xref: /openbmc/u-boot/drivers/net/tsec.c (revision 9973e3c6)
1 /*
2  * Freescale Three Speed Ethernet Controller driver
3  *
4  * This software may be used and distributed according to the
5  * terms of the GNU Public License, Version 2, incorporated
6  * herein by reference.
7  *
8  * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9  * (C) Copyright 2003, Motorola, Inc.
10  * author Andy Fleming
11  *
12  */
13 
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 
20 #include "tsec.h"
21 #include "miiphy.h"
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 #define TX_BUF_CNT		2
26 
27 static uint rxIdx;		/* index of the current RX buffer */
28 static uint txIdx;		/* index of the current TX buffer */
29 
30 typedef volatile struct rtxbd {
31 	txbd8_t txbd[TX_BUF_CNT];
32 	rxbd8_t rxbd[PKTBUFSRX];
33 } RTXBD;
34 
35 struct tsec_info_struct {
36 	unsigned int phyaddr;
37 	u32 flags;
38 	unsigned int phyregidx;
39 };
40 
41 /* The tsec_info structure contains 3 values which the
42  * driver uses to determine how to operate a given ethernet
43  * device. The information needed is:
44  *  phyaddr - The address of the PHY which is attached to
45  *	the given device.
46  *
47  *  flags - This variable indicates whether the device
48  *	supports gigabit speed ethernet, and whether it should be
49  *	in reduced mode.
50  *
51  *  phyregidx - This variable specifies which ethernet device
52  *	controls the MII Management registers which are connected
53  *	to the PHY.  For now, only TSEC1 (index 0) has
54  *	access to the PHYs, so all of the entries have "0".
55  *
56  * The values specified in the table are taken from the board's
57  * config file in include/configs/.  When implementing a new
58  * board with ethernet capability, it is necessary to define:
59  *   TSECn_PHY_ADDR
60  *   TSECn_PHYIDX
61  *
62  * for n = 1,2,3, etc.  And for FEC:
63  *   FEC_PHY_ADDR
64  *   FEC_PHYIDX
65  */
66 static struct tsec_info_struct tsec_info[] = {
67 #ifdef CONFIG_TSEC1
68 	{TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
69 #else
70 	{0, 0, 0},
71 #endif
72 #ifdef CONFIG_TSEC2
73 	{TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
74 #else
75 	{0, 0, 0},
76 #endif
77 #ifdef CONFIG_MPC85XX_FEC
78 	{FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
79 #else
80 #ifdef CONFIG_TSEC3
81 	{TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
82 #else
83 	{0, 0, 0},
84 #endif
85 #ifdef CONFIG_TSEC4
86 	{TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
87 #else
88 	{0, 0, 0},
89 #endif	/* CONFIG_TSEC4 */
90 #endif	/* CONFIG_MPC85XX_FEC */
91 };
92 
93 #define MAXCONTROLLERS	(4)
94 
95 static int relocated = 0;
96 
97 static struct tsec_private *privlist[MAXCONTROLLERS];
98 
99 #ifdef __GNUC__
100 static RTXBD rtx __attribute__ ((aligned(8)));
101 #else
102 #error "rtx must be 64-bit aligned"
103 #endif
104 
105 static int tsec_send(struct eth_device *dev,
106 		     volatile void *packet, int length);
107 static int tsec_recv(struct eth_device *dev);
108 static int tsec_init(struct eth_device *dev, bd_t * bd);
109 static void tsec_halt(struct eth_device *dev);
110 static void init_registers(volatile tsec_t * regs);
111 static void startup_tsec(struct eth_device *dev);
112 static int init_phy(struct eth_device *dev);
113 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
114 uint read_phy_reg(struct tsec_private *priv, uint regnum);
115 struct phy_info *get_phy_info(struct eth_device *dev);
116 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
117 static void adjust_link(struct eth_device *dev);
118 static void relocate_cmds(void);
119 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
120 	&& !defined(BITBANGMII)
121 static int tsec_miiphy_write(char *devname, unsigned char addr,
122 			     unsigned char reg, unsigned short value);
123 static int tsec_miiphy_read(char *devname, unsigned char addr,
124 			    unsigned char reg, unsigned short *value);
125 #endif
126 #ifdef CONFIG_MCAST_TFTP
127 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
128 #endif
129 
130 /* Initialize device structure. Returns success if PHY
131  * initialization succeeded (i.e. if it recognizes the PHY)
132  */
133 int tsec_initialize(bd_t * bis, int index, char *devname)
134 {
135 	struct eth_device *dev;
136 	int i;
137 	struct tsec_private *priv;
138 
139 	dev = (struct eth_device *)malloc(sizeof *dev);
140 
141 	if (NULL == dev)
142 		return 0;
143 
144 	memset(dev, 0, sizeof *dev);
145 
146 	priv = (struct tsec_private *)malloc(sizeof(*priv));
147 
148 	if (NULL == priv)
149 		return 0;
150 
151 	privlist[index] = priv;
152 	priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
153 	priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
154 					    tsec_info[index].phyregidx *
155 					    TSEC_SIZE);
156 
157 	priv->phyaddr = tsec_info[index].phyaddr;
158 	priv->flags = tsec_info[index].flags;
159 
160 	sprintf(dev->name, devname);
161 	dev->iobase = 0;
162 	dev->priv = priv;
163 	dev->init = tsec_init;
164 	dev->halt = tsec_halt;
165 	dev->send = tsec_send;
166 	dev->recv = tsec_recv;
167 #ifdef CONFIG_MCAST_TFTP
168 	dev->mcast = tsec_mcast_addr;
169 #endif
170 
171 	/* Tell u-boot to get the addr from the env */
172 	for (i = 0; i < 6; i++)
173 		dev->enetaddr[i] = 0;
174 
175 	eth_register(dev);
176 
177 	/* Reset the MAC */
178 	priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
179 	priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
180 
181 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
182 	&& !defined(BITBANGMII)
183 	miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
184 #endif
185 
186 	/* Try to initialize PHY here, and return */
187 	return init_phy(dev);
188 }
189 
190 /* Initializes data structures and registers for the controller,
191  * and brings the interface up.	 Returns the link status, meaning
192  * that it returns success if the link is up, failure otherwise.
193  * This allows u-boot to find the first active controller.
194  */
195 int tsec_init(struct eth_device *dev, bd_t * bd)
196 {
197 	uint tempval;
198 	char tmpbuf[MAC_ADDR_LEN];
199 	int i;
200 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
201 	volatile tsec_t *regs = priv->regs;
202 
203 	/* Make sure the controller is stopped */
204 	tsec_halt(dev);
205 
206 	/* Init MACCFG2.  Defaults to GMII */
207 	regs->maccfg2 = MACCFG2_INIT_SETTINGS;
208 
209 	/* Init ECNTRL */
210 	regs->ecntrl = ECNTRL_INIT_SETTINGS;
211 
212 	/* Copy the station address into the address registers.
