xref: /openbmc/u-boot/drivers/net/tsec.c (revision 53677ef1)
1 /*
2  * Freescale Three Speed Ethernet Controller driver
3  *
4  * This software may be used and distributed according to the
5  * terms of the GNU Public License, Version 2, incorporated
6  * herein by reference.
7  *
8  * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9  * (C) Copyright 2003, Motorola, Inc.
10  * author Andy Fleming
11  *
12  */
13 
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define TX_BUF_CNT		2
27 
28 static uint rxIdx;		/* index of the current RX buffer */
29 static uint txIdx;		/* index of the current TX buffer */
30 
31 typedef volatile struct rtxbd {
32 	txbd8_t txbd[TX_BUF_CNT];
33 	rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35 
36 struct tsec_info_struct {
37 	unsigned int phyaddr;
38 	u32 flags;
39 	unsigned int phyregidx;
40 };
41 
42 /* The tsec_info structure contains 3 values which the
43  * driver uses to determine how to operate a given ethernet
44  * device. The information needed is:
45  *  phyaddr - The address of the PHY which is attached to
46  *	the given device.
47  *
48  *  flags - This variable indicates whether the device
49  *	supports gigabit speed ethernet, and whether it should be
50  *	in reduced mode.
51  *
52  *  phyregidx - This variable specifies which ethernet device
53  *	controls the MII Management registers which are connected
54  *	to the PHY.  For now, only TSEC1 (index 0) has
55  *	access to the PHYs, so all of the entries have "0".
56  *
57  * The values specified in the table are taken from the board's
58  * config file in include/configs/.  When implementing a new
59  * board with ethernet capability, it is necessary to define:
60  *   TSECn_PHY_ADDR
61  *   TSECn_PHYIDX
62  *
63  * for n = 1,2,3, etc.  And for FEC:
64  *   FEC_PHY_ADDR
65  *   FEC_PHYIDX
66  */
67 static struct tsec_info_struct tsec_info[] = {
68 #ifdef CONFIG_TSEC1
69 	{TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
70 #else
71 	{0, 0, 0},
72 #endif
73 #ifdef CONFIG_TSEC2
74 	{TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
75 #else
76 	{0, 0, 0},
77 #endif
78 #ifdef CONFIG_MPC85XX_FEC
79 	{FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
80 #else
81 #ifdef CONFIG_TSEC3
82 	{TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
83 #else
84 	{0, 0, 0},
85 #endif
86 #ifdef CONFIG_TSEC4
87 	{TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
88 #else
89 	{0, 0, 0},
90 #endif	/* CONFIG_TSEC4 */
91 #endif	/* CONFIG_MPC85XX_FEC */
92 };
93 
94 #define MAXCONTROLLERS	(4)
95 
96 static int relocated = 0;
97 
98 static struct tsec_private *privlist[MAXCONTROLLERS];
99 
100 #ifdef __GNUC__
101 static RTXBD rtx __attribute__ ((aligned(8)));
102 #else
103 #error "rtx must be 64-bit aligned"
104 #endif
105 
106 static int tsec_send(struct eth_device *dev,
107 		     volatile void *packet, int length);
108 static int tsec_recv(struct eth_device *dev);
109 static int tsec_init(struct eth_device *dev, bd_t * bd);
110 static void tsec_halt(struct eth_device *dev);
111 static void init_registers(volatile tsec_t * regs);
112 static void startup_tsec(struct eth_device *dev);
113 static int init_phy(struct eth_device *dev);
114 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
115 uint read_phy_reg(struct tsec_private *priv, uint regnum);
116 struct phy_info *get_phy_info(struct eth_device *dev);
117 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
118 static void adjust_link(struct eth_device *dev);
119 static void relocate_cmds(void);
120 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
121 	&& !defined(BITBANGMII)
122 static int tsec_miiphy_write(char *devname, unsigned char addr,
123 			     unsigned char reg, unsigned short value);
124 static int tsec_miiphy_read(char *devname, unsigned char addr,
125 			    unsigned char reg, unsigned short *value);
126 #endif
127 #ifdef CONFIG_MCAST_TFTP
128 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
129 #endif
130 
131 /* Initialize device structure. Returns success if PHY
132  * initialization succeeded (i.e. if it recognizes the PHY)
133  */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 	struct eth_device *dev;
137 	int i;
138 	struct tsec_private *priv;
139 
140 	dev = (struct eth_device *)malloc(sizeof *dev);
141 
142 	if (NULL == dev)
143 		return 0;
144 
145 	memset(dev, 0, sizeof *dev);
146 
147 	priv = (struct tsec_private *)malloc(sizeof(*priv));
148 
149 	if (NULL == priv)
150 		return 0;
151 
152 	privlist[index] = priv;
153 	priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 	priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 					    tsec_info[index].phyregidx *
156 					    TSEC_SIZE);
157 
158 	priv->phyaddr = tsec_info[index].phyaddr;
159 	priv->flags = tsec_info[index].flags;
160 
161 	sprintf(dev->name, devname);
162 	dev->iobase = 0;
163 	dev->priv = priv;
164 	dev->init = tsec_init;
165 	dev->halt = tsec_halt;
166 	dev->send = tsec_send;
167 	dev->recv = tsec_recv;
168 #ifdef CONFIG_MCAST_TFTP
169 	dev->mcast = tsec_mcast_addr;
170 #endif
171 
172 	/* Tell u-boot to get the addr from the env */
173 	for (i = 0; i < 6; i++)
174 		dev->enetaddr[i] = 0;
175 
176 	eth_register(dev);
177 
178 	/* Reset the MAC */
179 	priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
180 	priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
181 
182 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
183 	&& !defined(BITBANGMII)
184 	miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
185 #endif
186 
187 	/* Try to initialize PHY here, and return */
188 	return init_phy(dev);
189 }
190 
191 /* Initializes data structures and registers for the controller,
192  * and brings the interface up.	 Returns the link status, meaning
193  * that it returns success if the link is up, failure otherwise.
194  * This allows u-boot to find the first active controller.
195  */
196 int tsec_init(struct eth_device *dev, bd_t * bd)
197 {
198 	uint tempval;
199 	char tmpbuf[MAC_ADDR_LEN];
200 	int i;
201 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
202 	volatile tsec_t *regs = priv->regs;
203 
204 	/* Make sure the controller is stopped */
205 	tsec_halt(dev);
206 
207 	/* Init MACCFG2.  Defaults to GMII */
208 	regs->maccfg2 = MACCFG2_INIT_SETTINGS;
209 
210 	/* Init ECNTRL */
211 	regs->ecntrl = ECNTRL_INIT_SETTINGS;
212 
213 	/* Copy the station address into the address registers.
