx.rxbd[rxIdx].length;
1049 
1050 		/* Send the packet up if there were no errors */
1051 		if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
1052 			NetReceive(NetRxPackets[rxIdx], length - 4);
1053 		} else {
1054 			printf("Got error %x\n",
1055 			       (rtx.rxbd[rxIdx].status & RXBD_STATS));
1056 		}
1057 
1058 		rtx.rxbd[rxIdx].length = 0;
1059 
1060 		/* Set the wrap bit if this is the last element in the list */
1061 		rtx.rxbd[rxIdx].status =
1062 		    RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
1063 
1064 		rxIdx = (rxIdx + 1) % PKTBUFSRX;
1065 	}
1066 
1067 	if (regs->ievent & IEVENT_BSY) {
1068 		regs->ievent = IEVENT_BSY;
1069 		regs->rstat = RSTAT_CLEAR_RHALT;
1070 	}
1071 
1072 	return -1;
1073 
1074 }
1075 
1076 /* Stop the interface */
1077 static void tsec_halt(struct eth_device *dev)
1078 {
1079 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1080 	volatile tsec_t *regs = priv->regs;
1081 
1082 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1083 	regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
1084 
1085 	while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
1086 
1087 	regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
1088 
1089 	/* Shut down the PHY, as needed */
1090 	if(priv->phyinfo)
1091 		phy_run_commands(priv, priv->phyinfo->shutdown);
1092 }
1093 
1094 static struct phy_info phy_info_M88E1149S = {
1095 	0x1410ca,
1096 	"Marvell 88E1149S",
1097 	4,
1098 	(struct phy_cmd[]) {     /* config */
1099 		/* Reset and configure the PHY */
1100 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1101 		{0x1d, 0x1f, NULL},
1102 		{0x1e, 0x200c, NULL},
1103 		{0x1d, 0x5, NULL},
1104 		{0x1e, 0x0, NULL},
1105 		{0x1e, 0x100, NULL},
1106 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1107 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1108 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1109 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1110 		{miim_end,}
1111 	},
1112 	(struct phy_cmd[]) {     /* startup */
1113 		/* Status is read once to clear old link state */
1114 		{MIIM_STATUS, miim_read, NULL},
1115 		/* Auto-negotiate */
1116 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1117 		/* Read the status */
1118 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1119 		{miim_end,}
1120 	},
1121 	(struct phy_cmd[]) {     /* shutdown */
1122 		{miim_end,}
1123 	},
1124 };
1125 
1126 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1127 static struct phy_info phy_info_BCM5461S = {
1128 	0x02060c1,	/* 5461 ID */
1129 	"Broadcom BCM5461S",
1130 	0, /* not clear to me what minor revisions we can shift away */
1131 	(struct phy_cmd[]) { /* config */
1132 		/* Reset and configure the PHY */
1133 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1134 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1135 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1136 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1137 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1138 		{miim_end,}
1139 	},
1140 	(struct phy_cmd[]) { /* startup */
1141 		/* Status is read once to clear old link state */
1142 		{MIIM_STATUS, miim_read, NULL},
1143 		/* Auto-negotiate */
1144 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1145 		/* Read the status */
1146 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1147 		{miim_end,}
1148 	},
1149 	(struct phy_cmd[]) { /* shutdown */
1150 		{miim_end,}
1151 	},
1152 };
1153 
1154 static struct phy_info phy_info_BCM5464S = {
1155 	0x02060b1,	/* 5464 ID */
1156 	"Broadcom BCM5464S",
1157 	0, /* not clear to me what minor revisions we can shift away */
1158 	(struct phy_cmd[]) { /* config */
1159 		/* Reset and configure the PHY */
1160 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1161 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1162 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1163 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1164 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1165 		{miim_end,}
1166 	},
1167 	(struct phy_cmd[]) { /* startup */
1168 		/* Status is read once to clear old link state */
1169 		{MIIM_STATUS, miim_read, NULL},
1170 		/* Auto-negotiate */