213 	 * Backwards, because little endian MACS are dumb */
214 	for (i = 0; i < MAC_ADDR_LEN; i++) {
215 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
216 	}
217 	regs->macstnaddr1 = *((uint *) (tmpbuf));
218 
219 	tempval = *((uint *) (tmpbuf + 4));
220 
221 	regs->macstnaddr2 = tempval;
222 
223 	/* reset the indices to zero */
224 	rxIdx = 0;
225 	txIdx = 0;
226 
227 	/* Clear out (for the most part) the other registers */
228 	init_registers(regs);
229 
230 	/* Ready the device for tx/rx */
231 	startup_tsec(dev);
232 
233 	/* If there's no link, fail */
234 	return (priv->link ? 0 : -1);
235 
236 }
237 
238 /* Write value to the device's PHY through the registers
239  * specified in priv, modifying the register specified in regnum.
240  * It will wait for the write to be done (or for a timeout to
241  * expire) before exiting
242  */
243 void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value)
244 {
245 	volatile tsec_t *regbase = priv->phyregs;
246 	int timeout = 1000000;
247 
248 	regbase->miimadd = (phyid << 8) | regnum;
249 	regbase->miimcon = value;
250 	asm("sync");
251 
252 	timeout = 1000000;
253 	while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
254 }
255 
256 /* #define to provide old write_phy_reg functionality without duplicating code */
257 #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value)
258 
259 /* Reads register regnum on the device's PHY through the
260  * registers specified in priv.	 It lowers and raises the read
261  * command, and waits for the data to become valid (miimind
262  * notvalid bit cleared), and the bus to cease activity (miimind
263  * busy bit cleared), and then returns the value
264  */
265 uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum)
266 {
267 	uint value;
268 	volatile tsec_t *regbase = priv->phyregs;
269 
270 	/* Put the address of the phy, and the register
271 	 * number into MIIMADD */
272 	regbase->miimadd = (phyid << 8) | regnum;
273 
274 	/* Clear the command register, and wait */
275 	regbase->miimcom = 0;
276 	asm("sync");
277 
278 	/* Initiate a read command, and wait */
279 	regbase->miimcom = MIIM_READ_COMMAND;
280 	asm("sync");
281 
282 	/* Wait for the the indication that the read is done */
283 	while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
284 
285 	/* Grab the value read from the PHY */
286 	value = regbase->miimstat;
287 
288 	return value;
289 }
290 
291 /* #define to provide old read_phy_reg functionality without duplicating code */
292 #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum)
293 
294 /* Discover which PHY is attached to the device, and configure it
295  * properly.  If the PHY is not recognized, then return 0
296  * (failure).  Otherwise, return 1
297  */
298 static int init_phy(struct eth_device *dev)
299 {
300 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
301 	struct phy_info *curphy;
302 	volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
303 
304 	/* Assign a Physical address to the TBI */
305 	regs->tbipa = CFG_TBIPA_VALUE;
306 	regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
307 	regs->tbipa = CFG_TBIPA_VALUE;
308 	asm("sync");
309 
310 	/* Reset MII (due to new addresses) */
311 	priv->phyregs->miimcfg = MIIMCFG_RESET;
312 	asm("sync");
313 	priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
314 	asm("sync");
315 	while (priv->phyregs->miimind & MIIMIND_BUSY) ;
316 
317 	if (0 == relocated)
318 		relocate_cmds();
319 
320 	/* Get the cmd structure corresponding to the attached
321 	 * PHY */
322 	curphy = get_phy_info(dev);
323 
324 	if (curphy == NULL) {
325 		priv->phyinfo = NULL;
326 		printf("%s: No PHY found\n", dev->name);
327 
328 		return 0;
329 	}
330 
331 	priv->phyinfo = curphy;
332 
333 	phy_run_commands(priv, priv->phyinfo->config);
334 
335 	return 1;
336 }
337 
338 /*
339  * Returns which value to write to the control register.
340  * For 10/100, the value is slightly different
341  */
342 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
343 {
344 	if (priv->flags & TSEC_GIGABIT)
345 		return MIIM_CONTROL_INIT;
346 	else
347 		return MIIM_CR_INIT;
348 }
349 
350 /* Parse the status register for link, and then do
351  * auto-negotiation
352  */
353 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
354 {
355 	/*
356 	 * Wait if the link is up, and autonegotiation is in progress
357 	 * (ie - we're capable and it's not done)
358 	 */
359 	mii_reg = read_phy_reg(priv, MIIM_STATUS);
360 	if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
361 	    && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
362 		int i = 0;
363 
364 		puts("Waiting for PHY auto negotiation to complete");
365 		while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
366 			/*
367 			 * Timeout reached ?
368 			 */
369 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
370 				puts(" TIMEOUT !\n");
371 				priv->link = 0;
372 				return 0;
373 			}
374 
375 			if ((i++ % 1000) == 0) {
376 				putc('.');
377 			}
378 			udelay(1000);	/* 1 ms */
379 			mii_reg = read_phy_reg(priv, MIIM_STATUS);
380 		}
381 		puts(" done\n");
382 		priv->link = 1;
383 		udelay(500000);	/* another 500 ms (results in faster booting) */
384 	} else {
385 		if (mii_reg & MIIM_STATUS_LINK)
386 			priv->link = 1;
387 		else
388 			priv->link = 0;
389 	}
390 
391 	return 0;
392 }
393 
394 /* Generic function which updates the speed and duplex.  If
395  * autonegotiation is enabled, it uses the AND of the link
396  * partner's advertised capabilities and our advertised
397  * capabilities.  If autonegotiation is disabled, we use the
398  * appropriate bits in the control register.