214 	 * Backwards, because little endian MACS are dumb */
215 	for (i = 0; i < MAC_ADDR_LEN; i++) {
216 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
217 	}
218 	regs->macstnaddr1 = *((uint *) (tmpbuf));
219 
220 	tempval = *((uint *) (tmpbuf + 4));
221 
222 	regs->macstnaddr2 = tempval;
223 
224 	/* reset the indices to zero */
225 	rxIdx = 0;
226 	txIdx = 0;
227 
228 	/* Clear out (for the most part) the other registers */
229 	init_registers(regs);
230 
231 	/* Ready the device for tx/rx */
232 	startup_tsec(dev);
233 
234 	/* If there's no link, fail */
235 	return (priv->link ? 0 : -1);
236 
237 }
238 
239 /* Write value to the device's PHY through the registers
240  * specified in priv, modifying the register specified in regnum.
241  * It will wait for the write to be done (or for a timeout to
242  * expire) before exiting
243  */
244 void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value)
245 {
246 	volatile tsec_t *regbase = priv->phyregs;
247 	int timeout = 1000000;
248 
249 	regbase->miimadd = (phyid << 8) | regnum;
250 	regbase->miimcon = value;
251 	asm("sync");
252 
253 	timeout = 1000000;
254 	while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
255 }
256 
257 /* #define to provide old write_phy_reg functionality without duplicating code */
258 #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value)
259 
260 /* Reads register regnum on the device's PHY through the
261  * registers specified in priv.	 It lowers and raises the read
262  * command, and waits for the data to become valid (miimind
263  * notvalid bit cleared), and the bus to cease activity (miimind
264  * busy bit cleared), and then returns the value
265  */
266 uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum)
267 {
268 	uint value;
269 	volatile tsec_t *regbase = priv->phyregs;
270 
271 	/* Put the address of the phy, and the register
272 	 * number into MIIMADD */
273 	regbase->miimadd = (phyid << 8) | regnum;
274 
275 	/* Clear the command register, and wait */
276 	regbase->miimcom = 0;
277 	asm("sync");
278 
279 	/* Initiate a read command, and wait */
280 	regbase->miimcom = MIIM_READ_COMMAND;
281 	asm("sync");
282 
283 	/* Wait for the the indication that the read is done */
284 	while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
285 
286 	/* Grab the value read from the PHY */
287 	value = regbase->miimstat;
288 
289 	return value;
290 }
291 
292 /* #define to provide old read_phy_reg functionality without duplicating code */
293 #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum)
294 
295 /* Discover which PHY is attached to the device, and configure it
296  * properly.  If the PHY is not recognized, then return 0
297  * (failure).  Otherwise, return 1
298  */
299 static int init_phy(struct eth_device *dev)
300 {
301 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
302 	struct phy_info *curphy;
303 	volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
304 
305 	/* Assign a Physical address to the TBI */
306 	regs->tbipa = CFG_TBIPA_VALUE;
307 	regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
308 	regs->tbipa = CFG_TBIPA_VALUE;
309 	asm("sync");
310 
311 	/* Reset MII (due to new addresses) */
312 	priv->phyregs->miimcfg = MIIMCFG_RESET;
313 	asm("sync");
314 	priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
315 	asm("sync");
316 	while (priv->phyregs->miimind & MIIMIND_BUSY) ;
317 
318 	if (0 == relocated)
319 		relocate_cmds();
320 
321 	/* Get the cmd structure corresponding to the attached
322 	 * PHY */
323 	curphy = get_phy_info(dev);
324 
325 	if (curphy == NULL) {
326 		priv->phyinfo = NULL;
327 		printf("%s: No PHY found\n", dev->name);
328 
329 		return 0;
330 	}
331 
332 	priv->phyinfo = curphy;
333 
334 	phy_run_commands(priv, priv->phyinfo->config);
335 
336 	return 1;
337 }
338 
339 /*
340  * Returns which value to write to the control register.
341  * For 10/100, the value is slightly different
342  */
343 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
344 {
345 	if (priv->flags & TSEC_GIGABIT)
346 		return MIIM_CONTROL_INIT;
347 	else
348 		return MIIM_CR_INIT;
349 }
350 
351 /* Parse the status register for link, and then do
352  * auto-negotiation
353  */
354 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
355 {
356 	/*
357 	 * Wait if the link is up, and autonegotiation is in progress
358 	 * (ie - we're capable and it's not done)
359 	 */
360 	mii_reg = read_phy_reg(priv, MIIM_STATUS);
361 	if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
362 	    && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
363 		int i = 0;
364 
365 		puts("Waiting for PHY auto negotiation to complete");
366 		while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
367 			/*
368 			 * Timeout reached ?
369 			 */
370 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
371 				puts(" TIMEOUT !\n");
372 				priv->link = 0;
373 				return 0;
374 			}
375 
376 			if ((i++ % 1000) == 0) {
377 				putc('.');
378 			}
379 			udelay(1000);	/* 1 ms */
380 			mii_reg = read_phy_reg(priv, MIIM_STATUS);
381 		}
382 		puts(" done\n");
383 		priv->link = 1;
384 		udelay(500000);	/* another 500 ms (results in faster booting) */
385 	} else {
386 		if (mii_reg & MIIM_STATUS_LINK)
387 			priv->link = 1;
388 		else
389 			priv->link = 0;
390 	}
391 
392 	return 0;
393 }
394 
395 /* Generic function which updates the speed and duplex.  If
396  * autonegotiation is enabled, it uses the AND of the link
397  * partner's advertised capabilities and our advertised
398  * capabilities.  If autonegotiation is disabled, we use the
399  * appropriate bits in the control register.
