1 /* 2 * Freescale Three Speed Ethernet Controller driver 3 * 4 * This software may be used and distributed according to the 5 * terms of the GNU Public License, Version 2, incorporated 6 * herein by reference. 7 * 8 * Copyright 2004-2011, 2013 Freescale Semiconductor, Inc. 9 * (C) Copyright 2003, Motorola, Inc. 10 * author Andy Fleming 11 * 12 */ 13 14 #include <config.h> 15 #include <common.h> 16 #include <malloc.h> 17 #include <net.h> 18 #include <command.h> 19 #include <tsec.h> 20 #include <fsl_mdio.h> 21 #include <asm/errno.h> 22 #include <asm/processor.h> 23 #include <asm/io.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #define TX_BUF_CNT 2 28 29 static uint rx_idx; /* index of the current RX buffer */ 30 static uint tx_idx; /* index of the current TX buffer */ 31 32 #ifdef __GNUC__ 33 static struct txbd8 __iomem txbd[TX_BUF_CNT] __aligned(8); 34 static struct rxbd8 __iomem rxbd[PKTBUFSRX] __aligned(8); 35 36 #else 37 #error "rtx must be 64-bit aligned" 38 #endif 39 40 static int tsec_send(struct eth_device *dev, void *packet, int length); 41 42 /* Default initializations for TSEC controllers. */ 43 44 static struct tsec_info_struct tsec_info[] = { 45 #ifdef CONFIG_TSEC1 46 STD_TSEC_INFO(1), /* TSEC1 */ 47 #endif 48 #ifdef CONFIG_TSEC2 49 STD_TSEC_INFO(2), /* TSEC2 */ 50 #endif 51 #ifdef CONFIG_MPC85XX_FEC 52 { 53 .regs = TSEC_GET_REGS(2, 0x2000), 54 .devname = CONFIG_MPC85XX_FEC_NAME, 55 .phyaddr = FEC_PHY_ADDR, 56 .flags = FEC_FLAGS, 57 .mii_devname = DEFAULT_MII_NAME 58 }, /* FEC */ 59 #endif 60 #ifdef CONFIG_TSEC3 61 STD_TSEC_INFO(3), /* TSEC3 */ 62 #endif 63 #ifdef CONFIG_TSEC4 64 STD_TSEC_INFO(4), /* TSEC4 */ 65 #endif 66 }; 67 68 #define TBIANA_SETTINGS ( \ 69 TBIANA_ASYMMETRIC_PAUSE \ 70 | TBIANA_SYMMETRIC_PAUSE \ 71 | TBIANA_FULL_DUPLEX \ 72 ) 73 74 /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */ 75 #ifndef CONFIG_TSEC_TBICR_SETTINGS 76 #define CONFIG_TSEC_TBICR_SETTINGS ( \ 77 TBICR_PHY_RESET \ 78 | TBICR_ANEG_ENABLE \ 79 | TBICR_FULL_DUPLEX \ 80 | TBICR_SPEED1_SET \ 81 ) 82 #endif /* CONFIG_TSEC_TBICR_SETTINGS */ 83 84 /* Configure the TBI for SGMII operation */ 85 static void tsec_configure_serdes(struct tsec_private *priv) 86 { 87 /* Access TBI PHY registers at given TSEC register offset as opposed 88 * to the register offset used for external PHY accesses */ 89 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 90 0, TBI_ANA, TBIANA_SETTINGS); 91 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 92 0, TBI_TBICON, TBICON_CLK_SELECT); 93 tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 94 0, TBI_CR, CONFIG_TSEC_TBICR_SETTINGS); 95 } 96 97 #ifdef CONFIG_MCAST_TFTP 98 99 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */ 100 101 /* Set the appropriate hash bit for the given addr */ 102 103 /* The algorithm works like so: 104 * 1) Take the Destination Address (ie the multicast address), and 105 * do a CRC on it (little endian), and reverse the bits of the 106 * result. 