399  *
400  * Stolen from Linux's mii.c and phy_device.c
401  */
402 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
403 {
404 	/* We're using autonegotiation */
405 	if (mii_reg & PHY_BMSR_AUTN_ABLE) {
406 		uint lpa = 0;
407 		uint gblpa = 0;
408 
409 		/* Check for gigabit capability */
410 		if (mii_reg & PHY_BMSR_EXT) {
411 			/* We want a list of states supported by
412 			 * both PHYs in the link
413 			 */
414 			gblpa = read_phy_reg(priv, PHY_1000BTSR);
415 			gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
416 		}
417 
418 		/* Set the baseline so we only have to set them
419 		 * if they're different
420 		 */
421 		priv->speed = 10;
422 		priv->duplexity = 0;
423 
424 		/* Check the gigabit fields */
425 		if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
426 			priv->speed = 1000;
427 
428 			if (gblpa & PHY_1000BTSR_1000FD)
429 				priv->duplexity = 1;
430 
431 			/* We're done! */
432 			return 0;
433 		}
434 
435 		lpa = read_phy_reg(priv, PHY_ANAR);
436 		lpa &= read_phy_reg(priv, PHY_ANLPAR);
437 
438 		if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
439 			priv->speed = 100;
440 
441 			if (lpa & PHY_ANLPAR_TXFD)
442 				priv->duplexity = 1;
443 
444 		} else if (lpa & PHY_ANLPAR_10FD)
445 			priv->duplexity = 1;
446 	} else {
447 		uint bmcr = read_phy_reg(priv, PHY_BMCR);
448 
449 		priv->speed = 10;
450 		priv->duplexity = 0;
451 
452 		if (bmcr & PHY_BMCR_DPLX)
453 			priv->duplexity = 1;
454 
455 		if (bmcr & PHY_BMCR_1000_MBPS)
456 			priv->speed = 1000;
457 		else if (bmcr & PHY_BMCR_100_MBPS)
458 			priv->speed = 100;
459 	}
460 
461 	return 0;
462 }
463 
464 /*
465  * Parse the BCM54xx status register for speed and duplex information.
466  * The linux sungem_phy has this information, but in a table format.
467  */
468 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
469 {
470 
471 	switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
472 
473 		case 1:
474 			printf("Enet starting in 10BT/HD\n");
475 			priv->duplexity = 0;
476 			priv->speed = 10;
477 			break;
478 
479 		case 2:
480 			printf("Enet starting in 10BT/FD\n");
481 			priv->duplexity = 1;
482 			priv->speed = 10;
483 			break;
484 
485 		case 3:
486 			printf("Enet starting in 100BT/HD\n");
487 			priv->duplexity = 0;
488 			priv->speed = 100;
489 			break;
490 
491 		case 5:
492 			printf("Enet starting in 100BT/FD\n");
493 			priv->duplexity = 1;
494 			priv->speed = 100;
495 			break;
496 
497 		case 6:
498 			printf("Enet starting in 1000BT/HD\n");
499 			priv->duplexity = 0;
500 			priv->speed = 1000;
501 			break;
502 
503 		case 7:
504 			printf("Enet starting in 1000BT/FD\n");
505 			priv->duplexity = 1;
506 			priv->speed = 1000;
507 			break;
508 
509 		default:
510 			printf("Auto-neg error, defaulting to 10BT/HD\n");
511 			priv->duplexity = 0;
512 			priv->speed = 10;
513 			break;
514 	}
515 
516 	return 0;
517 
518 }
519 /* Parse the 88E1011's status register for speed and duplex
520  * information
521  */
522 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
523 {
524 	uint speed;
525 
526 	mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
527 
528 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
529 		!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
530 		int i = 0;
531 
532 		puts("Waiting for PHY realtime link");
533 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
534 			/* Timeout reached ? */
535 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
536 				puts(" TIMEOUT !\n");
537 				priv->link = 0;
538 				break;
539 			}
540 
541 			if ((i++ % 1000) == 0) {
542 				putc('.');
543 			}
544 			udelay(1000);	/* 1 ms */
545 			mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
546 		}
547 		puts(" done\n");
548 		udelay(500000);	/* another 500 ms (results in faster booting) */
549 	} else {
550 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
551 			priv->link = 1;
552 		else
553 			priv->link = 0;
554 	}
555 
556 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
557 		priv->duplexity = 1;
558 	else
559 		priv->duplexity = 0;
560 
561 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
562 
563 	switch (speed) {
564 	case MIIM_88E1011_PHYSTAT_GBIT:
565 		priv->speed = 1000;
566 		break;
567 	case MIIM_88E1011_PHYSTAT_100:
568 		priv->speed = 100;
569 		break;
570 	default:
571 		priv->speed = 10;
572 	}
573 
574 	return 0;
575 }
576 
577 /* Parse the RTL8211B's status register for speed and duplex
578  * information
579  */
580 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
581 {
582 	uint speed;
583 
584 	mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
585 	if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
586 		int i = 0;
587 
588 		/* in case of timeout ->link is cleared */
589 		priv->link = 1;
590 		puts("Waiting for PHY realtime link");
591 		while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
592 			/* Timeout reached ? */
593 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
594 				puts(" TIMEOUT !\n");
595 				priv->link = 0;
596 				break;
597 			}
598 
599 			if ((i++ % 1000) == 0) {
600 				putc('.');
601 			}
602 			udelay(1000);	/* 1 ms */
603 			mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
604 		}
605 		puts(" done\n");
606 		udelay(500000);	/* another 500 ms (results in faster booting) */
607 	} else {
608 		if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
609 			priv->link = 1;
610 		else
611 			priv->link = 0;
612 	}
613 
614 	if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
615 		priv->duplexity = 1;
616 	else
617 		priv->duplexity = 0;
618 
619 	speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
620 
621 	switch (speed) {
622 	case MIIM_RTL8211B_PHYSTAT_GBIT:
623 		priv->speed = 1000;
624 		break;
625 	case MIIM_RTL8211B_PHYSTAT_100:
626 		priv->speed = 100;
627 		break;
628 	default:
629 		priv->speed = 10;
630 	}
631 
632 	return 0;
633 }
634 
635 /* Parse the cis8201's status register for speed and duplex
636  * information
637  */
638 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
639 {
640 	uint speed;
641 
642 	if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
643 		priv->duplexity = 1;
644 	else
645 		priv->duplexity = 0;
646 
647 	speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
648 	switch (speed) {
649 	case MIIM_CIS8201_AUXCONSTAT_GBIT:
650 		priv->speed = 1000;
651 		break;
652 	case MIIM_CIS8201_AUXCONSTAT_100:
653 		priv->speed = 100;
654 		break;
655 	default:
656 		priv->speed = 10;
657 		break;
658 	}
659 
660 	return 0;
661 }
662 
663 /* Parse the vsc8244's status register for speed and duplex