400  *
401  * Stolen from Linux's mii.c and phy_device.c
402  */
403 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
404 {
405 	/* We're using autonegotiation */
406 	if (mii_reg & PHY_BMSR_AUTN_ABLE) {
407 		uint lpa = 0;
408 		uint gblpa = 0;
409 
410 		/* Check for gigabit capability */
411 		if (mii_reg & PHY_BMSR_EXT) {
412 			/* We want a list of states supported by
413 			 * both PHYs in the link
414 			 */
415 			gblpa = read_phy_reg(priv, PHY_1000BTSR);
416 			gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
417 		}
418 
419 		/* Set the baseline so we only have to set them
420 		 * if they're different
421 		 */
422 		priv->speed = 10;
423 		priv->duplexity = 0;
424 
425 		/* Check the gigabit fields */
426 		if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
427 			priv->speed = 1000;
428 
429 			if (gblpa & PHY_1000BTSR_1000FD)
430 				priv->duplexity = 1;
431 
432 			/* We're done! */
433 			return 0;
434 		}
435 
436 		lpa = read_phy_reg(priv, PHY_ANAR);
437 		lpa &= read_phy_reg(priv, PHY_ANLPAR);
438 
439 		if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
440 			priv->speed = 100;
441 
442 			if (lpa & PHY_ANLPAR_TXFD)
443 				priv->duplexity = 1;
444 
445 		} else if (lpa & PHY_ANLPAR_10FD)
446 			priv->duplexity = 1;
447 	} else {
448 		uint bmcr = read_phy_reg(priv, PHY_BMCR);
449 
450 		priv->speed = 10;
451 		priv->duplexity = 0;
452 
453 		if (bmcr & PHY_BMCR_DPLX)
454 			priv->duplexity = 1;
455 
456 		if (bmcr & PHY_BMCR_1000_MBPS)
457 			priv->speed = 1000;
458 		else if (bmcr & PHY_BMCR_100_MBPS)
459 			priv->speed = 100;
460 	}
461 
462 	return 0;
463 }
464 
465 /*
466  * Parse the BCM54xx status register for speed and duplex information.
467  * The linux sungem_phy has this information, but in a table format.
468  */
469 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
470 {
471 
472 	switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
473 
474 		case 1:
475 			printf("Enet starting in 10BT/HD\n");
476 			priv->duplexity = 0;
477 			priv->speed = 10;
478 			break;
479 
480 		case 2:
481 			printf("Enet starting in 10BT/FD\n");
482 			priv->duplexity = 1;
483 			priv->speed = 10;
484 			break;
485 
486 		case 3:
487 			printf("Enet starting in 100BT/HD\n");
488 			priv->duplexity = 0;
489 			priv->speed = 100;
490 			break;
491 
492 		case 5:
493 			printf("Enet starting in 100BT/FD\n");
494 			priv->duplexity = 1;
495 			priv->speed = 100;
496 			break;
497 
498 		case 6:
499 			printf("Enet starting in 1000BT/HD\n");
500 			priv->duplexity = 0;
501 			priv->speed = 1000;
502 			break;
503 
504 		case 7:
505 			printf("Enet starting in 1000BT/FD\n");
506 			priv->duplexity = 1;
507 			priv->speed = 1000;
508 			break;
509 
510 		default:
511 			printf("Auto-neg error, defaulting to 10BT/HD\n");
512 			priv->duplexity = 0;
513 			priv->speed = 10;
514 			break;
515 	}
516 
517 	return 0;
518 
519 }
520 /* Parse the 88E1011's status register for speed and duplex
521  * information
522  */
523 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
524 {
525 	uint speed;
526 
527 	mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
528 
529 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
530 		!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
531 		int i = 0;
532 
533 		puts("Waiting for PHY realtime link");
534 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
535 			/* Timeout reached ? */
536 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
537 				puts(" TIMEOUT !\n");
538 				priv->link = 0;
539 				break;
540 			}
541 
542 			if ((i++ % 1000) == 0) {
543 				putc('.');
544 			}
545 			udelay(1000);	/* 1 ms */
546 			mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
547 		}
548 		puts(" done\n");
549 		udelay(500000);	/* another 500 ms (results in faster booting) */
550 	} else {
551 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
552 			priv->link = 1;
553 		else
554 			priv->link = 0;
555 	}
556 
557 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
558 		priv->duplexity = 1;
559 	else
560 		priv->duplexity = 0;
561 
562 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
563 
564 	switch (speed) {
565 	case MIIM_88E1011_PHYSTAT_GBIT:
566 		priv->speed = 1000;
567 		break;
568 	case MIIM_88E1011_PHYSTAT_100:
569 		priv->speed = 100;
570 		break;
571 	default:
572 		priv->speed = 10;
573 	}
574 
575 	return 0;
576 }
577 
578 /* Parse the RTL8211B's status register for speed and duplex
579  * information
580  */
581 uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv)
582 {
583 	uint speed;
584 
585 	mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
586 	if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
587 		int i = 0;
588 
589 		/* in case of timeout ->link is cleared */
590 		priv->link = 1;
591 		puts("Waiting for PHY realtime link");
592 		while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) {
593 			/* Timeout reached ? */
594 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
595 				puts(" TIMEOUT !\n");
596 				priv->link = 0;
597 				break;
598 			}
599 
600 			if ((i++ % 1000) == 0) {
601 				putc('.');
602 			}
603 			udelay(1000);	/* 1 ms */
604 			mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS);
605 		}
606 		puts(" done\n");
607 		udelay(500000);	/* another 500 ms (results in faster booting) */
608 	} else {
609 		if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK)
610 			priv->link = 1;
611 		else
612 			priv->link = 0;
613 	}
614 
615 	if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX)
616 		priv->duplexity = 1;
617 	else
618 		priv->duplexity = 0;
619 
620 	speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED);
621 
622 	switch (speed) {
623 	case MIIM_RTL8211B_PHYSTAT_GBIT:
624 		priv->speed = 1000;
625 		break;
626 	case MIIM_RTL8211B_PHYSTAT_100:
627 		priv->speed = 100;
628 		break;
629 	default:
630 		priv->speed = 10;
631 	}
632 
633 	return 0;
634 }
635 
636 /* Parse the cis8201's status register for speed and duplex
637  * information
638  */
639 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
640 {
641 	uint speed;
642 
643 	if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
644 		priv->duplexity = 1;
645 	else
646 		priv->duplexity = 0;
647 
648 	speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
649 	switch (speed) {
650 	case MIIM_CIS8201_AUXCONSTAT_GBIT:
651 		priv->speed = 1000;
652 		break;
653 	case MIIM_CIS8201_AUXCONSTAT_100:
654 		priv->speed = 100;
655 		break;
656 	default:
657 		priv->speed = 10;
658 		break;
659 	}
660 
661 	return 0;
662 }
663 
664 /* Parse the vsc8244's status register for speed and duplex
665  * information
666  */
667 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
668 {
669 	uint speed;
670 
671 	if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
672 		priv->duplexity = 1;
673 	else
674 		priv->duplexity = 0;
675 
676 	speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
677 	switch (speed) {
678 	case MIIM_VSC8244_AUXCONSTAT_GBIT:
679 		priv->speed = 1000;
680 		break;
681 	case MIIM_VSC8244_AUXCONSTAT_100:
682 		priv->speed = 100;
683 		break;
684 	default:
685 		priv->speed = 10;
686 		break;
687 	}
688 
689 	return 0;
690 }
691 
692 /* Parse the DM9161's status register for speed and duplex
693  * information
694  */
695 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
696 {
697 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
698 		priv->speed = 100;
699 	else
700 		priv->speed = 10;
701 
702 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
703 		priv->duplexity = 1;
704 	else
705 		priv->duplexity = 0;
706 
707 	return 0;
708 }
709 
710 /*
711  * Hack to write all 4 PHYs with the LED values
712  */
713 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
714 {
715 	uint phyid;
716 	volatile tsec_t *regbase = priv->phyregs;
717 	int timeout = 1000000;
718 
719 	for (phyid = 0; phyid < 4; phyid++) {
720 		regbase->miimadd = (phyid << 8) | mii_reg;
721 		regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
722 		asm("sync");
723 
724 		timeout = 1000000;
725 		while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
726 	}
727 
728 	return MIIM_CIS8204_SLEDCON_INIT;
729 }
730 
731 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
732 {
733 	if (priv->flags & TSEC_REDUCED)
734 		return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
735 	else
736 		return MIIM_CIS8204_EPHYCON_INIT;
737 }
738 
739 uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv)
740 {
741 	uint mii_data = read_phy_reg(priv, mii_reg);
742 
743 	if (priv->flags & TSEC_REDUCED)
744 		mii_data = (mii_data & 0xfff0) | 0x000b;
745 	return mii_data;
746 }
747 
748 /* Initialized required registers to appropriate values, zeroing
749  * those we don't care about (unless zero is bad, in which case,
750  * choose a more appropriate value)
751  */
752 static void init_registers(volatile tsec_t * regs)
753 {
754 	/* Clear IEVENT */
755 	regs->ievent = IEVENT_INIT_CLEAR;
756 
757 	regs->imask = IMASK_INIT_CLEAR;
758 
759 	regs->hash.iaddr0 = 0;
760 	regs->hash.iaddr1 = 0;
761 	regs->hash.iaddr2 = 0;
762 	regs->hash.iaddr3 = 0;
763 	regs->hash.iaddr4 = 0;
764 	regs->hash.iaddr5 = 0;
765 	regs->hash.iaddr6 = 0;
766 	regs->hash.iaddr7 = 0;
767 
768 	regs->hash.gaddr0 = 0;
769 	regs->hash.gaddr1 = 0;
770 	regs->hash.gaddr2 = 0;
771 	regs->hash.gaddr3 = 0;
772 	regs->hash.gaddr4 = 0;
773 	regs->hash.gaddr5 = 0;
774 	regs->hash.gaddr6 = 0;
775 	regs->hash.gaddr7 = 0;
776 
777 	regs->rctrl = 0x00000000;
778 
779 	/* Init RMON mib registers */
780 	memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
781 
782 	regs->rmon.cam1 = 0xffffffff;
783 	regs->rmon.cam2 = 0xffffffff;
784 
785 	regs->mrblr = MRBLR_INIT_SETTINGS;
786 
787 	regs->minflr = MINFLR_INIT_SETTINGS;
788 
789 	regs->attr = ATTR_INIT_SETTINGS;
790 	regs->attreli = ATTRELI_INIT_SETTINGS;
791 
792 }
793 
794 /* Configure maccfg2 based on negotiated speed and duplex
795  * reported by PHY handling code
796  */
797 static void adjust_link(struct eth_device *dev)
798 {
799 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
800 	volatile tsec_t *regs = priv->regs;
801 
802 	if (priv->link) {
803 		if (priv->duplexity != 0)
804 			regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
805 		else
806 			regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
807 
808 		switch (priv->speed) {
809 		case 1000:
810 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
811 					 | MACCFG2_GMII);
812 			break;
813 		case 100:
814 		case 10:
815 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
816 					 | MACCFG2_MII);
817 
818 			/* Set R100 bit in all modes although
819 			 * it is only used in RGMII mode
820 			 */
821 			if (priv->speed == 100)
822 				regs->ecntrl |= ECNTRL_R100;
823 			else
824 				regs->ecntrl &= ~(ECNTRL_R100);
825 			break;
826 		default:
827 			printf("%s: Speed was bad\n", dev->name);
828 			break;
829 		}
830 
831 		printf("Speed: %d, %s duplex\n", priv->speed,
832 		       (priv->duplexity) ? "full" : "half");
833 
834 	} else {
835 		printf("%s: No link.\n", dev->name);
836 	}
837 }
838 
839 /* Set up the buffers and their descriptors, and bring up the
840  * interface
841  */
842 static void startup_tsec(struct eth_device *dev)
843 {
844 	int i;
845 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
846 	volatile tsec_t *regs = priv->regs;
847 
848 	/* Point to the buffer descriptors */
849 	regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
850 	regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
851 
852 	/* Initialize the Rx Buffer descriptors */
853 	for (i = 0; i < PKTBUFSRX; i++) {
854 		rtx.rxbd[i].status = RXBD_EMPTY;
855 		rtx.rxbd[i].length = 0;
856 		rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
857 	}
858 	rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
859 
860 	/* Initialize the TX Buffer Descriptors */
861 	for (i = 0; i < TX_BUF_CNT; i++) {
862 		rtx.txbd[i].status = 0;
863 		rtx.txbd[i].length = 0;
864 		rtx.txbd[i].bufPtr = 0;
865 	}
866 	rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
867 
868 	/* Start up the PHY */
869 	if(priv->phyinfo)
870 		phy_run_commands(priv, priv->phyinfo->startup);
871 
872 	adjust_link(dev);
873 
874 	/* Enable Transmit and Receive */
875 	regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
876 
877 	/* Tell the DMA it is clear to go */
878 	regs->dmactrl |= DMACTRL_INIT_SETTINGS;
879 	regs->tstat = TSTAT_CLEAR_THALT;
880 	regs->rstat = RSTAT_CLEAR_RHALT;
881 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
882 }
883 
884 /* This returns the status bits of the device.	The return value
885  * is never checked, and this is what the 8260 driver did, so we
886  * do the same.	 Presumably, this would be zero if there were no
887  * errors
888  */
889 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
890 {
891 	int i;
892 	int result = 0;