107 * 2) Use the 8 most significant bits as a hash into a 256-entry 108 * table. The table is controlled through 8 32-bit registers: 109 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is entry 110 * 255. This means that the 3 most significant bits in the 111 * hash index which gaddr register to use, and the 5 other bits 112 * indicate which bit (assuming an IBM numbering scheme, which 113 * for PowerPC (tm) is usually the case) in the register holds 114 * the entry. */ 115 static int 116 tsec_mcast_addr(struct eth_device *dev, const u8 *mcast_mac, u8 set) 117 { 118 struct tsec_private *priv = (struct tsec_private *)dev->priv; 119 struct tsec __iomem *regs = priv->regs; 120 u32 result, value; 121 u8 whichbit, whichreg; 122 123 result = ether_crc(MAC_ADDR_LEN, mcast_mac); 124 whichbit = (result >> 24) & 0x1f; /* the 5 LSB = which bit to set */ 125 whichreg = result >> 29; /* the 3 MSB = which reg to set it in */ 126 127 value = 1 << (31-whichbit); 128 129 if (set) 130 setbits_be32(®s->hash.gaddr0 + whichreg, value); 131 else 132 clrbits_be32(®s->hash.gaddr0 + whichreg, value); 133 134 return 0; 135 } 136 #endif /* Multicast TFTP ? */ 137 138 /* Initialized required registers to appropriate values, zeroing 139 * those we don't care about (unless zero is bad, in which case, 140 * choose a more appropriate value) 141 */ 142 static void init_registers(struct tsec __iomem *regs) 143 { 144 /* Clear IEVENT */ 145 out_be32(®s->ievent, IEVENT_INIT_CLEAR); 146 147 out_be32(®s->imask, IMASK_INIT_CLEAR); 148 149 out_be32(®s->hash.iaddr0, 0); 150 out_be32(®s->hash.iaddr1, 0); 151 out_be32(®s->hash.iaddr2, 0); 152 out_be32(®s->hash.iaddr3, 0); 153 out_be32(®s->hash.iaddr4, 0); 154 out_be32(®s->hash.iaddr5, 0); 155 out_be32(®s->hash.iaddr6, 0); 156 out_be32(®s->hash.iaddr7, 0); 157 158 out_be32(®s->hash.gaddr0, 0); 159 out_be32(®s->hash.gaddr1, 0); 160 out_be32(®s->hash.gaddr2, 0); 161 out_be32(®s->hash.gaddr3, 0); 162 out_be32(®s->hash.gaddr4, 0); 163 out_be32(®s->hash.gaddr5, 0); 164 out_be32(®s->hash.gaddr6, 0); 165 out_be32(®s->hash.gaddr7, 0); 166 167 out_be32(®s->rctrl, 0x00000000); 168 169 /* Init RMON mib registers */ 170 memset((void *)®s->rmon, 0, sizeof(regs->rmon)); 171 172 out_be32(®s->rmon.cam1, 0xffffffff); 173 out_be32(®s->rmon.cam2, 0xffffffff); 174 175 out_be32(®s->mrblr, MRBLR_INIT_SETTINGS); 176 177 out_be32(®s->minflr, MINFLR_INIT_SETTINGS); 178 179 out_be32(®s->attr, ATTR_INIT_SETTINGS); 180 out_be32(®s->attreli, ATTRELI_INIT_SETTINGS); 181 182 } 183 184 /* Configure maccfg2 based on negotiated speed and duplex 185 * reported by PHY handling code 186 */ 187 static void adjust_link(struct tsec_private *priv, struct phy_device *phydev) 188 { 189 struct tsec __iomem *regs = priv->regs; 190 u32 ecntrl, maccfg2; 191 192 if (!phydev->link) { 193 printf("%s: No link.\n", phydev->dev->name); 194 return; 195 } 196 197 /* clear all bits relative with interface mode */ 198 ecntrl = in_be32(®s->ecntrl); 199 ecntrl &= ~ECNTRL_R100; 200 201 maccfg2 = in_be32(®s->maccfg2); 202 maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX); 203 204 if (phydev->duplex) 205 maccfg2 |= MACCFG2_FULL_DUPLEX; 206 207 switch (phydev->speed) { 208 case 1000: 209 maccfg2 |= MACCFG2_GMII; 210 break; 211 case 100: 212 case 10: 213 maccfg2 |= MACCFG2_MII; 214 215 /* Set R100 bit in all modes although 216 * it is only used in RGMII mode 217 */ 218 if (phydev->speed == 100) 219 ecntrl |= ECNTRL_R100; 220 break; 221 default: 222 printf("%s: Speed was bad\n", phydev->dev->name); 223 break; 224 } 225 226 out_be32(®s->ecntrl, ecntrl); 227 out_be32(®s->maccfg2, maccfg2); 228 229 printf("Speed: %d, %s duplex%s\n", phydev->speed, 230 (phydev->duplex) ? "full" : "half", 231 (phydev->port == PORT_FIBRE) ? ", fiber mode" : ""); 232 } 233 234 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 235 /* 236 * When MACCFG1[Rx_EN] is enabled during system boot as part 237 * of the eTSEC port initialization sequence, 238 * the eTSEC Rx logic may not be properly initialized. 