1171 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1172 		/* Read the status */
1173 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1174 		{miim_end,}
1175 	},
1176 	(struct phy_cmd[]) { /* shutdown */
1177 		{miim_end,}
1178 	},
1179 };
1180 
1181 static struct phy_info phy_info_BCM5482S =  {
1182 	0x0143bcb,
1183 	"Broadcom BCM5482S",
1184 	4,
1185 	(struct phy_cmd[]) { /* config */
1186 		/* Reset and configure the PHY */
1187 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1188 		/* Setup read from auxilary control shadow register 7 */
1189 		{MIIM_BCM54xx_AUXCNTL, MIIM_BCM54xx_AUXCNTL_ENCODE(7), NULL},
1190 		/* Read Misc Control register and or in Ethernet@Wirespeed */
1191 		{MIIM_BCM54xx_AUXCNTL, 0, &mii_BCM54xx_wirespeed},
1192 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1193 		/* Initial config/enable of secondary SerDes interface */
1194 		{MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x14, 0xf), NULL},
1195 		/* Write intial value to secondary SerDes Contol */
1196 		{MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_SSD | 0, NULL},
1197 		{MIIM_BCM54XX_EXP_DATA, MIIM_CONTROL_RESTART, NULL},
1198 		/* Enable copper/fiber auto-detect */
1199 		{MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x1e, 0x201)},
1200 		{miim_end,}
1201 	},
1202 	(struct phy_cmd[]) { /* startup */
1203 		/* Status is read once to clear old link state */
1204 		{MIIM_STATUS, miim_read, NULL},
1205 		/* Determine copper/fiber, auto-negotiate, and read the result */
1206 		{MIIM_STATUS, miim_read, &mii_parse_BCM5482_sr},
1207 		{miim_end,}
1208 	},
1209 	(struct phy_cmd[]) { /* shutdown */
1210 		{miim_end,}
1211 	},
1212 };
1213 
1214 static struct phy_info phy_info_M88E1011S = {
1215 	0x01410c6,
1216 	"Marvell 88E1011S",
1217 	4,
1218 	(struct phy_cmd[]) {	/* config */
1219 		/* Reset and configure the PHY */
1220 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1221 		{0x1d, 0x1f, NULL},
1222 		{0x1e, 0x200c, NULL},
1223 		{0x1d, 0x5, NULL},
1224 		{0x1e, 0x0, NULL},
1225 		{0x1e, 0x100, NULL},
1226 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1227 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1228 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1229 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1230 		{miim_end,}
1231 	},
1232 	(struct phy_cmd[]) {	/* startup */
1233 		/* Status is read once to clear old link state */
1234 		{MIIM_STATUS, miim_read, NULL},
1235 		/* Auto-negotiate */
1236 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1237 		/* Read the status */
1238 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1239 		{miim_end,}
1240 	},
1241 	(struct phy_cmd[]) {	/* shutdown */
1242 		{miim_end,}
1243 	},
1244 };
1245 
1246 static struct phy_info phy_info_M88E1111S = {
1247 	0x01410cc,
1248 	"Marvell 88E1111S",
1249 	4,
1250 	(struct phy_cmd[]) {	/* config */
1251 		/* Reset and configure the PHY */
1252 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1253 		{0x1b, 0x848f, &mii_m88e1111s_setmode},
1254 		{0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1255 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1256 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1257 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1258 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1259 		{miim_end,}
1260 	},
1261 	(struct phy_cmd[]) {	/* startup */
1262 		/* Status is read once to clear old link state */
1263 		{MIIM_STATUS, miim_read, NULL},
1264 		/* Auto-negotiate */
1265 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1266 		/* Read the status */
1267 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1268 		{miim_end,}
1269 	},
1270 	(struct phy_cmd[]) {	/* shutdown */
1271 		{miim_end,}
1272 	},
1273 };
1274 
1275 static struct phy_info phy_info_M88E1118 = {
1276 	0x01410e1,
1277 	"Marvell 88E1118",
1278 	4,
1279 	(struct phy_cmd[]) {	/* config */
1280 		/* Reset and configure the PHY */
1281 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1282 		{0x16, 0x0002, NULL}, /* Change Page Number */
1283 		{0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1284 		{0x16, 0x0003, NULL}, /* Change Page Number */
1285 		{0x10, 0x021e, NULL}, /* Adjust LED control */
