xref: /openbmc/u-boot/drivers/net/tsec.c (revision 415a613b)
1 /*
2  * Freescale Three Speed Ethernet Controller driver
3  *
4  * This software may be used and distributed according to the
5  * terms of the GNU Public License, Version 2, incorporated
6  * herein by reference.
7  *
8  * Copyright 2004, 2007 Freescale Semiconductor, Inc.
9  * (C) Copyright 2003, Motorola, Inc.
10  * author Andy Fleming
11  *
12  */
13 
14 #include <config.h>
15 #include <common.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <command.h>
19 
20 #if defined(CONFIG_TSEC_ENET)
21 #include "tsec.h"
22 #include "miiphy.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define TX_BUF_CNT		2
27 
28 static uint rxIdx;		/* index of the current RX buffer */
29 static uint txIdx;		/* index of the current TX buffer */
30 
31 typedef volatile struct rtxbd {
32 	txbd8_t txbd[TX_BUF_CNT];
33 	rxbd8_t rxbd[PKTBUFSRX];
34 } RTXBD;
35 
36 struct tsec_info_struct {
37 	unsigned int phyaddr;
38 	u32 flags;
39 	unsigned int phyregidx;
40 };
41 
42 /* The tsec_info structure contains 3 values which the
43  * driver uses to determine how to operate a given ethernet
44  * device. The information needed is:
45  *  phyaddr - The address of the PHY which is attached to
46  *	the given device.
47  *
48  *  flags - This variable indicates whether the device
49  *	supports gigabit speed ethernet, and whether it should be
50  *	in reduced mode.
51  *
52  *  phyregidx - This variable specifies which ethernet device
53  *	controls the MII Management registers which are connected
54  *	to the PHY.  For now, only TSEC1 (index 0) has
55  *	access to the PHYs, so all of the entries have "0".
56  *
57  * The values specified in the table are taken from the board's
58  * config file in include/configs/.  When implementing a new
59  * board with ethernet capability, it is necessary to define:
60  *   TSECn_PHY_ADDR
61  *   TSECn_PHYIDX
62  *
63  * for n = 1,2,3, etc.  And for FEC:
64  *   FEC_PHY_ADDR
65  *   FEC_PHYIDX
66  */
67 static struct tsec_info_struct tsec_info[] = {
68 #ifdef CONFIG_TSEC1
69 	{TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX},
70 #else
71 	{0, 0, 0},
72 #endif
73 #ifdef CONFIG_TSEC2
74 	{TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX},
75 #else
76 	{0, 0, 0},
77 #endif
78 #ifdef CONFIG_MPC85XX_FEC
79 	{FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX},
80 #else
81 #ifdef CONFIG_TSEC3
82 	{TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX},
83 #else
84 	{0, 0, 0},
85 #endif
86 #ifdef CONFIG_TSEC4
87 	{TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX},
88 #else
89 	{0, 0, 0},
90 #endif	/* CONFIG_TSEC4 */
91 #endif	/* CONFIG_MPC85XX_FEC */
92 };
93 
94 #define MAXCONTROLLERS	(4)
95 
96 static int relocated = 0;
97 
98 static struct tsec_private *privlist[MAXCONTROLLERS];
99 
100 #ifdef __GNUC__
101 static RTXBD rtx __attribute__ ((aligned(8)));
102 #else
103 #error "rtx must be 64-bit aligned"
104 #endif
105 
106 static int tsec_send(struct eth_device *dev,
107 		     volatile void *packet, int length);
108 static int tsec_recv(struct eth_device *dev);
109 static int tsec_init(struct eth_device *dev, bd_t * bd);
110 static void tsec_halt(struct eth_device *dev);
111 static void init_registers(volatile tsec_t * regs);
112 static void startup_tsec(struct eth_device *dev);
113 static int init_phy(struct eth_device *dev);
114 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value);
115 uint read_phy_reg(struct tsec_private *priv, uint regnum);
116 struct phy_info *get_phy_info(struct eth_device *dev);
117 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd);
118 static void adjust_link(struct eth_device *dev);
119 static void relocate_cmds(void);
120 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
121 	&& !defined(BITBANGMII)
122 static int tsec_miiphy_write(char *devname, unsigned char addr,
123 			     unsigned char reg, unsigned short value);
124 static int tsec_miiphy_read(char *devname, unsigned char addr,
125 			    unsigned char reg, unsigned short *value);
126 #endif
127 #ifdef CONFIG_MCAST_TFTP
128 static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set);
129 #endif
130 
131 /* Initialize device structure. Returns success if PHY
132  * initialization succeeded (i.e. if it recognizes the PHY)
133  */
134 int tsec_initialize(bd_t * bis, int index, char *devname)
135 {
136 	struct eth_device *dev;
137 	int i;
138 	struct tsec_private *priv;
139 
140 	dev = (struct eth_device *)malloc(sizeof *dev);
141 
142 	if (NULL == dev)
143 		return 0;
144 
145 	memset(dev, 0, sizeof *dev);
146 
147 	priv = (struct tsec_private *)malloc(sizeof(*priv));
148 
149 	if (NULL == priv)
150 		return 0;
151 
152 	privlist[index] = priv;
153 	priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE);
154 	priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR +
155 					    tsec_info[index].phyregidx *
156 					    TSEC_SIZE);
157 
158 	priv->phyaddr = tsec_info[index].phyaddr;
159 	priv->flags = tsec_info[index].flags;
160 
161 	sprintf(dev->name, devname);
162 	dev->iobase = 0;
163 	dev->priv = priv;
164 	dev->init = tsec_init;
165 	dev->halt = tsec_halt;
166 	dev->send = tsec_send;
167 	dev->recv = tsec_recv;
168 #ifdef CONFIG_MCAST_TFTP
169 	dev->mcast = tsec_mcast_addr;
170 #endif
171 
172 	/* Tell u-boot to get the addr from the env */
173 	for (i = 0; i < 6; i++)
174 		dev->enetaddr[i] = 0;
175 
176 	eth_register(dev);
177 
178 	/* Reset the MAC */
179 	priv->regs->maccfg1 |= MACCFG1_SOFT_RESET;
180 	priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET);
181 
182 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
183 	&& !defined(BITBANGMII)
184 	miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write);
185 #endif
186 
187 	/* Try to initialize PHY here, and return */
188 	return init_phy(dev);
189 }
190 
191 /* Initializes data structures and registers for the controller,
192  * and brings the interface up.	 Returns the link status, meaning
193  * that it returns success if the link is up, failure otherwise.