664  * information
665  */
666 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
667 {
668 	uint speed;
669 
670 	if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
671 		priv->duplexity = 1;
672 	else
673 		priv->duplexity = 0;
674 
675 	speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
676 	switch (speed) {
677 	case MIIM_VSC8244_AUXCONSTAT_GBIT:
678 		priv->speed = 1000;
679 		break;
680 	case MIIM_VSC8244_AUXCONSTAT_100:
681 		priv->speed = 100;
682 		break;
683 	default:
684 		priv->speed = 10;
685 		break;
686 	}
687 
688 	return 0;
689 }
690 
691 /* Parse the DM9161's status register for speed and duplex
692  * information
693  */
694 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
695 {
696 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
697 		priv->speed = 100;
698 	else
699 		priv->speed = 10;
700 
701 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
702 		priv->duplexity = 1;
703 	else
704 		priv->duplexity = 0;
705 
706 	return 0;
707 }
708 
709 /*
710  * Hack to write all 4 PHYs with the LED values
711  */
712 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
713 {
714 	uint phyid;
715 	volatile tsec_t *regbase = priv->phyregs;
716 	int timeout = 1000000;
717 
718 	for (phyid = 0; phyid < 4; phyid++) {
719 		regbase->miimadd = (phyid << 8) | mii_reg;
720 		regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
721 		asm("sync");
722 
723 		timeout = 1000000;
724 		while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
725 	}
726 
727 	return MIIM_CIS8204_SLEDCON_INIT;
728 }
729 
730 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
731 {
732 	if (priv->flags & TSEC_REDUCED)
733 		return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
734 	else
735 		return MIIM_CIS8204_EPHYCON_INIT;
736 }
737 
738 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
739 {
740 	uint mii_data = read_phy_reg(priv, mii_reg);
741 
742 	if (priv->flags & TSEC_REDUCED)
743 		mii_data = (mii_data & 0xfff0) | 0x000b;
744 	return mii_data;
745 }
746 
747 /* Initialized required registers to appropriate values, zeroing
748  * those we don't care about (unless zero is bad, in which case,
749  * choose a more appropriate value)
750  */
751 static void init_registers(volatile tsec_t * regs)
752 {
753 	/* Clear IEVENT */
754 	regs->ievent = IEVENT_INIT_CLEAR;
755 
756 	regs->imask = IMASK_INIT_CLEAR;
757 
758 	regs->hash.iaddr0 = 0;
759 	regs->hash.iaddr1 = 0;
760 	regs->hash.iaddr2 = 0;
761 	regs->hash.iaddr3 = 0;
762 	regs->hash.iaddr4 = 0;
763 	regs->hash.iaddr5 = 0;
764 	regs->hash.iaddr6 = 0;
765 	regs->hash.iaddr7 = 0;
766 
767 	regs->hash.gaddr0 = 0;
768 	regs->hash.gaddr1 = 0;
769 	regs->hash.gaddr2 = 0;
770 	regs->hash.gaddr3 = 0;
771 	regs->hash.gaddr4 = 0;
772 	regs->hash.gaddr5 = 0;
773 	regs->hash.gaddr6 = 0;
774 	regs->hash.gaddr7 = 0;
775 
776 	regs->rctrl = 0x00000000;
777 
778 	/* Init RMON mib registers */
779 	memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
780 
781 	regs->rmon.cam1 = 0xffffffff;
782 	regs->rmon.cam2 = 0xffffffff;
783 
784 	regs->mrblr = MRBLR_INIT_SETTINGS;
785 
786 	regs->minflr = MINFLR_INIT_SETTINGS;
787 
788 	regs->attr = ATTR_INIT_SETTINGS;
789 	regs->attreli = ATTRELI_INIT_SETTINGS;
790 
791 }
792 
793 /* Configure maccfg2 based on negotiated speed and duplex
794  * reported by PHY handling code
795  */
796 static void adjust_link(struct eth_device *dev)
797 {
798 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
799 	volatile tsec_t *regs = priv->regs;
800 
801 	if (priv->link) {
802 		if (priv->duplexity != 0)
803 			regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
804 		else
805 			regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
806 
807 		switch (priv->speed) {
808 		case 1000:
809 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
810 					 | MACCFG2_GMII);
811 			break;
812 		case 100:
813 		case 10:
814 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
815 					 | MACCFG2_MII);
816 
817 			/* Set R100 bit in all modes although
818 			 * it is only used in RGMII mode
819 			 */
820 			if (priv->speed == 100)
821 				regs->ecntrl |= ECNTRL_R100;
822 			else
823 				regs->ecntrl &= ~(ECNTRL_R100);
824 			break;
825 		default:
826 			printf("%s: Speed was bad\n", dev->name);
827 			break;
828 		}
829 
830 		printf("Speed: %d, %s duplex\n", priv->speed,
831 		       (priv->duplexity) ? "full" : "half");
832 
833 	} else {
834 		printf("%s: No link.\n", dev->name);
835 	}
836 }
837 
838 /* Set up the buffers and their descriptors, and bring up the
839  * interface
840  */
841 static void startup_tsec(struct eth_device *dev)
842 {
843 	int i;
844 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
845 	volatile tsec_t *regs = priv->regs;
846 
847 	/* Point to the buffer descriptors */
848 	regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
849 	regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
850 
851 	/* Initialize the Rx Buffer descriptors */
852 	for (i = 0; i < PKTBUFSRX; i++) {
853 		rtx.rxbd[i].status = RXBD_EMPTY;
854 		rtx.rxbd[i].length = 0;
855 		rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
856 	}
857 	rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
858 
859 	/* Initialize the TX Buffer Descriptors */
860 	for (i = 0; i < TX_BUF_CNT; i++) {
861 		rtx.txbd[i].status = 0;
862 		rtx.txbd[i].length = 0;
863 		rtx.txbd[i].bufPtr = 0;
864 	}
865 	rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
866 
867 	/* Start up the PHY */
868 	if(priv->phyinfo)
869 		phy_run_commands(priv, priv->phyinfo->startup);
870 
871 	adjust_link(dev);
872 
873 	/* Enable Transmit and Receive */
874 	regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
875 
876 	/* Tell the DMA it is clear to go */
877 	regs->dmactrl |= DMACTRL_INIT_SETTINGS;
878 	regs->tstat = TSTAT_CLEAR_THALT;
879 	regs->rstat = RSTAT_CLEAR_RHALT;
880 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
881 }
882 
883 /* This returns the status bits of the device.	The return value
884  * is never checked, and this is what the 8260 driver did, so we
885  * do the same.	 Presumably, this would be zero if there were no
886  * errors
887  */
888 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
889 {
890 	int i;
891 	int result = 0;
892 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
893 	volatile tsec_t *regs = priv->regs;
894 
895 	/* Find an empty buffer descriptor */
896 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
897 		if (i >= TOUT_LOOP) {
898 			debug("%s: tsec: tx buffers full\n", dev->name);
899 			return result;
900 		}
901 	}
902 
903 	rtx.txbd[txIdx].bufPtr = (uint) packet;