1286 		{0x16, 0x0000, NULL}, /* Change Page Number */
1287 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1288 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1289 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1290 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1291 		{miim_end,}
1292 	},
1293 	(struct phy_cmd[]) {	/* startup */
1294 		{0x16, 0x0000, NULL}, /* Change Page Number */
1295 		/* Status is read once to clear old link state */
1296 		{MIIM_STATUS, miim_read, NULL},
1297 		/* Auto-negotiate */
1298 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1299 		/* Read the status */
1300 		{MIIM_88E1011_PHY_STATUS, miim_read,
1301 		 &mii_parse_88E1011_psr},
1302 		{miim_end,}
1303 	},
1304 	(struct phy_cmd[]) {	/* shutdown */
1305 		{miim_end,}
1306 	},
1307 };
1308 
1309 /*
1310  *  Since to access LED register we need do switch the page, we
1311  * do LED configuring in the miim_read-like function as follows
1312  */
1313 static uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv)
1314 {
1315 	uint pg;
1316 
1317 	/* Switch the page to access the led register */
1318 	pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE);
1319 	write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE);
1320 
1321 	/* Configure leds */
1322 	write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL,
1323 		      MIIM_88E1121_PHY_LED_DEF);
1324 
1325 	/* Restore the page pointer */
1326 	write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg);
1327 	return 0;
1328 }
1329 
1330 static struct phy_info phy_info_M88E1121R = {
1331 	0x01410cb,
1332 	"Marvell 88E1121R",
1333 	4,
1334 	(struct phy_cmd[]) {	/* config */
1335 		/* Reset and configure the PHY */
1336 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1337 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1338 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1339 		/* Configure leds */
1340 		{MIIM_88E1121_PHY_LED_CTRL, miim_read, &mii_88E1121_set_led},
1341 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1342 		/* Disable IRQs and de-assert interrupt */
1343 		{MIIM_88E1121_PHY_IRQ_EN, 0, NULL},
1344 		{MIIM_88E1121_PHY_IRQ_STATUS, miim_read, NULL},
1345 		{miim_end,}
1346 	},
1347 	(struct phy_cmd[]) {	/* startup */
1348 		/* Status is read once to clear old link state */
1349 		{MIIM_STATUS, miim_read, NULL},
1350 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1351 		{MIIM_STATUS, miim_read, &mii_parse_link},
1352 		{miim_end,}
1353 	},
1354 	(struct phy_cmd[]) {	/* shutdown */
1355 		{miim_end,}
1356 	},
1357 };
1358 
1359 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1360 {
1361 	uint mii_data = read_phy_reg(priv, mii_reg);
1362 
1363 	/* Setting MIIM_88E1145_PHY_EXT_CR */
1364 	if (priv->flags & TSEC_REDUCED)
1365 		return mii_data |
1366 		    MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1367 	else
1368 		return mii_data;
1369 }
1370 
1371 static struct phy_info phy_info_M88E1145 = {
1372 	0x01410cd,
1373 	"Marvell 88E1145",
1374 	4,
1375 	(struct phy_cmd[]) {	/* config */
1376 		/* Reset the PHY */
1377 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1378 
1379 		/* Errata E0, E1 */
1380 		{29, 0x001b, NULL},
1381 		{30, 0x418f, NULL},
1382 		{29, 0x0016, NULL},
1383 		{30, 0xa2da, NULL},
1384 
1385 		/* Configure the PHY */
1386 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1387 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1388 		{MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL},
1389 		{MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1390 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1391 		{MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1392 		{miim_end,}
1393 	},
1394 	(struct phy_cmd[]) {	/* startup */
1395 		/* Status is read once to clear old link state */
1396 		{MIIM_STATUS, miim_read, NULL},
1397 		/* Auto-negotiate */
1398 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1399 		{MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL},
1400 		/* Read the Status */
1401 		{MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr},
1402 		{miim_end,}
1403 	},
1404 	(struct phy_cmd[]) {	/* shutdown */
1405 		{miim_end,}
1406 	},
1407 };
1408 
1409 static struct phy_info phy_info_cis8204 = {