194  * This allows u-boot to find the first active controller.
195  */
196 int tsec_init(struct eth_device *dev, bd_t * bd)
197 {
198 	uint tempval;
199 	char tmpbuf[MAC_ADDR_LEN];
200 	int i;
201 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
202 	volatile tsec_t *regs = priv->regs;
203 
204 	/* Make sure the controller is stopped */
205 	tsec_halt(dev);
206 
207 	/* Init MACCFG2.  Defaults to GMII */
208 	regs->maccfg2 = MACCFG2_INIT_SETTINGS;
209 
210 	/* Init ECNTRL */
211 	regs->ecntrl = ECNTRL_INIT_SETTINGS;
212 
213 	/* Copy the station address into the address registers.
214 	 * Backwards, because little endian MACS are dumb */
215 	for (i = 0; i < MAC_ADDR_LEN; i++) {
216 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i];
217 	}
218 	regs->macstnaddr1 = *((uint *) (tmpbuf));
219 
220 	tempval = *((uint *) (tmpbuf + 4));
221 
222 	regs->macstnaddr2 = tempval;
223 
224 	/* reset the indices to zero */
225 	rxIdx = 0;
226 	txIdx = 0;
227 
228 	/* Clear out (for the most part) the other registers */
229 	init_registers(regs);
230 
231 	/* Ready the device for tx/rx */
232 	startup_tsec(dev);
233 
234 	/* If there's no link, fail */
235 	return priv->link;
236 
237 }
238 
239 /* Write value to the device's PHY through the registers
240  * specified in priv, modifying the register specified in regnum.
241  * It will wait for the write to be done (or for a timeout to
242  * expire) before exiting
243  */
244 void write_phy_reg(struct tsec_private *priv, uint regnum, uint value)
245 {
246 	volatile tsec_t *regbase = priv->phyregs;
247 	uint phyid = priv->phyaddr;
248 	int timeout = 1000000;
249 
250 	regbase->miimadd = (phyid << 8) | regnum;
251 	regbase->miimcon = value;
252 	asm("sync");
253 
254 	timeout = 1000000;
255 	while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
256 }
257 
258 /* Reads register regnum on the device's PHY through the
259  * registers specified in priv.	 It lowers and raises the read
260  * command, and waits for the data to become valid (miimind
261  * notvalid bit cleared), and the bus to cease activity (miimind
262  * busy bit cleared), and then returns the value
263  */
264 uint read_phy_reg(struct tsec_private *priv, uint regnum)
265 {
266 	uint value;
267 	volatile tsec_t *regbase = priv->phyregs;
268 	uint phyid = priv->phyaddr;
269 
270 	/* Put the address of the phy, and the register
271 	 * number into MIIMADD */
272 	regbase->miimadd = (phyid << 8) | regnum;
273 
274 	/* Clear the command register, and wait */
275 	regbase->miimcom = 0;
276 	asm("sync");
277 
278 	/* Initiate a read command, and wait */
279 	regbase->miimcom = MIIM_READ_COMMAND;
280 	asm("sync");
281 
282 	/* Wait for the the indication that the read is done */
283 	while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ;
284 
285 	/* Grab the value read from the PHY */
286 	value = regbase->miimstat;
287 
288 	return value;
289 }
290 
291 /* Discover which PHY is attached to the device, and configure it
292  * properly.  If the PHY is not recognized, then return 0
293  * (failure).  Otherwise, return 1
294  */
295 static int init_phy(struct eth_device *dev)
296 {
297 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
298 	struct phy_info *curphy;
299 	volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR);
300 
301 	/* Assign a Physical address to the TBI */
302 	regs->tbipa = CFG_TBIPA_VALUE;
303 	regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE);
304 	regs->tbipa = CFG_TBIPA_VALUE;
305 	asm("sync");
306 
307 	/* Reset MII (due to new addresses) */
308 	priv->phyregs->miimcfg = MIIMCFG_RESET;
309 	asm("sync");
310 	priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE;
311 	asm("sync");
312 	while (priv->phyregs->miimind & MIIMIND_BUSY) ;
313 
314 	if (0 == relocated)
315 		relocate_cmds();
316 
317 	/* Get the cmd structure corresponding to the attached
318 	 * PHY */
319 	curphy = get_phy_info(dev);
320 
321 	if (curphy == NULL) {
322 		priv->phyinfo = NULL;
323 		printf("%s: No PHY found\n", dev->name);
324 
325 		return 0;
326 	}
327 
328 	priv->phyinfo = curphy;
329 
330 	phy_run_commands(priv, priv->phyinfo->config);
331 
332 	return 1;
333 }
334 
335 /*
336  * Returns which value to write to the control register.