893 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
894 	volatile tsec_t *regs = priv->regs;
895 
896 	/* Find an empty buffer descriptor */
897 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
898 		if (i >= TOUT_LOOP) {
899 			debug("%s: tsec: tx buffers full\n", dev->name);
900 			return result;
901 		}
902 	}
903 
904 	rtx.txbd[txIdx].bufPtr = (uint) packet;
905 	rtx.txbd[txIdx].length = length;
906 	rtx.txbd[txIdx].status |=
907 	    (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
908 
909 	/* Tell the DMA to go */
910 	regs->tstat = TSTAT_CLEAR_THALT;
911 
912 	/* Wait for buffer to be transmitted */
913 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
914 		if (i >= TOUT_LOOP) {
915 			debug("%s: tsec: tx error\n", dev->name);
916 			return result;
917 		}
918 	}
919 
920 	txIdx = (txIdx + 1) % TX_BUF_CNT;
921 	result = rtx.txbd[txIdx].status & TXBD_STATS;
922 
923 	return result;
924 }
925 
926 static int tsec_recv(struct eth_device *dev)
927 {
928 	int length;
929 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
930 	volatile tsec_t *regs = priv->regs;
931 
932 	while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
933 
934 		length = rtx.rxbd[rxIdx].length;
935 
936 		/* Send the packet up if there were no errors */
937 		if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
938 			NetReceive(NetRxPackets[rxIdx], length - 4);
939 		} else {
940 			printf("Got error %x\n",
941 			       (rtx.rxbd[rxIdx].status & RXBD_STATS));
942 		}
943 
944 		rtx.rxbd[rxIdx].length = 0;
945 
946 		/* Set the wrap bit if this is the last element in the list */
947 		rtx.rxbd[rxIdx].status =
948 		    RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
949 
950 		rxIdx = (rxIdx + 1) % PKTBUFSRX;
951 	}
952 
953 	if (regs->ievent & IEVENT_BSY) {
954 		regs->ievent = IEVENT_BSY;
955 		regs->rstat = RSTAT_CLEAR_RHALT;
956 	}
957 
958 	return -1;
959 
960 }
961 
962 /* Stop the interface */
963 static void tsec_halt(struct eth_device *dev)
964 {
965 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
966 	volatile tsec_t *regs = priv->regs;
967 
968 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
969 	regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
970 
971 	while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
972 
973 	regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
974 
975 	/* Shut down the PHY, as needed */
976 	if(priv->phyinfo)
977 		phy_run_commands(priv, priv->phyinfo->shutdown);
978 }
979 
980 struct phy_info phy_info_M88E1149S = {
981 	0x1410ca,
982 	"Marvell 88E1149S",
983 	4,
984 	(struct phy_cmd[]){     /* config */
985 		/* Reset and configure the PHY */
986 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
987 		{0x1d, 0x1f, NULL},
988 		{0x1e, 0x200c, NULL},
989 		{0x1d, 0x5, NULL},
990 		{0x1e, 0x0, NULL},
991 		{0x1e, 0x100, NULL},
992 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
993 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
994 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
995 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
996 		{miim_end,}
997 	},
998 	(struct phy_cmd[]){     /* startup */
999 		/* Status is read once to clear old link state */
1000 		{MIIM_STATUS, miim_read, NULL},
1001 		/* Auto-negotiate */
1002 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1003 		/* Read the status */
1004 		{MIIM_88E1011_PHY_STATUS, miim_read,
1005 		 &mii_parse_88E1011_psr},
1006 		{miim_end,}
1007 	},
1008 	(struct phy_cmd[]){     /* shutdown */
1009 		{miim_end,}
1010 	},
1011 };
1012 
1013 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
1014 struct phy_info phy_info_BCM5461S = {
1015 	0x02060c1,	/* 5461 ID */
1016 	"Broadcom BCM5461S",
1017 	0, /* not clear to me what minor revisions we can shift away */
1018 	(struct phy_cmd[]) { /* config */
1019 		/* Reset and configure the PHY */
1020 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1021 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1022 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1023 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1024 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1025 		{miim_end,}
1026 	},
1027 	(struct phy_cmd[]) { /* startup */
1028 		/* Status is read once to clear old link state */
1029 		{MIIM_STATUS, miim_read, NULL},
1030 		/* Auto-negotiate */
1031 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1032 		/* Read the status */
1033 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1034 		{miim_end,}
1035 	},
1036 	(struct phy_cmd[]) { /* shutdown */
1037 		{miim_end,}
1038 	},
1039 };
1040 
1041 struct phy_info phy_info_BCM5464S = {
1042 	0x02060b1,	/* 5464 ID */
1043 	"Broadcom BCM5464S",
1044 	0, /* not clear to me what minor revisions we can shift away */
1045 	(struct phy_cmd[]) { /* config */
1046 		/* Reset and configure the PHY */
1047 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1048 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1049 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1050 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1051 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1052 		{miim_end,}
1053 	},
1054 	(struct phy_cmd[]) { /* startup */
1055 		/* Status is read once to clear old link state */
1056 		{MIIM_STATUS, miim_read, NULL},
1057 		/* Auto-negotiate */
1058 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1059 		/* Read the status */
1060 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
1061 		{miim_end,}
1062 	},
1063 	(struct phy_cmd[]) { /* shutdown */
1064 		{miim_end,}
1065 	},
1066 };
1067 
1068 struct phy_info phy_info_M88E1011S = {
1069 	0x01410c6,
1070 	"Marvell 88E1011S",
1071 	4,
1072 	(struct phy_cmd[]){	/* config */
1073 			   /* Reset and configure the PHY */
1074 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1075 			   {0x1d, 0x1f, NULL},
1076 			   {0x1e, 0x200c, NULL},
1077 			   {0x1d, 0x5, NULL},
1078 			   {0x1e, 0x0, NULL},
1079 			   {0x1e, 0x100, NULL},
1080 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1081 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1082 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1083 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1084 			   {miim_end,}
1085 			   },
1086 	(struct phy_cmd[]){	/* startup */
1087 			   /* Status is read once to clear old link state */
1088 			   {MIIM_STATUS, miim_read, NULL},
1089 			   /* Auto-negotiate */