1410 	0x3f11,
1411 	"Cicada Cis8204",
1412 	6,
1413 	(struct phy_cmd[]) {	/* config */
1414 		/* Override PHY config settings */
1415 		{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1416 		/* Configure some basic stuff */
1417 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1418 		{MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1419 		 &mii_cis8204_fixled},
1420 		{MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1421 		 &mii_cis8204_setmode},
1422 		{miim_end,}
1423 	},
1424 	(struct phy_cmd[]) {	/* startup */
1425 		/* Read the Status (2x to make sure link is right) */
1426 		{MIIM_STATUS, miim_read, NULL},
1427 		/* Auto-negotiate */
1428 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1429 		/* Read the status */
1430 		{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1431 		{miim_end,}
1432 	},
1433 	(struct phy_cmd[]) {	/* shutdown */
1434 		{miim_end,}
1435 	},
1436 };
1437 
1438 /* Cicada 8201 */
1439 static struct phy_info phy_info_cis8201 = {
1440 	0xfc41,
1441 	"CIS8201",
1442 	4,
1443 	(struct phy_cmd[]) {	/* config */
1444 		/* Override PHY config settings */
1445 		{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1446 		/* Set up the interface mode */
1447 		{MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1448 		/* Configure some basic stuff */
1449 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1450 		{miim_end,}
1451 	},
1452 	(struct phy_cmd[]) {	/* startup */
1453 		/* Read the Status (2x to make sure link is right) */
1454 		{MIIM_STATUS, miim_read, NULL},
1455 		/* Auto-negotiate */
1456 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1457 		/* Read the status */
1458 		{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1459 		{miim_end,}
1460 	},
1461 	(struct phy_cmd[]) {	/* shutdown */
1462 		{miim_end,}
1463 	},
1464 };
1465 
1466 static struct phy_info phy_info_VSC8211 = {
1467 	0xfc4b,
1468 	"Vitesse VSC8211",
1469 	4,
1470 	(struct phy_cmd[]) { /* config */
1471 		/* Override PHY config settings */
1472 		{MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1473 		/* Set up the interface mode */
1474 		{MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL},
1475 		/* Configure some basic stuff */
1476 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1477 		{miim_end,}
1478 	},
1479 	(struct phy_cmd[]) { /* startup */
1480 		/* Read the Status (2x to make sure link is right) */
1481 		{MIIM_STATUS, miim_read, NULL},
1482 		/* Auto-negotiate */
1483 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1484 		/* Read the status */
1485 		{MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201},
1486 		{miim_end,}
1487 	},
1488 	(struct phy_cmd[]) { /* shutdown */
1489 		{miim_end,}
1490 	},
1491 };
1492 
1493 static struct phy_info phy_info_VSC8244 = {
1494 	0x3f1b,
1495 	"Vitesse VSC8244",
1496 	6,
1497 	(struct phy_cmd[]) {	/* config */
1498 		/* Override PHY config settings */
1499 		/* Configure some basic stuff */
1500 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1501 		{miim_end,}
1502 	},
1503 	(struct phy_cmd[]) {	/* startup */
1504 		/* Read the Status (2x to make sure link is right) */
1505 		{MIIM_STATUS, miim_read, NULL},
1506 		/* Auto-negotiate */
1507 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1508 		/* Read the status */
1509 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1510 		{miim_end,}
1511 	},
1512 	(struct phy_cmd[]) {	/* shutdown */
1513 		{miim_end,}
1514 	},
1515 };
1516 
1517 static struct phy_info phy_info_VSC8641 = {
1518 	0x7043,
1519 	"Vitesse VSC8641",
1520 	4,
1521 	(struct phy_cmd[]) {	/* config */
1522 		/* Configure some basic stuff */
1523 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1524 		{miim_end,}
1525 	},
1526 	(struct phy_cmd[]) {	/* startup */
1527 		/* Read the Status (2x to make sure link is right) */
1528 		{MIIM_STATUS, miim_read, NULL},
1529 		/* Auto-negotiate */
1530 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1531 		/* Read the status */
1532 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1533 		{miim_end,}
1534 	},
1535 	(struct phy_cmd[]) {	/* shutdown */
1536 		{miim_end,}
1537 	},
1538 };
1539 
1540 static struct phy_info phy_info_VSC8221 = {
1541 	0xfc55,