337  * For 10/100, the value is slightly different
338  */
339 uint mii_cr_init(uint mii_reg, struct tsec_private * priv)
340 {
341 	if (priv->flags & TSEC_GIGABIT)
342 		return MIIM_CONTROL_INIT;
343 	else
344 		return MIIM_CR_INIT;
345 }
346 
347 /* Parse the status register for link, and then do
348  * auto-negotiation
349  */
350 uint mii_parse_sr(uint mii_reg, struct tsec_private * priv)
351 {
352 	/*
353 	 * Wait if the link is up, and autonegotiation is in progress
354 	 * (ie - we're capable and it's not done)
355 	 */
356 	mii_reg = read_phy_reg(priv, MIIM_STATUS);
357 	if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE)
358 	    && !(mii_reg & PHY_BMSR_AUTN_COMP)) {
359 		int i = 0;
360 
361 		puts("Waiting for PHY auto negotiation to complete");
362 		while (!(mii_reg & PHY_BMSR_AUTN_COMP)) {
363 			/*
364 			 * Timeout reached ?
365 			 */
366 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
367 				puts(" TIMEOUT !\n");
368 				priv->link = 0;
369 				return 0;
370 			}
371 
372 			if ((i++ % 1000) == 0) {
373 				putc('.');
374 			}
375 			udelay(1000);	/* 1 ms */
376 			mii_reg = read_phy_reg(priv, MIIM_STATUS);
377 		}
378 		puts(" done\n");
379 		priv->link = 1;
380 		udelay(500000);	/* another 500 ms (results in faster booting) */
381 	} else {
382 		if (mii_reg & MIIM_STATUS_LINK)
383 			priv->link = 1;
384 		else
385 			priv->link = 0;
386 	}
387 
388 	return 0;
389 }
390 
391 /* Generic function which updates the speed and duplex.  If
392  * autonegotiation is enabled, it uses the AND of the link
393  * partner's advertised capabilities and our advertised
394  * capabilities.  If autonegotiation is disabled, we use the
395  * appropriate bits in the control register.
396  *
397  * Stolen from Linux's mii.c and phy_device.c
398  */
399 uint mii_parse_link(uint mii_reg, struct tsec_private *priv)
400 {
401 	/* We're using autonegotiation */
402 	if (mii_reg & PHY_BMSR_AUTN_ABLE) {
403 		uint lpa = 0;
404 		uint gblpa = 0;
405 
406 		/* Check for gigabit capability */
407 		if (mii_reg & PHY_BMSR_EXT) {
408 			/* We want a list of states supported by
409 			 * both PHYs in the link
410 			 */
411 			gblpa = read_phy_reg(priv, PHY_1000BTSR);
412 			gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2;
413 		}
414 
415 		/* Set the baseline so we only have to set them
416 		 * if they're different
417 		 */
418 		priv->speed = 10;
419 		priv->duplexity = 0;
420 
421 		/* Check the gigabit fields */
422 		if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) {
423 			priv->speed = 1000;
424 
425 			if (gblpa & PHY_1000BTSR_1000FD)
426 				priv->duplexity = 1;
427 
428 			/* We're done! */
429 			return 0;
430 		}
431 
432 		lpa = read_phy_reg(priv, PHY_ANAR);
433 		lpa &= read_phy_reg(priv, PHY_ANLPAR);
434 
435 		if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) {
436 			priv->speed = 100;
437 
438 			if (lpa & PHY_ANLPAR_TXFD)
439 				priv->duplexity = 1;
440 
441 		} else if (lpa & PHY_ANLPAR_10FD)
442 			priv->duplexity = 1;
443 	} else {
444 		uint bmcr = read_phy_reg(priv, PHY_BMCR);
445 
446 		priv->speed = 10;
447 		priv->duplexity = 0;
448 
449 		if (bmcr & PHY_BMCR_DPLX)
450 			priv->duplexity = 1;
451 
452 		if (bmcr & PHY_BMCR_1000_MBPS)
453 			priv->speed = 1000;
454 		else if (bmcr & PHY_BMCR_100_MBPS)
455 			priv->speed = 100;
456 	}
457 
458 	return 0;
459 }
460 
461 /*
462  * Parse the BCM54xx status register for speed and duplex information.