1090 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1091 			   /* Read the status */
1092 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1093 			    &mii_parse_88E1011_psr},
1094 			   {miim_end,}
1095 			   },
1096 	(struct phy_cmd[]){	/* shutdown */
1097 			   {miim_end,}
1098 			   },
1099 };
1100 
1101 struct phy_info phy_info_M88E1111S = {
1102 	0x01410cc,
1103 	"Marvell 88E1111S",
1104 	4,
1105 	(struct phy_cmd[]){	/* config */
1106 			   /* Reset and configure the PHY */
1107 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1108 			   {0x1b, 0x848f, &mii_m88e1111s_setmode},
1109 			   {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1110 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1111 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1112 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1113 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1114 			   {miim_end,}
1115 			   },
1116 	(struct phy_cmd[]){	/* startup */
1117 			   /* Status is read once to clear old link state */
1118 			   {MIIM_STATUS, miim_read, NULL},
1119 			   /* Auto-negotiate */
1120 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1121 			   /* Read the status */
1122 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1123 			    &mii_parse_88E1011_psr},
1124 			   {miim_end,}
1125 			   },
1126 	(struct phy_cmd[]){	/* shutdown */
1127 			   {miim_end,}
1128 			   },
1129 };
1130 
1131 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1132 {
1133 	uint mii_data = read_phy_reg(priv, mii_reg);
1134 
1135 	/* Setting MIIM_88E1145_PHY_EXT_CR */
1136 	if (priv->flags & TSEC_REDUCED)
1137 		return mii_data |
1138 		    MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1139 	else
1140 		return mii_data;
1141 }
1142 
1143 static struct phy_info phy_info_M88E1145 = {
1144 	0x01410cd,
1145 	"Marvell 88E1145",
1146 	4,
1147 	(struct phy_cmd[]){	/* config */
1148 			   /* Reset the PHY */
1149 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1150 
1151 			   /* Errata E0, E1 */
1152 			   {29, 0x001b, NULL},
1153 			   {30, 0x418f, NULL},
1154 			   {29, 0x0016, NULL},
1155 			   {30, 0xa2da, NULL},
1156 
1157 			   /* Configure the PHY */
1158 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1159 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1160 			   {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1161 			    NULL},
1162 			   {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1163 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1164 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1165 			   {miim_end,}
1166 			   },
1167 	(struct phy_cmd[]){	/* startup */
1168 			   /* Status is read once to clear old link state */
1169 			   {MIIM_STATUS, miim_read, NULL},
1170 			   /* Auto-negotiate */
1171 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1172 			   {MIIM_88E1111_PHY_LED_CONTROL,
1173 			    MIIM_88E1111_PHY_LED_DIRECT, NULL},
1174 			   /* Read the Status */
1175 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1176 			    &mii_parse_88E1011_psr},
1177 			   {miim_end,}
1178 			   },
1179 	(struct phy_cmd[]){	/* shutdown */
1180 			   {miim_end,}
1181 			   },
1182 };
1183 
1184 struct phy_info phy_info_cis8204 = {
1185 	0x3f11,
1186 	"Cicada Cis8204",
1187 	6,
1188 	(struct phy_cmd[]){	/* config */
1189 			   /* Override PHY config settings */
1190 			   {MIIM_CIS8201_AUX_CONSTAT,
1191 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1192 			   /* Configure some basic stuff */
1193 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1194 			   {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1195 			    &mii_cis8204_fixled},
1196 			   {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1197 			    &mii_cis8204_setmode},
1198 			   {miim_end,}
1199 			   },
1200 	(struct phy_cmd[]){	/* startup */
1201 			   /* Read the Status (2x to make sure link is right) */
1202 			   {MIIM_STATUS, miim_read, NULL},
1203 			   /* Auto-negotiate */
1204 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1205 			   /* Read the status */
1206 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1207 			    &mii_parse_cis8201},
1208 			   {miim_end,}
1209 			   },
1210 	(struct phy_cmd[]){	/* shutdown */
1211 			   {miim_end,}
1212 			   },
1213 };
1214 
1215 /* Cicada 8201 */
1216 struct phy_info phy_info_cis8201 = {
1217 	0xfc41,
1218 	"CIS8201",
1219 	4,
1220 	(struct phy_cmd[]){	/* config */
1221 			   /* Override PHY config settings */
1222 			   {MIIM_CIS8201_AUX_CONSTAT,
1223 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1224 			   /* Set up the interface mode */
1225 			   {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1226 			    NULL},
1227 			   /* Configure some basic stuff */
1228 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1229 			   {miim_end,}
1230 			   },
1231 	(struct phy_cmd[]){	/* startup */
1232 			   /* Read the Status (2x to make sure link is right) */
1233 			   {MIIM_STATUS, miim_read, NULL},
1234 			   /* Auto-negotiate */
1235 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1236 			   /* Read the status */
1237 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1238 			    &mii_parse_cis8201},
1239 			   {miim_end,}
1240 			   },
1241 	(struct phy_cmd[]){	/* shutdown */
1242 			   {miim_end,}
1243 			   },
1244 };
1245 struct phy_info phy_info_VSC8244 = {
1246 	0x3f1b,
1247 	"Vitesse VSC8244",
1248 	6,
1249 	(struct phy_cmd[]){	/* config */
1250 			   /* Override PHY config settings */
1251 			   /* Configure some basic stuff */
1252 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1253 			   {miim_end,}
1254 			   },
1255 	(struct phy_cmd[]){	/* startup */
1256 			   /* Read the Status (2x to make sure link is right) */
1257 			   {MIIM_STATUS, miim_read, NULL},
1258 			   /* Auto-negotiate */
1259 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1260 			   /* Read the status */
1261 			   {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1262 			    &mii_parse_vsc8244},
1263 			   {miim_end,}
1264 			   },
1265 	(struct phy_cmd[]){	/* shutdown */
1266 			   {miim_end,}
1267 			   },
1268 };
1269 
1270 struct phy_info phy_info_VSC8601 = {
1271 		0x00007042,
1272 		"Vitesse VSC8601",
1273 		4,
1274 		(struct phy_cmd[]){     /* config */
1275 				/* Override PHY config settings */
1276 				/* Configure some basic stuff */
1277 				{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1278 #ifdef CFG_VSC8601_SKEWFIX