904 	rtx.txbd[txIdx].length = length;
905 	rtx.txbd[txIdx].status |=
906 	    (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
907 
908 	/* Tell the DMA to go */
909 	regs->tstat = TSTAT_CLEAR_THALT;
910 
911 	/* Wait for buffer to be transmitted */
912 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
913 		if (i >= TOUT_LOOP) {
914 			debug("%s: tsec: tx error\n", dev->name);
915 			return result;
916 		}
917 	}
918 
919 	txIdx = (txIdx + 1) % TX_BUF_CNT;
920 	result = rtx.txbd[txIdx].status & TXBD_STATS;
921 
922 	return result;
923 }
924 
925 static int tsec_recv(struct eth_device *dev)
926 {
927 	int length;
928 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
929 	volatile tsec_t *regs = priv->regs;
930 
931 	while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
932 
933 		length = rtx.rxbd[rxIdx].length;
934 
935 		/* Send the packet up if there were no errors */
936 		if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
937 			NetReceive(NetRxPackets[rxIdx], length - 4);
938 		} else {
939 			printf("Got error %x\n",
940 			       (rtx.rxbd[rxIdx].status & RXBD_STATS));
941 		}
942 
943 		rtx.rxbd[rxIdx].length = 0;
944 
945 		/* Set the wrap bit if this is the last element in the list */
946 		rtx.rxbd[rxIdx].status =
947 		    RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
948 
949 		rxIdx = (rxIdx + 1) % PKTBUFSRX;
950 	}
951 
952 	if (regs->ievent & IEVENT_BSY) {
953 		regs->ievent = IEVENT_BSY;
954 		regs->rstat = RSTAT_CLEAR_RHALT;
955 	}
956 
957 	return -1;
958 
959 }
960 
961 /* Stop the interface */
962 static void tsec_halt(struct eth_device *dev)
963 {
964 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
965 	volatile tsec_t *regs = priv->regs;
966 
967 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
968 	regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
969 
970 	while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
971 
972 	regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
973 
974 	/* Shut down the PHY, as needed */
975 	if(priv->phyinfo)
976 		phy_run_commands(priv, priv->phyinfo->shutdown);
977 }
978 
979 struct phy_info phy_info_M88E1149S = {
980 	0x1410ca,
981 	"Marvell 88E1149S",
982 	4,
983 	(struct phy_cmd[]){     /* config */
984 		/* Reset and configure the PHY */
985 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
986 		{0x1d, 0x1f, NULL},
987 		{0x1e, 0x200c, NULL},
988 		{0x1d, 0x5, NULL},
989 		{0x1e, 0x0, NULL},
990 		{0x1e, 0x100, NULL},
991 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
992 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
993 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
994 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
995 		{miim_end,}
996 	},
997 	(struct phy_cmd[]){     /* startup */
998 		/* Status is read once to clear old link state */
999 		{MIIM_STATUS, miim_read, NULL},
1000 		/* Auto-negotiate */
1001 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1002 		/* Read the status */
1003 		{MIIM_88E1011_PHY_STATUS, miim_read,
1004 		 &mii_parse_88E1011_psr},
1005 		{miim_end,}
1006 	},
1007 	(struct phy_cmd[]){     /* shutdown */
1008 		{miim_end,}
1009 	},
1010 };
1011 
1012 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1013 struct phy_info phy_info_BCM5461S = {
1014 	0x02060c1,	/* 5461 ID */
1015 	"Broadcom BCM5461S",
1016 	0, /* not clear to me what minor revisions we can shift away */
1017 	(struct phy_cmd[]) { /* config */
1018 		/* Reset and configure the PHY */
1019 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1020 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1021 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1022 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1023 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1024 		{miim_end,}
1025 	},
1026 	(struct phy_cmd[]) { /* startup */
1027 		/* Status is read once to clear old link state */
1028 		{MIIM_STATUS, miim_read, NULL},
1029 		/* Auto-negotiate */
1030 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1031 		/* Read the status */
1032 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1033 		{miim_end,}
1034 	},
1035 	(struct phy_cmd[]) { /* shutdown */
1036 		{miim_end,}
1037 	},
1038 };
1039 
1040 struct phy_info phy_info_BCM5464S = {
1041 	0x02060b1,	/* 5464 ID */
1042 	"Broadcom BCM5464S",
1043 	0, /* not clear to me what minor revisions we can shift away */
1044 	(struct phy_cmd[]) { /* config */
1045 		/* Reset and configure the PHY */
1046 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1047 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1048 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1049 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1050 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1051 		{miim_end,}
1052 	},
1053 	(struct phy_cmd[]) { /* startup */
1054 		/* Status is read once to clear old link state */
1055 		{MIIM_STATUS, miim_read, NULL},
1056 		/* Auto-negotiate */
1057 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1058 		/* Read the status */
1059 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1060 		{miim_end,}
1061 	},
1062 	(struct phy_cmd[]) { /* shutdown */
1063 		{miim_end,}
1064 	},
1065 };
1066 
1067 struct phy_info phy_info_M88E1011S = {
1068 	0x01410c6,
1069 	"Marvell 88E1011S",
1070 	4,
1071 	(struct phy_cmd[]){	/* config */
1072 			   /* Reset and configure the PHY */
1073 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1074 			   {0x1d, 0x1f, NULL},
1075 			   {0x1e, 0x200c, NULL},
1076 			   {0x1d, 0x5, NULL},
1077 			   {0x1e, 0x0, NULL},
1078 			   {0x1e, 0x100, NULL},
1079 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1080 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1081 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1082 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1083 			   {miim_end,}
1084 			   },
1085 	(struct phy_cmd[]){	/* startup */
1086 			   /* Status is read once to clear old link state */
1087 			   {MIIM_STATUS, miim_read, NULL},
1088 			   /* Auto-negotiate */
1089 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1090 			   /* Read the status */
1091 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1092 			    &mii_parse_88E1011_psr},
1093 			   {miim_end,}
1094 			   },
1095 	(struct phy_cmd[]){	/* shutdown */
1096 			   {miim_end,}
1097 			   },
1098 };
1099 
1100 struct phy_info phy_info_M88E1111S = {
1101 	0x01410cc,
1102 	"Marvell 88E1111S",
1103 	4,
1104 	(struct phy_cmd[]){	/* config */
1105 			   /* Reset and configure the PHY */