463  * The linux sungem_phy has this information, but in a table format.
464  */
465 uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv)
466 {
467 
468 	switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){
469 
470 		case 1:
471 			printf("Enet starting in 10BT/HD\n");
472 			priv->duplexity = 0;
473 			priv->speed = 10;
474 			break;
475 
476 		case 2:
477 			printf("Enet starting in 10BT/FD\n");
478 			priv->duplexity = 1;
479 			priv->speed = 10;
480 			break;
481 
482 		case 3:
483 			printf("Enet starting in 100BT/HD\n");
484 			priv->duplexity = 0;
485 			priv->speed = 100;
486 			break;
487 
488 		case 5:
489 			printf("Enet starting in 100BT/FD\n");
490 			priv->duplexity = 1;
491 			priv->speed = 100;
492 			break;
493 
494 		case 6:
495 			printf("Enet starting in 1000BT/HD\n");
496 			priv->duplexity = 0;
497 			priv->speed = 1000;
498 			break;
499 
500 		case 7:
501 			printf("Enet starting in 1000BT/FD\n");
502 			priv->duplexity = 1;
503 			priv->speed = 1000;
504 			break;
505 
506 		default:
507 			printf("Auto-neg error, defaulting to 10BT/HD\n");
508 			priv->duplexity = 0;
509 			priv->speed = 10;
510 			break;
511 	}
512 
513 	return 0;
514 
515 }
516 /* Parse the 88E1011's status register for speed and duplex
517  * information
518  */
519 uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv)
520 {
521 	uint speed;
522 
523 	mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
524 
525 	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
526 		!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
527 		int i = 0;
528 
529 		puts("Waiting for PHY realtime link");
530 		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
531 			/* Timeout reached ? */
532 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
533 				puts(" TIMEOUT !\n");
534 				priv->link = 0;
535 				break;
536 			}
537 
538 			if ((i++ % 1000) == 0) {
539 				putc('.');
540 			}
541 			udelay(1000);	/* 1 ms */
542 			mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS);
543 		}
544 		puts(" done\n");
545 		udelay(500000);	/* another 500 ms (results in faster booting) */
546 	} else {
547 		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
548 			priv->link = 1;
549 		else
550 			priv->link = 0;
551 	}
552 
553 	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
554 		priv->duplexity = 1;
555 	else
556 		priv->duplexity = 0;
557 
558 	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);
559 
560 	switch (speed) {
561 	case MIIM_88E1011_PHYSTAT_GBIT:
562 		priv->speed = 1000;
563 		break;
564 	case MIIM_88E1011_PHYSTAT_100:
565 		priv->speed = 100;
566 		break;
567 	default:
568 		priv->speed = 10;
569 	}
570 
571 	return 0;
572 }
573 
574 /* Parse the cis8201's status register for speed and duplex
575  * information
576  */
577 uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv)
578 {
579 	uint speed;
580 
581 	if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX)
582 		priv->duplexity = 1;
583 	else
584 		priv->duplexity = 0;
585 
586 	speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED;
587 	switch (speed) {
588 	case MIIM_CIS8201_AUXCONSTAT_GBIT:
589 		priv->speed = 1000;
590 		break;
591 	case MIIM_CIS8201_AUXCONSTAT_100:
592 		priv->speed = 100;
593 		break;
594 	default:
595 		priv->speed = 10;
596 		break;
597 	}
598 
599 	return 0;
600 }
601 
602 /* Parse the vsc8244's status register for speed and duplex
603  * information
604  */
605 uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv)
606 {
607 	uint speed;
608 
609 	if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX)
610 		priv->duplexity = 1;
611 	else
612 		priv->duplexity = 0;
613 
614 	speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED;
615 	switch (speed) {
616 	case MIIM_VSC8244_AUXCONSTAT_GBIT:
617 		priv->speed = 1000;
618 		break;
619 	case MIIM_VSC8244_AUXCONSTAT_100:
620 		priv->speed = 100;
621 		break;
622 	default:
623 		priv->speed = 10;
624 		break;
625 	}
626 
627 	return 0;
628 }
629 
630 /* Parse the DM9161's status register for speed and duplex
631  * information
632  */
633 uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv)
634 {
635 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H))
636 		priv->speed = 100;
637 	else
638 		priv->speed = 10;
639 
640 	if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F))
641 		priv->duplexity = 1;
642 	else
643 		priv->duplexity = 0;
644 
645 	return 0;
646 }
647 
648 /*
649  * Hack to write all 4 PHYs with the LED values
650  */
651 uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv)
652 {
653 	uint phyid;
654 	volatile tsec_t *regbase = priv->phyregs;
655 	int timeout = 1000000;
656 
657 	for (phyid = 0; phyid < 4; phyid++) {
658 		regbase->miimadd = (phyid << 8) | mii_reg;
659 		regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT;