1542 	"Vitesse VSC8221",
1543 	4,
1544 	(struct phy_cmd[]) {	/* config */
1545 		/* Configure some basic stuff */
1546 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1547 		{miim_end,}
1548 	},
1549 	(struct phy_cmd[]) {	/* startup */
1550 		/* Read the Status (2x to make sure link is right) */
1551 		{MIIM_STATUS, miim_read, NULL},
1552 		/* Auto-negotiate */
1553 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1554 		/* Read the status */
1555 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1556 		{miim_end,}
1557 	},
1558 	(struct phy_cmd[]) {	/* shutdown */
1559 		{miim_end,}
1560 	},
1561 };
1562 
1563 static struct phy_info phy_info_VSC8601 = {
1564 	0x00007042,
1565 	"Vitesse VSC8601",
1566 	4,
1567 	(struct phy_cmd[]) {     /* config */
1568 		/* Override PHY config settings */
1569 		/* Configure some basic stuff */
1570 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1571 #ifdef CONFIG_SYS_VSC8601_SKEWFIX
1572 		{MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1573 #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX)
1574 		{MIIM_EXT_PAGE_ACCESS,1,NULL},
1575 #define VSC8101_SKEW \
1576 	(CONFIG_SYS_VSC8601_SKEW_TX << 14) | (CONFIG_SYS_VSC8601_SKEW_RX << 12)
1577 		{MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1578 		{MIIM_EXT_PAGE_ACCESS,0,NULL},
1579 #endif
1580 #endif
1581 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1582 		{MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init},
1583 		{miim_end,}
1584 	},
1585 	(struct phy_cmd[]) {     /* startup */
1586 		/* Read the Status (2x to make sure link is right) */
1587 		{MIIM_STATUS, miim_read, NULL},
1588 		/* Auto-negotiate */
1589 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1590 		/* Read the status */
1591 		{MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244},
1592 		{miim_end,}
1593 	},
1594 	(struct phy_cmd[]) {     /* shutdown */
1595 		{miim_end,}
1596 	},
1597 };
1598 
1599 static struct phy_info phy_info_dm9161 = {
1600 	0x0181b88,
1601 	"Davicom DM9161E",
1602 	4,
1603 	(struct phy_cmd[]) {	/* config */
1604 		{MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1605 		/* Do not bypass the scrambler/descrambler */
1606 		{MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1607 		/* Clear 10BTCSR to default */
1608 		{MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL},
1609 		/* Configure some basic stuff */
1610 		{MIIM_CONTROL, MIIM_CR_INIT, NULL},
1611 		/* Restart Auto Negotiation */
1612 		{MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1613 		{miim_end,}
1614 	},
1615 	(struct phy_cmd[]) {	/* startup */
1616 		/* Status is read once to clear old link state */
1617 		{MIIM_STATUS, miim_read, NULL},
1618 		/* Auto-negotiate */
1619 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1620 		/* Read the status */
1621 		{MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr},
1622 		{miim_end,}
1623 	},
1624 	(struct phy_cmd[]) {	/* shutdown */
1625 		{miim_end,}
1626 	},
1627 };
1628 
1629 /* a generic flavor.  */
1630 static struct phy_info phy_info_generic =  {
1631 	0,
1632 	"Unknown/Generic PHY",
1633 	32,
1634 	(struct phy_cmd[]) { /* config */
1635 		{PHY_BMCR, PHY_BMCR_RESET, NULL},
1636 		{PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1637 		{miim_end,}
1638 	},
1639 	(struct phy_cmd[]) { /* startup */
1640 		{PHY_BMSR, miim_read, NULL},
1641 		{PHY_BMSR, miim_read, &mii_parse_sr},
1642 		{PHY_BMSR, miim_read, &mii_parse_link},
1643 		{miim_end,}
1644 	},
1645 	(struct phy_cmd[]) { /* shutdown */
1646 		{miim_end,}
1647 	}
1648 };
1649 
1650 static uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1651 {
1652 	unsigned int speed;
1653 	if (priv->link) {
1654 		speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1655 
1656 		switch (speed) {
1657 		case MIIM_LXT971_SR2_10HDX:
1658 			priv->speed = 10;
1659 			priv->duplexity = 0;
1660 			break;
1661 		case MIIM_LXT971_SR2_10FDX:
1662 			priv->speed = 10;
1663 			priv->duplexity = 1;
1664 			break;
1665 		case MIIM_LXT971_SR2_100HDX:
1666 			priv->speed = 100;
1667 			priv->duplexity = 0;
1668 			break;
1669 		default:
1670 			priv->speed = 100;
1671 			priv->duplexity = 1;
1672 		}
1673 	} else {
1674 		priv->speed = 0;