1279 				{MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL},
1280 #if defined(CFG_VSC8601_SKEW_TX) && defined(CFG_VSC8601_SKEW_RX)
1281 				{MIIM_EXT_PAGE_ACCESS,1,NULL},
1282 #define VSC8101_SKEW	(CFG_VSC8601_SKEW_TX<<14)|(CFG_VSC8601_SKEW_RX<<12)
1283 				{MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL},
1284 				{MIIM_EXT_PAGE_ACCESS,0,NULL},
1285 #endif
1286 #endif
1287 				{miim_end,}
1288 				 },
1289 		(struct phy_cmd[]){     /* startup */
1290 				/* Read the Status (2x to make sure link is right) */
1291 				{MIIM_STATUS, miim_read, NULL},
1292 				/* Auto-negotiate */
1293 				{MIIM_STATUS, miim_read, &mii_parse_sr},
1294 				/* Read the status */
1295 				{MIIM_VSC8244_AUX_CONSTAT, miim_read,
1296 						&mii_parse_vsc8244},
1297 				{miim_end,}
1298 				},
1299 		(struct phy_cmd[]){     /* shutdown */
1300 				{miim_end,}
1301 				},
1302 };
1303 
1304 
1305 struct phy_info phy_info_dm9161 = {
1306 	0x0181b88,
1307 	"Davicom DM9161E",
1308 	4,
1309 	(struct phy_cmd[]){	/* config */
1310 			   {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1311 			   /* Do not bypass the scrambler/descrambler */
1312 			   {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1313 			   /* Clear 10BTCSR to default */
1314 			   {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1315 			    NULL},
1316 			   /* Configure some basic stuff */
1317 			   {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1318 			   /* Restart Auto Negotiation */
1319 			   {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1320 			   {miim_end,}
1321 			   },
1322 	(struct phy_cmd[]){	/* startup */
1323 			   /* Status is read once to clear old link state */
1324 			   {MIIM_STATUS, miim_read, NULL},
1325 			   /* Auto-negotiate */
1326 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1327 			   /* Read the status */
1328 			   {MIIM_DM9161_SCSR, miim_read,
1329 			    &mii_parse_dm9161_scsr},
1330 			   {miim_end,}
1331 			   },
1332 	(struct phy_cmd[]){	/* shutdown */
1333 			   {miim_end,}
1334 			   },
1335 };
1336 /* a generic flavor.  */
1337 struct phy_info phy_info_generic =  {
1338 	0,
1339 	"Unknown/Generic PHY",
1340 	32,
1341 	(struct phy_cmd[]) { /* config */
1342 		{PHY_BMCR, PHY_BMCR_RESET, NULL},
1343 		{PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1344 		{miim_end,}
1345 	},
1346 	(struct phy_cmd[]) { /* startup */
1347 		{PHY_BMSR, miim_read, NULL},
1348 		{PHY_BMSR, miim_read, &mii_parse_sr},
1349 		{PHY_BMSR, miim_read, &mii_parse_link},
1350 		{miim_end,}
1351 	},
1352 	(struct phy_cmd[]) { /* shutdown */
1353 		{miim_end,}
1354 	}
1355 };
1356 
1357 
1358 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1359 {
1360 	unsigned int speed;
1361 	if (priv->link) {
1362 		speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1363 
1364 		switch (speed) {
1365 		case MIIM_LXT971_SR2_10HDX:
1366 			priv->speed = 10;
1367 			priv->duplexity = 0;
1368 			break;
1369 		case MIIM_LXT971_SR2_10FDX:
1370 			priv->speed = 10;
1371 			priv->duplexity = 1;
1372 			break;
1373 		case MIIM_LXT971_SR2_100HDX:
1374 			priv->speed = 100;
1375 			priv->duplexity = 0;
1376 			break;
1377 		default:
1378 			priv->speed = 100;
1379 			priv->duplexity = 1;
1380 		}
1381 	} else {
1382 		priv->speed = 0;
1383 		priv->duplexity = 0;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static struct phy_info phy_info_lxt971 = {
1390 	0x0001378e,
1391 	"LXT971",
1392 	4,
1393 	(struct phy_cmd[]){	/* config */
1394 			   {MIIM_CR, MIIM_CR_INIT, mii_cr_init},	/* autonegotiate */
1395 			   {miim_end,}
1396 			   },
1397 	(struct phy_cmd[]){	/* startup - enable interrupts */
1398 			   /* { 0x12, 0x00f2, NULL }, */
1399 			   {MIIM_STATUS, miim_read, NULL},
1400 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1401 			   {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1402 			   {miim_end,}
1403 			   },
1404 	(struct phy_cmd[]){	/* shutdown - disable interrupts */
1405 			   {miim_end,}
1406 			   },
1407 };
1408 
1409 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1410  * information
1411  */
1412 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1413 {
1414 	switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1415 
1416 	case MIIM_DP83865_SPD_1000:
1417 		priv->speed = 1000;
1418 		break;
1419 
1420 	case MIIM_DP83865_SPD_100:
1421 		priv->speed = 100;
1422 		break;
1423 
1424 	default:
1425 		priv->speed = 10;
1426 		break;
1427 
1428 	}
1429 
1430 	if (mii_reg & MIIM_DP83865_DPX_FULL)
1431 		priv->duplexity = 1;
1432 	else
1433 		priv->duplexity = 0;
1434 
1435 	return 0;
1436 }
1437 
1438 struct phy_info phy_info_dp83865 = {
1439 	0x20005c7,
1440 	"NatSemi DP83865",
1441 	4,
1442 	(struct phy_cmd[]){	/* config */
1443 			   {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1444 			   {miim_end,}
1445 			   },
1446 	(struct phy_cmd[]){	/* startup */
1447 			   /* Status is read once to clear old link state */
1448 			   {MIIM_STATUS, miim_read, NULL},
1449 			   /* Auto-negotiate */
1450 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1451 			   /* Read the link and auto-neg status */
1452 			   {MIIM_DP83865_LANR, miim_read,
1453 			    &mii_parse_dp83865_lanr},
1454 			   {miim_end,}
1455 			   },
1456 	(struct phy_cmd[]){	/* shutdown */
1457 			   {miim_end,}
1458 			   },
1459 };
1460 
1461 struct phy_info phy_info_rtl8211b = {
1462 	0x001cc91,
1463 	"RealTek RTL8211B",
1464 	4,
1465 	(struct phy_cmd[]){	/* config */
1466 		/* Reset and configure the PHY */
1467 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1468 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1469 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1470 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1471 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1472 		{miim_end,}
1473 	},
1474 	(struct phy_cmd[]){	/* startup */
1475 		/* Status is read once to clear old link state */
1476 		{MIIM_STATUS, miim_read, NULL},
1477 		/* Auto-negotiate */
1478 		{MIIM_STATUS, miim_read, &mii_parse_sr},
1479 		/* Read the status */
1480 		{MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr},
1481 		{miim_end,}
1482 	},
1483 	(struct phy_cmd[]){	/* shutdown */
1484 		{miim_end,}
1485 	},
1486 };
1487 
1488 struct phy_info *phy_info[] = {
1489 	&phy_info_cis8204,
1490 	&phy_info_cis8201,
1491 	&phy_info_BCM5461S,
1492 	&phy_info_BCM5464S,
1493 	&phy_info_M88E1011S,
1494 	&phy_info_M88E1111S,
1495 	&phy_info_M88E1145,