660 		asm("sync");
661 
662 		timeout = 1000000;
663 		while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ;
664 	}
665 
666 	return MIIM_CIS8204_SLEDCON_INIT;
667 }
668 
669 uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv)
670 {
671 	if (priv->flags & TSEC_REDUCED)
672 		return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII;
673 	else
674 		return MIIM_CIS8204_EPHYCON_INIT;
675 }
676 
677 /* Initialized required registers to appropriate values, zeroing
678  * those we don't care about (unless zero is bad, in which case,
679  * choose a more appropriate value)
680  */
681 static void init_registers(volatile tsec_t * regs)
682 {
683 	/* Clear IEVENT */
684 	regs->ievent = IEVENT_INIT_CLEAR;
685 
686 	regs->imask = IMASK_INIT_CLEAR;
687 
688 	regs->hash.iaddr0 = 0;
689 	regs->hash.iaddr1 = 0;
690 	regs->hash.iaddr2 = 0;
691 	regs->hash.iaddr3 = 0;
692 	regs->hash.iaddr4 = 0;
693 	regs->hash.iaddr5 = 0;
694 	regs->hash.iaddr6 = 0;
695 	regs->hash.iaddr7 = 0;
696 
697 	regs->hash.gaddr0 = 0;
698 	regs->hash.gaddr1 = 0;
699 	regs->hash.gaddr2 = 0;
700 	regs->hash.gaddr3 = 0;
701 	regs->hash.gaddr4 = 0;
702 	regs->hash.gaddr5 = 0;
703 	regs->hash.gaddr6 = 0;
704 	regs->hash.gaddr7 = 0;
705 
706 	regs->rctrl = 0x00000000;
707 
708 	/* Init RMON mib registers */
709 	memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t));
710 
711 	regs->rmon.cam1 = 0xffffffff;
712 	regs->rmon.cam2 = 0xffffffff;
713 
714 	regs->mrblr = MRBLR_INIT_SETTINGS;
715 
716 	regs->minflr = MINFLR_INIT_SETTINGS;
717 
718 	regs->attr = ATTR_INIT_SETTINGS;
719 	regs->attreli = ATTRELI_INIT_SETTINGS;
720 
721 }
722 
723 /* Configure maccfg2 based on negotiated speed and duplex
724  * reported by PHY handling code
725  */
726 static void adjust_link(struct eth_device *dev)
727 {
728 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
729 	volatile tsec_t *regs = priv->regs;
730 
731 	if (priv->link) {
732 		if (priv->duplexity != 0)
733 			regs->maccfg2 |= MACCFG2_FULL_DUPLEX;
734 		else
735 			regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX);
736 
737 		switch (priv->speed) {
738 		case 1000:
739 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
740 					 | MACCFG2_GMII);
741 			break;
742 		case 100:
743 		case 10:
744 			regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF))
745 					 | MACCFG2_MII);
746 
747 			/* Set R100 bit in all modes although
748 			 * it is only used in RGMII mode
749 			 */
750 			if (priv->speed == 100)
751 				regs->ecntrl |= ECNTRL_R100;
752 			else
753 				regs->ecntrl &= ~(ECNTRL_R100);
754 			break;
755 		default:
756 			printf("%s: Speed was bad\n", dev->name);
757 			break;
758 		}
759 
760 		printf("Speed: %d, %s duplex\n", priv->speed,
761 		       (priv->duplexity) ? "full" : "half");
762 
763 	} else {
764 		printf("%s: No link.\n", dev->name);
765 	}
766 }
767 
768 /* Set up the buffers and their descriptors, and bring up the
769  * interface
770  */
771 static void startup_tsec(struct eth_device *dev)
772 {
773 	int i;
774 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
775 	volatile tsec_t *regs = priv->regs;
776 
777 	/* Point to the buffer descriptors */
778 	regs->tbase = (unsigned int)(&rtx.txbd[txIdx]);
779 	regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]);
780 
781 	/* Initialize the Rx Buffer descriptors */
782 	for (i = 0; i < PKTBUFSRX; i++) {
783 		rtx.rxbd[i].status = RXBD_EMPTY;
784 		rtx.rxbd[i].length = 0;
785 		rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i];
786 	}
787 	rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP;
788 
789 	/* Initialize the TX Buffer Descriptors */
790 	for (i = 0; i < TX_BUF_CNT; i++) {
791 		rtx.txbd[i].status = 0;
792 		rtx.txbd[i].length = 0;
793 		rtx.txbd[i].bufPtr = 0;
794 	}
795 	rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP;
796 
797 	/* Start up the PHY */
798 	if(priv->phyinfo)
799 		phy_run_commands(priv, priv->phyinfo->startup);
800 
801 	adjust_link(dev);
802 
803 	/* Enable Transmit and Receive */
804 	regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
805 
806 	/* Tell the DMA it is clear to go */
807 	regs->dmactrl |= DMACTRL_INIT_SETTINGS;
808 	regs->tstat = TSTAT_CLEAR_THALT;
809 	regs->rstat = RSTAT_CLEAR_RHALT;
810 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
811 }
812 
813 /* This returns the status bits of the device.	The return value
814  * is never checked, and this is what the 8260 driver did, so we
815  * do the same.	 Presumably, this would be zero if there were no
816  * errors
817  */
818 static int tsec_send(struct eth_device *dev, volatile void *packet, int length)
819 {
820 	int i;
821 	int result = 0;
822 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
823 	volatile tsec_t *regs = priv->regs;
824 