1106 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1107 			   {0x1b, 0x848f, &mii_m88e1111s_setmode},
1108 			   {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1109 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1110 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1111 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1112 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1113 			   {miim_end,}
1114 			   },
1115 	(struct phy_cmd[]){	/* startup */
1116 			   /* Status is read once to clear old link state */
1117 			   {MIIM_STATUS, miim_read, NULL},
1118 			   /* Auto-negotiate */
1119 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1120 			   /* Read the status */
1121 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1122 			    &mii_parse_88E1011_psr},
1123 			   {miim_end,}
1124 			   },
1125 	(struct phy_cmd[]){	/* shutdown */
1126 			   {miim_end,}
1127 			   },
1128 };
1129 
1130 struct phy_info phy_info_M88E1118 = {
1131 	0x01410e1,
1132 	"Marvell 88E1118",
1133 	4,
1134 	(struct phy_cmd[]){	/* config */
1135 		/* Reset and configure the PHY */
1136 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1137 		{0x16, 0x0002, NULL}, /* Change Page Number */
1138 		{0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */
1139 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1140 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1141 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1142 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1143 		{miim_end,}
1144 		},
1145 	(struct phy_cmd[]){	/* startup */
1146 		{0x16, 0x0000, NULL}, /* Change Page Number */
1147 		/* Status is read once to clear old link state */
1148 		{MIIM_STATUS, miim_read, NULL},
1149 		/* Auto-negotiate */
1150 		/* Read the status */
1151 		{MIIM_88E1011_PHY_STATUS, miim_read,
1152 		 &mii_parse_88E1011_psr},
1153 		{miim_end,}
1154 		},
1155 	(struct phy_cmd[]){	/* shutdown */
1156 		{miim_end,}
1157 		},
1158 };
1159 
1160 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1161 {
1162 	uint mii_data = read_phy_reg(priv, mii_reg);
1163 
1164 	/* Setting MIIM_88E1145_PHY_EXT_CR */
1165 	if (priv->flags & TSEC_REDUCED)
1166 		return mii_data |
1167 		    MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1168 	else
1169 		return mii_data;
1170 }
1171 
1172 static struct phy_info phy_info_M88E1145 = {
1173 	0x01410cd,
1174 	"Marvell 88E1145",
1175 	4,
1176 	(struct phy_cmd[]){	/* config */
1177 			   /* Reset the PHY */
1178 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1179 
1180 			   /* Errata E0, E1 */
1181 			   {29, 0x001b, NULL},
1182 			   {30, 0x418f, NULL},
1183 			   {29, 0x0016, NULL},
1184 			   {30, 0xa2da, NULL},
1185 
1186 			   /* Configure the PHY */
1187 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1188 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1189 			   {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1190 			    NULL},
1191 			   {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1192 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1193 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1194 			   {miim_end,}
1195 			   },
1196 	(struct phy_cmd[]){	/* startup */
1197 			   /* Status is read once to clear old link state */
1198 			   {MIIM_STATUS, miim_read, NULL},
1199 			   /* Auto-negotiate */
1200 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1201 			   {MIIM_88E1111_PHY_LED_CONTROL,
1202 			    MIIM_88E1111_PHY_LED_DIRECT, NULL},
1203 			   /* Read the Status */
1204 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1205 			    &mii_parse_88E1011_psr},
1206 			   {miim_end,}
1207 			   },
1208 	(struct phy_cmd[]){	/* shutdown */
1209 			   {miim_end,}
1210 			   },
1211 };
1212 
1213 struct phy_info phy_info_cis8204 = {
1214 	0x3f11,
1215 	"Cicada Cis8204",
1216 	6,
1217 	(struct phy_cmd[]){	/* config */
1218 			   /* Override PHY config settings */
1219 			   {MIIM_CIS8201_AUX_CONSTAT,
1220 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1221 			   /* Configure some basic stuff */
1222 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1223 			   {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1224 			    &mii_cis8204_fixled},
1225 			   {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1226 			    &mii_cis8204_setmode},
1227 			   {miim_end,}
1228 			   },
1229 	(struct phy_cmd[]){	/* startup */
1230 			   /* Read the Status (2x to make sure link is right) */
1231 			   {MIIM_STATUS, miim_read, NULL},
1232 			   /* Auto-negotiate */
1233 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1234 			   /* Read the status */
1235 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1236 			    &mii_parse_cis8201},
1237 			   {miim_end,}
1238 			   },
1239 	(struct phy_cmd[]){	/* shutdown */
1240 			   {miim_end,}
1241 			   },
1242 };
1243 
1244 /* Cicada 8201 */
1245 struct phy_info phy_info_cis8201 = {
1246 	0xfc41,
1247 	"CIS8201",
1248 	4,
1249 	(struct phy_cmd[]){	/* config */
1250 			   /* Override PHY config settings */
1251 			   {MIIM_CIS8201_AUX_CONSTAT,
1252 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1253 			   /* Set up the interface mode */
1254 			   {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1255 			    NULL},
1256 			   /* Configure some basic stuff */
1257 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1258 			   {miim_end,}
1259 			   },
1260 	(struct phy_cmd[]){	/* startup */
1261 			   /* Read the Status (2x to make sure link is right) */
1262 			   {MIIM_STATUS, miim_read, NULL},
1263 			   /* Auto-negotiate */
1264 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1265 			   /* Read the status */
1266 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1267 			    &mii_parse_cis8201},
1268 			   {miim_end,}
1269 			   },
1270 	(struct phy_cmd[]){	/* shutdown */
1271 			   {miim_end,}
1272 			   },
1273 };
1274 struct phy_info phy_info_VSC8244 = {
1275 	0x3f1b,
1276 	"Vitesse VSC8244",
1277 	6,
1278 	(struct phy_cmd[]){	/* config */
1279 			   /* Override PHY config settings */
1280 			   /* Configure some basic stuff */
1281 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1282 			   {miim_end,}
1283 			   },
1284 	(struct phy_cmd[]){	/* startup */
1285 			   /* Read the Status (2x to make sure link is right) */
1286 			   {MIIM_STATUS, miim_read, NULL},
1287 			   /* Auto-negotiate */
1288 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1289 			   /* Read the status */
1290 			   {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1291 			    &mii_parse_vsc8244},
1292 			   {miim_end,}
1293 			   },
1294 	(struct phy_cmd[]){	/* shutdown */
1295 			   {miim_end,}