239 */ 240 void redundant_init(struct eth_device *dev) 241 { 242 struct tsec_private *priv = dev->priv; 243 struct tsec __iomem *regs = priv->regs; 244 uint t, count = 0; 245 int fail = 1; 246 static const u8 pkt[] = { 247 0x00, 0x1e, 0x4f, 0x12, 0xcb, 0x2c, 0x00, 0x25, 248 0x64, 0xbb, 0xd1, 0xab, 0x08, 0x00, 0x45, 0x00, 249 0x00, 0x5c, 0xdd, 0x22, 0x00, 0x00, 0x80, 0x01, 250 0x1f, 0x71, 0x0a, 0xc1, 0x14, 0x22, 0x0a, 0xc1, 251 0x14, 0x6a, 0x08, 0x00, 0xef, 0x7e, 0x02, 0x00, 252 0x94, 0x05, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 253 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 254 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 255 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 256 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 257 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 258 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 259 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 260 0x71, 0x72}; 261 262 /* Enable promiscuous mode */ 263 setbits_be32(®s->rctrl, 0x8); 264 /* Enable loopback mode */ 265 setbits_be32(®s->maccfg1, MACCFG1_LOOPBACK); 266 /* Enable transmit and receive */ 267 setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); 268 269 /* Tell the DMA it is clear to go */ 270 setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); 271 out_be32(®s->tstat, TSTAT_CLEAR_THALT); 272 out_be32(®s->rstat, RSTAT_CLEAR_RHALT); 273 clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); 274 #ifdef CONFIG_LS102XA 275 setbits_be32(®s->dmactrl, DMACTRL_LE); 276 #endif 277 278 do { 279 uint16_t status; 280 tsec_send(dev, (void *)pkt, sizeof(pkt)); 281 282 /* Wait for buffer to be received */ 283 for (t = 0; in_be16(&rxbd[rx_idx].status) & RXBD_EMPTY; t++) { 284 if (t >= 10 * TOUT_LOOP) { 285 printf("%s: tsec: rx error\n", dev->name); 286 break; 287 } 288 } 289 290 if (!memcmp(pkt, (void *)NetRxPackets[rx_idx], sizeof(pkt))) 291 fail = 0; 292 293 out_be16(&rxbd[rx_idx].length, 0); 294 status = RXBD_EMPTY; 295 if ((rx_idx + 1) == PKTBUFSRX) 296 status |= RXBD_WRAP; 297 out_be16(&rxbd[rx_idx].status, status); 298 rx_idx = (rx_idx + 1) % PKTBUFSRX; 299 300 if (in_be32(®s->ievent) & IEVENT_BSY) { 301 out_be32(®s->ievent, IEVENT_BSY); 302 out_be32(®s->rstat, RSTAT_CLEAR_RHALT); 303 } 304 if (fail) { 305 printf("loopback recv packet error!\n"); 306 clrbits_be32(®s->maccfg1, MACCFG1_RX_EN); 307 udelay(1000); 308 setbits_be32(®s->maccfg1, MACCFG1_RX_EN); 309 } 310 } while ((count++ < 4) && (fail == 1)); 311 312 if (fail) 313 panic("eTSEC init fail!\n"); 314 /* Disable promiscuous mode */ 315 clrbits_be32(®s->rctrl, 0x8); 316 /* Disable loopback mode */ 317 clrbits_be32(®s->maccfg1, MACCFG1_LOOPBACK); 318 } 319 #endif 320 321 /* Set up the buffers and their descriptors, and bring up the 322 * interface 323 */ 324 static void startup_tsec(struct eth_device *dev) 325 { 326 struct tsec_private *priv = (struct tsec_private *)dev->priv; 327 struct tsec __iomem *regs = priv->regs; 328 uint16_t status; 329 int i; 330 331 /* reset the indices to zero */ 332 rx_idx = 0; 333 tx_idx = 0; 334 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 335 uint svr; 336 #endif 337 338 /* Point to the buffer descriptors */ 339 out_be32(®s->tbase, (u32)&txbd[0]); 340 out_be32(®s->rbase, (u32)&rxbd[0]); 