825 	/* Find an empty buffer descriptor */
826 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
827 		if (i >= TOUT_LOOP) {
828 			debug("%s: tsec: tx buffers full\n", dev->name);
829 			return result;
830 		}
831 	}
832 
833 	rtx.txbd[txIdx].bufPtr = (uint) packet;
834 	rtx.txbd[txIdx].length = length;
835 	rtx.txbd[txIdx].status |=
836 	    (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT);
837 
838 	/* Tell the DMA to go */
839 	regs->tstat = TSTAT_CLEAR_THALT;
840 
841 	/* Wait for buffer to be transmitted */
842 	for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) {
843 		if (i >= TOUT_LOOP) {
844 			debug("%s: tsec: tx error\n", dev->name);
845 			return result;
846 		}
847 	}
848 
849 	txIdx = (txIdx + 1) % TX_BUF_CNT;
850 	result = rtx.txbd[txIdx].status & TXBD_STATS;
851 
852 	return result;
853 }
854 
855 static int tsec_recv(struct eth_device *dev)
856 {
857 	int length;
858 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
859 	volatile tsec_t *regs = priv->regs;
860 
861 	while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) {
862 
863 		length = rtx.rxbd[rxIdx].length;
864 
865 		/* Send the packet up if there were no errors */
866 		if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) {
867 			NetReceive(NetRxPackets[rxIdx], length - 4);
868 		} else {
869 			printf("Got error %x\n",
870 			       (rtx.rxbd[rxIdx].status & RXBD_STATS));
871 		}
872 
873 		rtx.rxbd[rxIdx].length = 0;
874 
875 		/* Set the wrap bit if this is the last element in the list */
876 		rtx.rxbd[rxIdx].status =
877 		    RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0);
878 
879 		rxIdx = (rxIdx + 1) % PKTBUFSRX;
880 	}
881 
882 	if (regs->ievent & IEVENT_BSY) {
883 		regs->ievent = IEVENT_BSY;
884 		regs->rstat = RSTAT_CLEAR_RHALT;
885 	}
886 
887 	return -1;
888 
889 }
890 
891 /* Stop the interface */
892 static void tsec_halt(struct eth_device *dev)
893 {
894 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
895 	volatile tsec_t *regs = priv->regs;
896 
897 	regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
898 	regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS);
899 
900 	while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ;
901 
902 	regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
903 
904 	/* Shut down the PHY, as needed */
905 	if(priv->phyinfo)
906 		phy_run_commands(priv, priv->phyinfo->shutdown);
907 }
908 
909 struct phy_info phy_info_M88E1149S = {
910 	0x1410ca,
911 	"Marvell 88E1149S",
912 	4,
913 	(struct phy_cmd[]){     /* config */
914 		/* Reset and configure the PHY */
915 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
916 		{0x1d, 0x1f, NULL},
917 		{0x1e, 0x200c, NULL},
918 		{0x1d, 0x5, NULL},
919 		{0x1e, 0x0, NULL},
920 		{0x1e, 0x100, NULL},
921 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
922 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
923 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
924 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
925 		{miim_end,}
926 	},
927 	(struct phy_cmd[]){     /* startup */
928 		/* Status is read once to clear old link state */
929 		{MIIM_STATUS, miim_read, NULL},
930 		/* Auto-negotiate */
931 		{MIIM_STATUS, miim_read, &mii_parse_sr},
932 		/* Read the status */
933 		{MIIM_88E1011_PHY_STATUS, miim_read,
934 		 &mii_parse_88E1011_psr},
935 		{miim_end,}
936 	},
937 	(struct phy_cmd[]){     /* shutdown */
938 		{miim_end,}
939 	},
940 };
941 
942 /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */
943 struct phy_info phy_info_BCM5461S = {
944 	0x02060c1,	/* 5461 ID */
945 	"Broadcom BCM5461S",
946 	0, /* not clear to me what minor revisions we can shift away */
947 	(struct phy_cmd[]) { /* config */
948 		/* Reset and configure the PHY */
949 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
950 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
951 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
952 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
953 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
954 		{miim_end,}
955 	},
956 	(struct phy_cmd[]) { /* startup */
957 		/* Status is read once to clear old link state */
958 		{MIIM_STATUS, miim_read, NULL},
959 		/* Auto-negotiate */
960 		{MIIM_STATUS, miim_read, &mii_parse_sr},
961 		/* Read the status */
962 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
963 		{miim_end,}
964 	},
965 	(struct phy_cmd[]) { /* shutdown */
966 		{miim_end,}
967 	},
968 };
969 
970 struct phy_info phy_info_BCM5464S = {
971 	0x02060b1,	/* 5464 ID */
972 	"Broadcom BCM5464S",
973 	0, /* not clear to me what minor revisions we can shift away */
974 	(struct phy_cmd[]) { /* config */
975 		/* Reset and configure the PHY */
976 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