1675 		priv->duplexity = 0;
1676 	}
1677 
1678 	return 0;
1679 }
1680 
1681 static struct phy_info phy_info_lxt971 = {
1682 	0x0001378e,
1683 	"LXT971",
1684 	4,
1685 	(struct phy_cmd[]) {	/* config */
1686 		{MIIM_CR, MIIM_CR_INIT, mii_cr_init},	/* autonegotiate */
1687 		{miim_end,}
1688 	},
1689 	(struct phy_cmd[]) {	/* startup - enable interrupts */
1690 		/* { 0x12, 0x00f2, NULL }, */
1691 		{MIIM_STATUS, miim_read, NULL},
1692 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1693 		{MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1694 		{miim_end,}
1695 	},
1696 	(struct phy_cmd[]) {	/* shutdown - disable interrupts */
1697 		{miim_end,}
1698 	},
1699 };
1700 
1701 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1702  * information
1703  */
1704 static uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1705 {
1706 	switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1707 
1708 	case MIIM_DP83865_SPD_1000:
1709 		priv->speed = 1000;
1710 		break;
1711 
1712 	case MIIM_DP83865_SPD_100:
1713 		priv->speed = 100;
1714 		break;
1715 
1716 	default:
1717 		priv->speed = 10;
1718 		break;
1719 
1720 	}
1721 
1722 	if (mii_reg & MIIM_DP83865_DPX_FULL)
1723 		priv->duplexity = 1;
1724 	else
1725 		priv->duplexity = 0;
1726 
1727 	return 0;
1728 }
1729 
1730 static struct phy_info phy_info_dp83865 = {
1731 	0x20005c7,
1732 	"NatSemi DP83865",
1733 	4,
1734 	(struct phy_cmd[]) {	/* config */
1735 		{MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1736 		{miim_end,}
1737 	},
1738 	(struct phy_cmd[]) {	/* startup */
1739 		/* Status is read once to clear old link state */
1740 		{MIIM_STATUS, miim_read, NULL},
1741 		/* Auto-negotiate */
1742 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1743 		/* Read the link and auto-neg status */
1744 		{MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr},
1745 		{miim_end,}
1746 	},
1747 	(struct phy_cmd[]) {	/* shutdown */
1748 		{miim_end,}
1749 	},
1750 };
1751 
1752 static struct phy_info phy_info_rtl8211b = {
1753 	0x001cc91,
1754 	"RealTek RTL8211B",
1755 	4,
1756 	(struct phy_cmd[]) {	/* config */
1757 		/* Reset and configure the PHY */
1758 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1759 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1760 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1761 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1762 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1763 		{miim_end,}
1764 	},
1765 	(struct phy_cmd[]) {	/* startup */
1766 		/* Status is read once to clear old link state */
1767 		{MIIM_STATUS, miim_read, NULL},
1768 		/* Auto-negotiate */
1769 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1770 		/* Read the status */
1771 		{MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1772 		{miim_end,}
1773 	},
1774 	(struct phy_cmd[]) {	/* shutdown */
1775 		{miim_end,}
1776 	},
1777 };
1778 
1779 static struct phy_info *phy_info[] = {
1780 	&phy_info_cis8204,
1781 	&phy_info_cis8201,
1782 	&phy_info_BCM5461S,
1783 	&phy_info_BCM5464S,
1784 	&phy_info_BCM5482S,
1785 	&phy_info_M88E1011S,
1786 	&phy_info_M88E1111S,
1787 	&phy_info_M88E1118,
1788 	&phy_info_M88E1121R,
1789 	&phy_info_M88E1145,
1790 	&phy_info_M88E1149S,
1791 	&phy_info_dm9161,
1792 	&phy_info_lxt971,
1793 	&phy_info_VSC8211,
1794 	&phy_info_VSC8244,
1795 	&phy_info_VSC8601,
1796 	&phy_info_VSC8641,
1797 	&phy_info_VSC8221,
1798 	&phy_info_dp83865,
1799 	&phy_info_rtl8211b,
1800 	&phy_info_generic,	/* must be last; has ID 0 and 32 bit mask */
1801 	NULL
1802 };
1803 
1804 /* Grab the identifier of the device's PHY, and search through
1805  * all of the known PHYs to see if one matches.	 If so, return
1806  * it, if not, return NULL
1807  */
1808 static struct phy_info *get_phy_info(struct eth_device *dev)
1809 {
1810 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1811 	uint phy_reg, phy_ID;
1812 	int i;
1813 	struct phy_info *theInfo = NULL;
1814 
1815 	/* Grab the bits from PHYIR1, and put them in the upper half */
1816 	phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1817 	phy_ID = (phy_reg & 0xffff) << 16;
1818 
1819 	/* Grab the bits from PHYIR2, and put them in the lower half */
1820 	phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1821 	phy_ID |= (phy_reg & 0xffff);