341 342 /* Initialize the Rx Buffer descriptors */ 343 for (i = 0; i < PKTBUFSRX; i++) { 344 out_be16(&rxbd[i].status, RXBD_EMPTY); 345 out_be16(&rxbd[i].length, 0); 346 out_be32(&rxbd[i].bufptr, (u32)NetRxPackets[i]); 347 } 348 status = in_be16(&rxbd[PKTBUFSRX - 1].status); 349 out_be16(&rxbd[PKTBUFSRX - 1].status, status | RXBD_WRAP); 350 351 /* Initialize the TX Buffer Descriptors */ 352 for (i = 0; i < TX_BUF_CNT; i++) { 353 out_be16(&txbd[i].status, 0); 354 out_be16(&txbd[i].length, 0); 355 out_be32(&txbd[i].bufptr, 0); 356 } 357 status = in_be16(&txbd[TX_BUF_CNT - 1].status); 358 out_be16(&txbd[TX_BUF_CNT - 1].status, status | TXBD_WRAP); 359 360 #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 361 svr = get_svr(); 362 if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0)) 363 redundant_init(dev); 364 #endif 365 /* Enable Transmit and Receive */ 366 setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); 367 368 /* Tell the DMA it is clear to go */ 369 setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); 370 out_be32(®s->tstat, TSTAT_CLEAR_THALT); 371 out_be32(®s->rstat, RSTAT_CLEAR_RHALT); 372 clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); 373 #ifdef CONFIG_LS102XA 374 setbits_be32(®s->dmactrl, DMACTRL_LE); 375 #endif 376 } 377 378 /* This returns the status bits of the device. The return value 379 * is never checked, and this is what the 8260 driver did, so we 380 * do the same. Presumably, this would be zero if there were no 381 * errors 382 */ 383 static int tsec_send(struct eth_device *dev, void *packet, int length) 384 { 385 struct tsec_private *priv = (struct tsec_private *)dev->priv; 386 struct tsec __iomem *regs = priv->regs; 387 uint16_t status; 388 int result = 0; 389 int i; 390 391 /* Find an empty buffer descriptor */ 392 for (i = 0; in_be16(&txbd[tx_idx].status) & TXBD_READY; i++) { 393 if (i >= TOUT_LOOP) { 394 debug("%s: tsec: tx buffers full\n", dev->name); 395 return result; 396 } 397 } 398 399 out_be32(&txbd[tx_idx].bufptr, (u32)packet); 400 out_be16(&txbd[tx_idx].length, length); 401 status = in_be16(&txbd[tx_idx].status); 402 out_be16(&txbd[tx_idx].status, status | 403 (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT)); 404 405 /* Tell the DMA to go */ 406 out_be32(®s->tstat, TSTAT_CLEAR_THALT); 407 408 /* Wait for buffer to be transmitted */ 409 for (i = 0; in_be16(&txbd[tx_idx].status) & TXBD_READY; i++) { 410 if (i >= TOUT_LOOP) { 411 debug("%s: tsec: tx error\n", dev->name); 412 return result; 413 } 414 } 415 416 tx_idx = (tx_idx + 1) % TX_BUF_CNT; 417 result = in_be16(&txbd[tx_idx].status) & TXBD_STATS; 418 419 return result; 420 } 421 422 static int tsec_recv(struct eth_device *dev) 423 { 424 struct tsec_private *priv = (struct tsec_private *)dev->priv; 425 struct tsec __iomem *regs = priv->regs; 426 427 while (!(in_be16(&rxbd[rx_idx].status) & RXBD_EMPTY)) { 428 int length = in_be16(&rxbd[rx_idx].length); 429 uint16_t status = in_be16(&rxbd[rx_idx].status); 430 431 /* Send the packet up if there were no errors */ 432 if (!