1296 			   },
1297 };
1298 
1299 struct phy_info phy_info_VSC8601 = {
1300 		0x00007042,
1301 		"Vitesse VSC8601",
1302 		4,
1303 		(struct phy_cmd[]){     /* config */
1304 				/* Override PHY config settings */
1305 				/* Configure some basic stuff */
1306 				{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1307 #ifdef CFG_VSC8601_SKEWFIX
1308 				{MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1309 #if defined(CFG_VSC8601_SKEW_TX) && defined(CFG_VSC8601_SKEW_RX)
1310 				{MIIM_EXT_PAGE_ACCESS,1,NULL},
1311 #define VSC8101_SKEW	(CFG_VSC8601_SKEW_TX<<14)|(CFG_VSC8601_SKEW_RX<<12)
1312 				{MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1313 				{MIIM_EXT_PAGE_ACCESS,0,NULL},
1314 #endif
1315 #endif
1316 				{miim_end,}
1317 				 },
1318 		(struct phy_cmd[]){     /* startup */
1319 				/* Read the Status (2x to make sure link is right) */
1320 				{MIIM_STATUS, miim_read, NULL},
1321 				/* Auto-negotiate */
1322 				{MIIM_STATUS, miim_read, &mii_parse_sr},
1323 				/* Read the status */
1324 				{MIIM_VSC8244_AUX_CONSTAT, miim_read,
1325 						&mii_parse_vsc8244},
1326 				{miim_end,}
1327 				},
1328 		(struct phy_cmd[]){     /* shutdown */
1329 				{miim_end,}
1330 				},
1331 };
1332 
1333 
1334 struct phy_info phy_info_dm9161 = {
1335 	0x0181b88,
1336 	"Davicom DM9161E",
1337 	4,
1338 	(struct phy_cmd[]){	/* config */
1339 			   {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1340 			   /* Do not bypass the scrambler/descrambler */
1341 			   {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1342 			   /* Clear 10BTCSR to default */
1343 			   {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1344 			    NULL},
1345 			   /* Configure some basic stuff */
1346 			   {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1347 			   /* Restart Auto Negotiation */
1348 			   {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1349 			   {miim_end,}
1350 			   },
1351 	(struct phy_cmd[]){	/* startup */
1352 			   /* Status is read once to clear old link state */
1353 			   {MIIM_STATUS, miim_read, NULL},
1354 			   /* Auto-negotiate */
1355 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1356 			   /* Read the status */
1357 			   {MIIM_DM9161_SCSR, miim_read,
1358 			    &mii_parse_dm9161_scsr},
1359 			   {miim_end,}
1360 			   },
1361 	(struct phy_cmd[]){	/* shutdown */
1362 			   {miim_end,}
1363 			   },
1364 };
1365 /* a generic flavor.  */
1366 struct phy_info phy_info_generic =  {
1367 	0,
1368 	"Unknown/Generic PHY",
1369 	32,
1370 	(struct phy_cmd[]) { /* config */
1371 		{PHY_BMCR, PHY_BMCR_RESET, NULL},
1372 		{PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1373 		{miim_end,}
1374 	},
1375 	(struct phy_cmd[]) { /* startup */
1376 		{PHY_BMSR, miim_read, NULL},
1377 		{PHY_BMSR, miim_read, &mii_parse_sr},
1378 		{PHY_BMSR, miim_read, &mii_parse_link},
1379 		{miim_end,}
1380 	},
1381 	(struct phy_cmd[]) { /* shutdown */
1382 		{miim_end,}
1383 	}
1384 };
1385 
1386 
1387 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1388 {
1389 	unsigned int speed;
1390 	if (priv->link) {
1391 		speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1392 
1393 		switch (speed) {
1394 		case MIIM_LXT971_SR2_10HDX:
1395 			priv->speed = 10;
1396 			priv->duplexity = 0;
1397 			break;
1398 		case MIIM_LXT971_SR2_10FDX:
1399 			priv->speed = 10;
1400 			priv->duplexity = 1;
1401 			break;
1402 		case MIIM_LXT971_SR2_100HDX:
1403 			priv->speed = 100;
1404 			priv->duplexity = 0;
1405 			break;
1406 		default:
1407 			priv->speed = 100;
1408 			priv->duplexity = 1;
1409 		}
1410 	} else {
1411 		priv->speed = 0;
1412 		priv->duplexity = 0;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static struct phy_info phy_info_lxt971 = {
1419 	0x0001378e,
1420 	"LXT971",
1421 	4,
1422 	(struct phy_cmd[]){	/* config */
1423 			   {MIIM_CR, MIIM_CR_INIT, mii_cr_init},	/* autonegotiate */
1424 			   {miim_end,}
1425 			   },
1426 	(struct phy_cmd[]){	/* startup - enable interrupts */
1427 			   /* { 0x12, 0x00f2, NULL }, */
1428 			   {MIIM_STATUS, miim_read, NULL},
1429 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1430 			   {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1431 			   {miim_end,}
1432 			   },
1433 	(struct phy_cmd[]){	/* shutdown - disable interrupts */
1434 			   {miim_end,}
1435 			   },
1436 };
1437 
1438 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1439  * information
1440  */
1441 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1442 {
1443 	switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1444 
1445 	case MIIM_DP83865_SPD_1000:
1446 		priv->speed = 1000;
1447 		break;
1448 
1449 	case MIIM_DP83865_SPD_100:
1450 		priv->speed = 100;
1451 		break;
1452 
1453 	default:
1454 		priv->speed = 10;
1455 		break;
1456 
1457 	}
1458 
1459 	if (mii_reg & MIIM_DP83865_DPX_FULL)
1460 		priv->duplexity = 1;
1461 	else
1462 		priv->duplexity = 0;
1463 
1464 	return 0;
1465 }
1466 
1467 struct phy_info phy_info_dp83865 = {
1468 	0x20005c7,
1469 	"NatSemi DP83865",
1470 	4,
1471 	(struct phy_cmd[]){	/* config */
1472 			   {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1473 			   {miim_end,}
1474 			   },
1475 	(struct phy_cmd[]){	/* startup */
1476 			   /* Status is read once to clear old link state */
1477 			   {MIIM_STATUS, miim_read, NULL},
1478 			   /* Auto-negotiate */
1479 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1480 			   /* Read the link and auto-neg status */
1481 			   {MIIM_DP83865_LANR, miim_read,
1482 			    &mii_parse_dp83865_lanr},
1483 			   {miim_end,}
1484 			   },
1485 	(struct phy_cmd[]){	/* shutdown */
1486 			   {miim_end,}
1487 			   },
1488 };
1489 
1490 struct phy_info phy_info_rtl8211b = {
1491 	0x001cc91,
1492 	"RealTek RTL8211B",
1493 	4,
1494 	(struct phy_cmd[]){	/* config */
1495 		/* Reset and configure the PHY */
1496 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1497 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1498 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1499 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1500 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1501 		{miim_end,}
1502 	},
1503 	(struct phy_cmd[]){	/* startup */
1504 		/* Status is read once to clear old link state */
1505 		{MIIM_STATUS, miim_read, NULL},
1506 		/* Auto-negotiate */
1507 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1508 		/* Read the status */
1509 		{MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1510 		{miim_end,}
1511 	},
1512 	(struct phy_cmd[]){	/* shutdown */
1513 		{miim_end,}
1514 	},
1515 };
1516 
1517 struct phy_info *phy_info[] = {