1822 
1823 	/* loop through all the known PHY types, and find one that */
1824 	/* matches the ID we read from the PHY. */
1825 	for (i = 0; phy_info[i]; i++) {
1826 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1827 			theInfo = phy_info[i];
1828 			break;
1829 		}
1830 	}
1831 
1832 	if (theInfo == &phy_info_generic) {
1833 		printf("%s: No support for PHY id %x; assuming generic\n",
1834 			dev->name, phy_ID);
1835 	} else {
1836 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1837 	}
1838 
1839 	return theInfo;
1840 }
1841 
1842 /* Execute the given series of commands on the given device's
1843  * PHY, running functions as necessary
1844  */
1845 static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1846 {
1847 	int i;
1848 	uint result;
1849 	volatile tsec_mdio_t *phyregs = priv->phyregs;
1850 
1851 	phyregs->miimcfg = MIIMCFG_RESET;
1852 
1853 	phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1854 
1855 	while (phyregs->miimind & MIIMIND_BUSY) ;
1856 
1857 	for (i = 0; cmd->mii_reg != miim_end; i++) {
1858 		if (cmd->mii_data == miim_read) {
1859 			result = read_phy_reg(priv, cmd->mii_reg);
1860 
1861 			if (cmd->funct != NULL)
1862 				(*(cmd->funct)) (result, priv);
1863 
1864 		} else {
1865 			if (cmd->funct != NULL)
1866 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
1867 			else
1868 				result = cmd->mii_data;
1869 
1870 			write_phy_reg(priv, cmd->mii_reg, result);
1871 
1872 		}
1873 		cmd++;
1874 	}
1875 }
1876 
1877 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1878 	&& !defined(BITBANGMII)
1879 
1880 /*
1881  * Read a MII PHY register.
1882  *
1883  * Returns:
1884  *  0 on success
1885  */
1886 static int tsec_miiphy_read(char *devname, unsigned char addr,
1887 			    unsigned char reg, unsigned short *value)
1888 {
1889 	unsigned short ret;
1890 	struct tsec_private *priv = privlist[0];
1891 
1892 	if (NULL == priv) {
1893 		printf("Can't read PHY at address %d\n", addr);
1894 		return -1;
1895 	}
1896 
1897 	ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg);
1898 	*value = ret;
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Write a MII PHY register.
1905  *
1906  * Returns:
1907  *  0 on success
1908  */
1909 static int tsec_miiphy_write(char *devname, unsigned char addr,
1910 			     unsigned char reg, unsigned short value)
1911 {
1912 	struct tsec_private *priv = privlist[0];
1913 
1914 	if (NULL == priv) {
1915 		printf("Can't write PHY at address %d\n", addr);
1916 		return -1;
1917 	}
1918 
1919 	tsec_local_mdio_write(priv->phyregs, addr, reg, value);
1920 
1921 	return 0;
1922 }
1923 
1924 #endif
1925 
1926 #ifdef CONFIG_MCAST_TFTP
1927 
1928 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1929 
1930 /* Set the appropriate hash bit for the given addr */
1931 
1932 /* The algorithm works like so:
1933  * 1) Take the Destination Address (ie the multicast address), and
1934  * do a CRC on it (little endian), and reverse the bits of the
1935  * result.
1936  * 2) Use the 8 most significant bits as a hash into a 256-entry
1937  * table.  The table is controlled through 8 32-bit registers:
1938  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1939  * gaddr7.  This means that the 3 most significant bits in the
1940  * hash index which gaddr register to use, and the 5 other bits
1941  * indicate which bit (assuming an IBM numbering scheme, which
1942  * for PowerPC (tm) is usually the case) in the tregister holds
1943  * the entry. */
1944 static int
1945 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1946 {
1947 	struct tsec_private *priv = privlist[1];
1948 	volatile tsec_t *regs = priv->regs;
1949 	volatile u32  *reg_array, value;
1950 	u8 result, whichbit, whichreg;
1951 
1952 	result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1953 	whichbit = result & 0x1f;	/* the 5 LSB = which bit to set */
1954 	whichreg = result >> 5;		/* the 3 MSB = which reg to set it in */
1955 	value = (1 << (31-whichbit));
1956 
1957 	reg_array = &(regs->hash.gaddr0);
1958 
1959 	if (set) {
1960 		reg_array[whichreg] |= value;
1961 	} else {
1962 		reg_array[whichreg] &= ~value;
1963 	}
1964 	return 0;
1965 }
1966 #endif /* Multicast TFTP ? */
1967