(status & RXBD_STATS)) 433 NetReceive(NetRxPackets[rx_idx], length - 4); 434 else 435 printf("Got error %x\n", (status & RXBD_STATS)); 436 437 out_be16(&rxbd[rx_idx].length, 0); 438 439 status = RXBD_EMPTY; 440 /* Set the wrap bit if this is the last element in the list */ 441 if ((rx_idx + 1) == PKTBUFSRX) 442 status |= RXBD_WRAP; 443 out_be16(&rxbd[rx_idx].status, status); 444 445 rx_idx = (rx_idx + 1) % PKTBUFSRX; 446 } 447 448 if (in_be32(®s->ievent) & IEVENT_BSY) { 449 out_be32(®s->ievent, IEVENT_BSY); 450 out_be32(®s->rstat, RSTAT_CLEAR_RHALT); 451 } 452 453 return -1; 454 455 } 456 457 /* Stop the interface */ 458 static void tsec_halt(struct eth_device *dev) 459 { 460 struct tsec_private *priv = (struct tsec_private *)dev->priv; 461 struct tsec __iomem *regs = priv->regs; 462 463 clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); 464 setbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); 465 466 while ((in_be32(®s->ievent) & (IEVENT_GRSC | IEVENT_GTSC)) 467 != (IEVENT_GRSC | IEVENT_GTSC)) 468 ; 469 470 clrbits_be32(®s->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN); 471 472 /* Shut down the PHY, as needed */ 473 phy_shutdown(priv->phydev); 474 } 475 476 /* Initializes data structures and registers for the controller, 477 * and brings the interface up. Returns the link status, meaning 478 * that it returns success if the link is up, failure otherwise. 479 * This allows u-boot to find the first active controller. 480 */ 481 static int tsec_init(struct eth_device *dev, bd_t * bd) 482 { 483 struct tsec_private *priv = (struct tsec_private *)dev->priv; 484 struct tsec __iomem *regs = priv->regs; 485 u32 tempval; 486 int ret; 487 488 /* Make sure the controller is stopped */ 489 tsec_halt(dev); 490 491 /* Init MACCFG2. Defaults to GMII */ 492 out_be32(®s->maccfg2, MACCFG2_INIT_SETTINGS); 493 494 /* Init ECNTRL */ 495 out_be32(®s->ecntrl, ECNTRL_INIT_SETTINGS); 496 497 /* Copy the station address into the address registers. 498 * For a station address of 0x12345678ABCD in transmission 499 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 500 * MACnADDR2 is set to 0x34120000. 501 */ 502 tempval = (dev->enetaddr[5] << 24) | (dev->enetaddr[4] << 16) | 503 (dev->enetaddr[3] << 8) | dev->enetaddr[2]; 504 505 out_be32(®s->macstnaddr1, tempval); 506 507 tempval = (dev->enetaddr[1] << 24) | (dev->enetaddr[0] << 16); 508 509 out_be32(®s->macstnaddr2, tempval); 510 511 /* Clear out (for the most part) the other registers */ 512 init_registers(regs); 513 514 /* Ready the device for tx/rx */ 515 startup_tsec(dev); 516 517 /* Start up the PHY */ 518 ret = phy_startup(priv->phydev); 519 if (ret) { 520 printf("Could not initialize PHY %s\n", 521 priv->phydev->dev->name); 522 return ret; 523 } 524 525 adjust_link(priv, priv->phydev); 526 527 /* If there's no link, fail */ 528 return priv->phydev->link ? 0 : -1; 529 } 530 531 static phy_interface_t tsec_get_interface(struct tsec_private *priv) 532 { 533 struct tsec __iomem *regs = priv->regs; 534 u32 ecntrl; 535 536 ecntrl = in_be32(®s->ecntrl); 537 538 if (ecntrl & ECNTRL_SGMII_MODE) 539 return PHY_INTERFACE_MODE_SGMII; 540 541 if (ecntrl & ECNTRL_TBI_MODE) { 542 if (ecntrl & ECNTRL_REDUCED_MODE) 543 return PHY_INTERFACE_MODE_RTBI; 544 else 545 return PHY_INTERFACE_MODE_TBI; 546 } 547 548 if (ecntrl & ECNTRL_REDUCED_MODE) { 549 if (ecntrl & ECNTRL_REDUCED_MII_MODE) 550 return PHY_INTERFACE_MODE_RMII; 551 else { 552 phy_interface_t interface = priv->interface; 553 554 /* 555 * This isn't autodetected, so it must 556 * be set by the platform code. 557 */ 558 if ((interface == PHY_INTERFACE_MODE_RGMII_ID) || 559 (interface == PHY_INTERFACE_MODE_RGMII_TXID) || 560 (interface == PHY_INTERFACE_MODE_RGMII_RXID)) 561 return interface; 562 563 return PHY_INTERFACE_MODE_RGMII; 