1496 	&phy_info_M88E1149S,
1497 	&phy_info_dm9161,
1498 	&phy_info_lxt971,
1499 	&phy_info_VSC8244,
1500 	&phy_info_VSC8601,
1501 	&phy_info_dp83865,
1502 	&phy_info_rtl8211b,
1503 	&phy_info_generic,
1504 	NULL
1505 };
1506 
1507 /* Grab the identifier of the device's PHY, and search through
1508  * all of the known PHYs to see if one matches.	 If so, return
1509  * it, if not, return NULL
1510  */
1511 struct phy_info *get_phy_info(struct eth_device *dev)
1512 {
1513 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1514 	uint phy_reg, phy_ID;
1515 	int i;
1516 	struct phy_info *theInfo = NULL;
1517 
1518 	/* Grab the bits from PHYIR1, and put them in the upper half */
1519 	phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1520 	phy_ID = (phy_reg & 0xffff) << 16;
1521 
1522 	/* Grab the bits from PHYIR2, and put them in the lower half */
1523 	phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1524 	phy_ID |= (phy_reg & 0xffff);
1525 
1526 	/* loop through all the known PHY types, and find one that */
1527 	/* matches the ID we read from the PHY. */
1528 	for (i = 0; phy_info[i]; i++) {
1529 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1530 			theInfo = phy_info[i];
1531 			break;
1532 		}
1533 	}
1534 
1535 	if (theInfo == NULL) {
1536 		printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1537 		return NULL;
1538 	} else {
1539 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1540 	}
1541 
1542 	return theInfo;
1543 }
1544 
1545 /* Execute the given series of commands on the given device's
1546  * PHY, running functions as necessary
1547  */
1548 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1549 {
1550 	int i;
1551 	uint result;
1552 	volatile tsec_t *phyregs = priv->phyregs;
1553 
1554 	phyregs->miimcfg = MIIMCFG_RESET;
1555 
1556 	phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1557 
1558 	while (phyregs->miimind & MIIMIND_BUSY) ;
1559 
1560 	for (i = 0; cmd->mii_reg != miim_end; i++) {
1561 		if (cmd->mii_data == miim_read) {
1562 			result = read_phy_reg(priv, cmd->mii_reg);
1563 
1564 			if (cmd->funct != NULL)
1565 				(*(cmd->funct)) (result, priv);
1566 
1567 		} else {
1568 			if (cmd->funct != NULL)
1569 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
1570 			else
1571 				result = cmd->mii_data;
1572 
1573 			write_phy_reg(priv, cmd->mii_reg, result);
1574 
1575 		}
1576 		cmd++;
1577 	}
1578 }
1579 
1580 /* Relocate the function pointers in the phy cmd lists */
1581 static void relocate_cmds(void)
1582 {
1583 	struct phy_cmd **cmdlistptr;
1584 	struct phy_cmd *cmd;
1585 	int i, j, k;
1586 
1587 	for (i = 0; phy_info[i]; i++) {
1588 		/* First thing's first: relocate the pointers to the
1589 		 * PHY command structures (the structs were done) */
1590 		phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1591 						  + gd->reloc_off);
1592 		phy_info[i]->name += gd->reloc_off;
1593 		phy_info[i]->config =
1594 		    (struct phy_cmd *)((uint) phy_info[i]->config
1595 				       + gd->reloc_off);
1596 		phy_info[i]->startup =
1597 		    (struct phy_cmd *)((uint) phy_info[i]->startup
1598 				       + gd->reloc_off);
1599 		phy_info[i]->shutdown =
1600 		    (struct phy_cmd *)((uint) phy_info[i]->shutdown
1601 				       + gd->reloc_off);
1602 
1603 		cmdlistptr = &phy_info[i]->config;
1604 		j = 0;
1605 		for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1606 			k = 0;
1607 			for (cmd = *cmdlistptr;
1608 			     cmd->mii_reg != miim_end;
1609 			     cmd++) {
1610 				/* Only relocate non-NULL pointers */
1611 				if (cmd->funct)
1612 					cmd->funct += gd->reloc_off;
1613 
1614 				k++;
1615 			}
1616 			j++;
1617 		}
1618 	}
1619 
1620 	relocated = 1;
1621 }
1622 
1623 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1624 	&& !defined(BITBANGMII)
1625 
1626 /*
1627  * Read a MII PHY register.
1628  *
1629  * Returns:
1630  *  0 on success
1631  */
1632 static int tsec_miiphy_read(char *devname, unsigned char addr,
1633 			    unsigned char reg, unsigned short *value)
1634 {
1635 	unsigned short ret;
1636 	struct tsec_private *priv = privlist[0];
1637 
1638 	if (NULL == priv) {
1639 		printf("Can't read PHY at address %d\n", addr);
1640 		return -1;
1641 	}
1642 
1643 	ret = (unsigned short)read_any_phy_reg(priv, addr, reg);
1644 	*value = ret;
1645 
1646 	return 0;
1647 }
1648 
1649 /*
1650  * Write a MII PHY register.
1651  *
1652  * Returns:
1653  *  0 on success
1654  */
1655 static int tsec_miiphy_write(char *devname, unsigned char addr,
1656 			     unsigned char reg, unsigned short value)
1657 {
1658 	struct tsec_private *priv = privlist[0];
1659 
1660 	if (NULL == priv) {
1661 		printf("Can't write PHY at address %d\n", addr);
1662 		return -1;
1663 	}
1664 
1665 	write_any_phy_reg(priv, addr, reg, value);
1666 
1667 	return 0;
1668 }
1669 
1670 #endif
1671 
1672 #ifdef CONFIG_MCAST_TFTP
1673 
1674 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1675 
1676 /* Set the appropriate hash bit for the given addr */
1677 
1678 /* The algorithm works like so:
1679  * 1) Take the Destination Address (ie the multicast address), and
1680  * do a CRC on it (little endian), and reverse the bits of the
1681  * result.
1682  * 2) Use the 8 most significant bits as a hash into a 256-entry
1683  * table.  The table is controlled through 8 32-bit registers:
1684  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1685  * gaddr7.  This means that the 3 most significant bits in the
1686  * hash index which gaddr register to use, and the 5 other bits
1687  * indicate which bit (assuming an IBM numbering scheme, which
1688  * for PowerPC (tm) is usually the case) in the tregister holds
1689  * the entry. */
1690 static int
1691 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1692 {
1693  struct tsec_private *priv = privlist[1];
1694  volatile tsec_t *regs = priv->regs;
1695  volatile u32  *reg_array, value;
1696  u8 result, whichbit, whichreg;
1697 
1698 	result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1699 	whichbit = result & 0x1f;	/* the 5 LSB = which bit to set */
1700 	whichreg = result >> 5;		/* the 3 MSB = which reg to set it in */
1701 	value = (1 << (31-whichbit));
1702 
1703 	reg_array = &(regs->hash.gaddr0);
1704 
1705 	if (set) {
1706 		reg_array[whichreg] |= value;
1707 	} else {
1708 		reg_array[whichreg] &= ~value;
1709 	}
1710 	return 0;
1711 }
1712 #endif /* Multicast TFTP ? */
1713 
1714 #endif /* CONFIG_TSEC_ENET */
1715