1518 	&phy_info_cis8204,
1519 	&phy_info_cis8201,
1520 	&phy_info_BCM5461S,
1521 	&phy_info_BCM5464S,
1522 	&phy_info_M88E1011S,
1523 	&phy_info_M88E1111S,
1524 	&phy_info_M88E1118,
1525 	&phy_info_M88E1145,
1526 	&phy_info_M88E1149S,
1527 	&phy_info_dm9161,
1528 	&phy_info_lxt971,
1529 	&phy_info_VSC8244,
1530 	&phy_info_VSC8601,
1531 	&phy_info_dp83865,
1532 	&phy_info_rtl8211b,
1533 	&phy_info_generic,
1534 	NULL
1535 };
1536 
1537 /* Grab the identifier of the device's PHY, and search through
1538  * all of the known PHYs to see if one matches.	 If so, return
1539  * it, if not, return NULL
1540  */
1541 struct phy_info *get_phy_info(struct eth_device *dev)
1542 {
1543 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1544 	uint phy_reg, phy_ID;
1545 	int i;
1546 	struct phy_info *theInfo = NULL;
1547 
1548 	/* Grab the bits from PHYIR1, and put them in the upper half */
1549 	phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1550 	phy_ID = (phy_reg & 0xffff) << 16;
1551 
1552 	/* Grab the bits from PHYIR2, and put them in the lower half */
1553 	phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1554 	phy_ID |= (phy_reg & 0xffff);
1555 
1556 	/* loop through all the known PHY types, and find one that */
1557 	/* matches the ID we read from the PHY. */
1558 	for (i = 0; phy_info[i]; i++) {
1559 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1560 			theInfo = phy_info[i];
1561 			break;
1562 		}
1563 	}
1564 
1565 	if (theInfo == NULL) {
1566 		printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1567 		return NULL;
1568 	} else {
1569 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1570 	}
1571 
1572 	return theInfo;
1573 }
1574 
1575 /* Execute the given series of commands on the given device's
1576  * PHY, running functions as necessary
1577  */
1578 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1579 {
1580 	int i;
1581 	uint result;
1582 	volatile tsec_t *phyregs = priv->phyregs;
1583 
1584 	phyregs->miimcfg = MIIMCFG_RESET;
1585 
1586 	phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1587 
1588 	while (phyregs->miimind & MIIMIND_BUSY) ;
1589 
1590 	for (i = 0; cmd->mii_reg != miim_end; i++) {
1591 		if (cmd->mii_data == miim_read) {
1592 			result = read_phy_reg(priv, cmd->mii_reg);
1593 
1594 			if (cmd->funct != NULL)
1595 				(*(cmd->funct)) (result, priv);
1596 
1597 		} else {
1598 			if (cmd->funct != NULL)
1599 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
1600 			else
1601 				result = cmd->mii_data;
1602 
1603 			write_phy_reg(priv, cmd->mii_reg, result);
1604 
1605 		}
1606 		cmd++;
1607 	}
1608 }
1609 
1610 /* Relocate the function pointers in the phy cmd lists */
1611 static void relocate_cmds(void)
1612 {
1613 	struct phy_cmd **cmdlistptr;
1614 	struct phy_cmd *cmd;
1615 	int i, j, k;
1616 
1617 	for (i = 0; phy_info[i]; i++) {
1618 		/* First thing's first: relocate the pointers to the
1619 		 * PHY command structures (the structs were done) */
1620 		phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1621 						  + gd->reloc_off);
1622 		phy_info[i]->name += gd->reloc_off;
1623 		phy_info[i]->config =
1624 		    (struct phy_cmd *)((uint) phy_info[i]->config
1625 				       + gd->reloc_off);
1626 		phy_info[i]->startup =
1627 		    (struct phy_cmd *)((uint) phy_info[i]->startup
1628 				       + gd->reloc_off);
1629 		phy_info[i]->shutdown =
1630 		    (struct phy_cmd *)((uint) phy_info[i]->shutdown
1631 				       + gd->reloc_off);
1632 
1633 		cmdlistptr = &phy_info[i]->config;
1634 		j = 0;
1635 		for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1636 			k = 0;
1637 			for (cmd = *cmdlistptr;
1638 			     cmd->mii_reg != miim_end;
1639 			     cmd++) {
1640 				/* Only relocate non-NULL pointers */
1641 				if (cmd->funct)
1642 					cmd->funct += gd->reloc_off;
1643 
1644 				k++;
1645 			}
1646 			j++;
1647 		}
1648 	}
1649 
1650 	relocated = 1;
1651 }
1652 
1653 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1654 	&& !defined(BITBANGMII)
1655 
1656 /*
1657  * Read a MII PHY register.
1658  *
1659  * Returns:
1660  *  0 on success
1661  */
1662 static int tsec_miiphy_read(char *devname, unsigned char addr,
1663 			    unsigned char reg, unsigned short *value)
1664 {
1665 	unsigned short ret;
1666 	struct tsec_private *priv = privlist[0];
1667 
1668 	if (NULL == priv) {
1669 		printf("Can't read PHY at address %d\n", addr);
1670 		return -1;
1671 	}
1672 
1673 	ret = (unsigned short)read_any_phy_reg(priv, addr, reg);
1674 	*value = ret;
1675 
1676 	return 0;
1677 }
1678 
1679 /*
1680  * Write a MII PHY register.
1681  *
1682  * Returns:
1683  *  0 on success
1684  */
1685 static int tsec_miiphy_write(char *devname, unsigned char addr,
1686 			     unsigned char reg, unsigned short value)
1687 {
1688 	struct tsec_private *priv = privlist[0];
1689 
1690 	if (NULL == priv) {
1691 		printf("Can't write PHY at address %d\n", addr);
1692 		return -1;
1693 	}
1694 
1695 	write_any_phy_reg(priv, addr, reg, value);
1696 
1697 	return 0;
1698 }
1699 
1700 #endif
1701 
1702 #ifdef CONFIG_MCAST_TFTP
1703 
1704 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1705 
1706 /* Set the appropriate hash bit for the given addr */
1707 
1708 /* The algorithm works like so:
1709  * 1) Take the Destination Address (ie the multicast address), and
1710  * do a CRC on it (little endian), and reverse the bits of the
1711  * result.
1712  * 2) Use the 8 most significant bits as a hash into a 256-entry
1713  * table.  The table is controlled through 8 32-bit registers:
1714  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1715  * gaddr7.  This means that the 3 most significant bits in the
1716  * hash index which gaddr register to use, and the 5 other bits
1717  * indicate which bit (assuming an IBM numbering scheme, which
1718  * for PowerPC (tm) is usually the case) in the tregister holds
1719  * the entry. */
1720 static int
1721 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1722 {
1723  struct tsec_private *priv = privlist[1];
1724  volatile tsec_t *regs = priv->regs;
1725  volatile u32  *reg_array, value;
1726  u8 result, whichbit, whichreg;
1727 
1728 	result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1729 	whichbit = result & 0x1f;	/* the 5 LSB = which bit to set */
1730 	whichreg = result >> 5;		/* the 3 MSB = which reg to set it in */
1731 	value = (1 << (31-whichbit));
1732 
1733 	reg_array = &(regs->hash.gaddr0);
1734 
1735 	if (set) {
1736 		reg_array[whichreg] |= value;
1737 	} else {
1738 		reg_array[whichreg] &= ~value;
1739 	}
1740 	return 0;
1741 }
1742 #endif /* Multicast TFTP ? */
1743