564 } 565 } 566 567 if (priv->flags & TSEC_GIGABIT) 568 return PHY_INTERFACE_MODE_GMII; 569 570 return PHY_INTERFACE_MODE_MII; 571 } 572 573 574 /* Discover which PHY is attached to the device, and configure it 575 * properly. If the PHY is not recognized, then return 0 576 * (failure). Otherwise, return 1 577 */ 578 static int init_phy(struct eth_device *dev) 579 { 580 struct tsec_private *priv = (struct tsec_private *)dev->priv; 581 struct phy_device *phydev; 582 struct tsec __iomem *regs = priv->regs; 583 u32 supported = (SUPPORTED_10baseT_Half | 584 SUPPORTED_10baseT_Full | 585 SUPPORTED_100baseT_Half | 586 SUPPORTED_100baseT_Full); 587 588 if (priv->flags & TSEC_GIGABIT) 589 supported |= SUPPORTED_1000baseT_Full; 590 591 /* Assign a Physical address to the TBI */ 592 out_be32(®s->tbipa, CONFIG_SYS_TBIPA_VALUE); 593 594 priv->interface = tsec_get_interface(priv); 595 596 if (priv->interface == PHY_INTERFACE_MODE_SGMII) 597 tsec_configure_serdes(priv); 598 599 phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface); 600 if (!phydev) 601 return 0; 602 603 phydev->supported &= supported; 604 phydev->advertising = phydev->supported; 605 606 priv->phydev = phydev; 607 608 phy_config(phydev); 609 610 return 1; 611 } 612 613 /* Initialize device structure. Returns success if PHY 614 * initialization succeeded (i.e. if it recognizes the PHY) 615 */ 616 static int tsec_initialize(bd_t *bis, struct tsec_info_struct *tsec_info) 617 { 618 struct eth_device *dev; 619 int i; 620 struct tsec_private *priv; 621 622 dev = (struct eth_device *)malloc(sizeof *dev); 623 624 if (NULL == dev) 625 return 0; 626 627 memset(dev, 0, sizeof *dev); 628 629 priv = (struct tsec_private *)malloc(sizeof(*priv)); 630 631 if (NULL == priv) 632 return 0; 633 634 priv->regs = tsec_info->regs; 635 priv->phyregs_sgmii = tsec_info->miiregs_sgmii; 636 637 priv->phyaddr = tsec_info->phyaddr; 638 priv->flags = tsec_info->flags; 639 640 sprintf(dev->name, tsec_info->devname); 641 priv->interface = tsec_info->interface; 642 priv->bus = miiphy_get_dev_by_name(tsec_info->mii_devname); 643 dev->iobase = 0; 644 dev->priv = priv; 645 dev->init = tsec_init; 646 dev->halt = tsec_halt; 647 dev->send = tsec_send; 648 dev->recv = tsec_recv; 649 #ifdef CONFIG_MCAST_TFTP 650 dev->mcast = tsec_mcast_addr; 651 #endif 652 653 /* Tell u-boot to get the addr from the env */ 654 for (i = 0; i < 6; i++) 655 dev->enetaddr[i] = 0; 656 657 eth_register(dev); 658 659 /* Reset the MAC */ 660 setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); 661 udelay(2); /* Soft Reset must be asserted for 3 TX clocks */ 662 clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); 663 664 /* Try to initialize PHY here, and return */ 665 return init_phy(dev); 666 } 667 668 /* 669 * Initialize all the TSEC devices 670 * 671 * Returns the number of TSEC devices that were initialized 672 */ 673 int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num) 674 { 675 int i; 676 int ret, count = 0; 677 678 for (i = 0; i < num; i++) { 679 ret = tsec_initialize(bis, &tsecs[i]); 680 if (ret > 0) 681 count += ret; 682 } 683 684 return count; 685 } 686 687 int tsec_standard_init(bd_t *bis) 688 { 689 struct fsl_pq_mdio_info info; 690 691 info.regs = TSEC_GET_MDIO_REGS_BASE(1); 692 info.name = DEFAULT_MII_NAME; 693 694 fsl_pq_mdio_init(bis, &info); 695 696 return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info)); 697 } 698