977 		{MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
978 		{MIIM_ANAR, MIIM_ANAR_INIT, NULL},
979 		{MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
980 		{MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
981 		{miim_end,}
982 	},
983 	(struct phy_cmd[]) { /* startup */
984 		/* Status is read once to clear old link state */
985 		{MIIM_STATUS, miim_read, NULL},
986 		/* Auto-negotiate */
987 		{MIIM_STATUS, miim_read, &mii_parse_sr},
988 		/* Read the status */
989 		{MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr},
990 		{miim_end,}
991 	},
992 	(struct phy_cmd[]) { /* shutdown */
993 		{miim_end,}
994 	},
995 };
996 
997 struct phy_info phy_info_M88E1011S = {
998 	0x01410c6,
999 	"Marvell 88E1011S",
1000 	4,
1001 	(struct phy_cmd[]){	/* config */
1002 			   /* Reset and configure the PHY */
1003 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1004 			   {0x1d, 0x1f, NULL},
1005 			   {0x1e, 0x200c, NULL},
1006 			   {0x1d, 0x5, NULL},
1007 			   {0x1e, 0x0, NULL},
1008 			   {0x1e, 0x100, NULL},
1009 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1010 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1011 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1012 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1013 			   {miim_end,}
1014 			   },
1015 	(struct phy_cmd[]){	/* startup */
1016 			   /* Status is read once to clear old link state */
1017 			   {MIIM_STATUS, miim_read, NULL},
1018 			   /* Auto-negotiate */
1019 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1020 			   /* Read the status */
1021 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1022 			    &mii_parse_88E1011_psr},
1023 			   {miim_end,}
1024 			   },
1025 	(struct phy_cmd[]){	/* shutdown */
1026 			   {miim_end,}
1027 			   },
1028 };
1029 
1030 struct phy_info phy_info_M88E1111S = {
1031 	0x01410cc,
1032 	"Marvell 88E1111S",
1033 	4,
1034 	(struct phy_cmd[]){	/* config */
1035 			   /* Reset and configure the PHY */
1036 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1037 			   {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */
1038 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1039 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1040 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1041 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1042 			   {miim_end,}
1043 			   },
1044 	(struct phy_cmd[]){	/* startup */
1045 			   /* Status is read once to clear old link state */
1046 			   {MIIM_STATUS, miim_read, NULL},
1047 			   /* Auto-negotiate */
1048 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1049 			   /* Read the status */
1050 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1051 			    &mii_parse_88E1011_psr},
1052 			   {miim_end,}
1053 			   },
1054 	(struct phy_cmd[]){	/* shutdown */
1055 			   {miim_end,}
1056 			   },
1057 };
1058 
1059 static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv)
1060 {
1061 	uint mii_data = read_phy_reg(priv, mii_reg);
1062 
1063 	/* Setting MIIM_88E1145_PHY_EXT_CR */
1064 	if (priv->flags & TSEC_REDUCED)
1065 		return mii_data |
1066 		    MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY;
1067 	else
1068 		return mii_data;
1069 }
1070 
1071 static struct phy_info phy_info_M88E1145 = {
1072 	0x01410cd,
1073 	"Marvell 88E1145",
1074 	4,
1075 	(struct phy_cmd[]){	/* config */
1076 			   /* Reset the PHY */
1077 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1078 
1079 			   /* Errata E0, E1 */
1080 			   {29, 0x001b, NULL},
1081 			   {30, 0x418f, NULL},
1082 			   {29, 0x0016, NULL},
1083 			   {30, 0xa2da, NULL},
1084 
1085 			   /* Configure the PHY */
1086 			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
1087 			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
1088 			   {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO,
1089 			    NULL},
1090 			   {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode},
1091 			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
1092 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL},
1093 			   {miim_end,}
1094 			   },
1095 	(struct phy_cmd[]){	/* startup */
1096 			   /* Status is read once to clear old link state */
1097 			   {MIIM_STATUS, miim_read, NULL},
1098 			   /* Auto-negotiate */
1099 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1100 			   {MIIM_88E1111_PHY_LED_CONTROL,
1101 			    MIIM_88E1111_PHY_LED_DIRECT, NULL},
1102 			   /* Read the Status */
1103 			   {MIIM_88E1011_PHY_STATUS, miim_read,
1104 			    &mii_parse_88E1011_psr},
1105 			   {miim_end,}
1106 			   },
1107 	(struct phy_cmd[]){	/* shutdown */
1108 			   {miim_end,}
1109 			   },
1110 };
1111 
1112 struct phy_info phy_info_cis8204 = {
1113 	0x3f11,
1114 	"Cicada Cis8204",
1115 	6,
1116 	(struct phy_cmd[]){	/* config */
1117 			   /* Override PHY config settings */
1118 			   {MIIM_CIS8201_AUX_CONSTAT,
1119 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1120 			   /* Configure some basic stuff */
1121 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1122 			   {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT,
1123 			    &mii_cis8204_fixled},
1124 			   {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT,
1125 			    &mii_cis8204_setmode},
1126 			   {miim_end,}
1127 			   },
1128 	(struct phy_cmd[]){	/* startup */
1129 			   /* Read the Status (2x to make sure link is right) */
1130 			   {MIIM_STATUS, miim_read, NULL},
1131 			   /* Auto-negotiate */
1132 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1133 			   /* Read the status */
1134 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1135 			    &mii_parse_cis8201},
1136 			   {miim_end,}
1137 			   },
1138 	(struct phy_cmd[]){	/* shutdown */
1139 			   {miim_end,}
1140 			   },
1141 };
1142 
1143 /* Cicada 8201 */
1144 struct phy_info phy_info_cis8201 = {
1145 	0xfc41,
1146 	"CIS8201",
1147 	4,
1148 	(struct phy_cmd[]){	/* config */
1149 			   /* Override PHY config settings */
1150 			   {MIIM_CIS8201_AUX_CONSTAT,
1151 			    MIIM_CIS8201_AUXCONSTAT_INIT, NULL},
1152 			   /* Set up the interface mode */
1153 			   {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT,
1154 			    NULL},
1155 			   /* Configure some basic stuff */
1156 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1157 			   {miim_end,}
1158 			   },
1159 	(struct phy_cmd[]){	/* startup */
1160 			   /* Read the Status (2x to make sure link is right) */
1161 			   {MIIM_STATUS, miim_read, NULL},
1162 			   /* Auto-negotiate */
1163 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1164 			   /* Read the status */
1165 			   {MIIM_CIS8201_AUX_CONSTAT, miim_read,
1166 			    &mii_parse_cis8201},
1167 			   {miim_end,}
1168 			   },
1169 	(struct phy_cmd[]){	/* shutdown */
1170 			   {miim_end,}
1171 			   },
1172 };
1173 struct phy_info phy_info_VSC8244 = {
1174 	0x3f1b,
1175 	"Vitesse VSC8244",
1176 	6,
1177 	(struct phy_cmd[]){	/* config */
1178 			   /* Override PHY config settings */
1179 			   /* Configure some basic stuff */
1180 			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
1181 			   {miim_end,}
1182 			   },
1183 	(struct phy_cmd[]){	/* startup */
1184 			   /* Read the Status (2x to make sure link is right) */
1185 			   {MIIM_STATUS, miim_read, NULL},
1186 			   /* Auto-negotiate */
1187 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1188 			   /* Read the status */
1189 			   {MIIM_VSC8244_AUX_CONSTAT, miim_read,
1190 			    &mii_parse_vsc8244},
1191 			   {miim_end,}
1192 			   },
1193 	(struct phy_cmd[]){	/* shutdown */
1194 			   {miim_end,}
1195 			   },
1196 };
1197 
1198 struct phy_info phy_info_dm9161 = {
1199 	0x0181b88,
1200 	"Davicom DM9161E",
1201 	4,
1202 	(struct phy_cmd[]){	/* config */
1203 			   {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL},
1204 			   /* Do not bypass the scrambler/descrambler */
1205 			   {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL},
1206 			   /* Clear 10BTCSR to default */
1207 			   {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT,
1208 			    NULL},
1209 			   /* Configure some basic stuff */
1210 			   {MIIM_CONTROL, MIIM_CR_INIT, NULL},
1211 			   /* Restart Auto Negotiation */
1212 			   {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL},
1213 			   {miim_end,}
1214 			   },
1215 	(struct phy_cmd[]){	/* startup */
1216 			   /* Status is read once to clear old link state */
1217 			   {MIIM_STATUS, miim_read, NULL},
1218 			   /* Auto-negotiate */
1219 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1220 			   /* Read the status */
1221 			   {MIIM_DM9161_SCSR, miim_read,
1222 			    &mii_parse_dm9161_scsr},
1223 			   {miim_end,}
1224 			   },
1225 	(struct phy_cmd[]){	/* shutdown */
1226 			   {miim_end,}
1227 			   },
1228 };
1229 /* a generic flavor.  */
1230 struct phy_info phy_info_generic =  {
1231 	0,
1232 	"Unknown/Generic PHY",
1233 	32,
1234 	(struct phy_cmd[]) { /* config */
1235 		{PHY_BMCR, PHY_BMCR_RESET, NULL},
1236 		{PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL},
1237 		{miim_end,}
1238 	},
1239 	(struct phy_cmd[]) { /* startup */
1240 		{PHY_BMSR, miim_read, NULL},
1241 		{PHY_BMSR, miim_read, &mii_parse_sr},
1242 		{PHY_BMSR, miim_read, &mii_parse_link},
1243 		{miim_end,}
1244 	},
1245 	(struct phy_cmd[]) { /* shutdown */
1246 		{miim_end,}
1247 	}
1248 };
1249 
1250 
1251 uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv)
1252 {
1253 	unsigned int speed;
1254 	if (priv->link) {
1255 		speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK;
1256 
1257 		switch (speed) {
1258 		case MIIM_LXT971_SR2_10HDX:
1259 			priv->speed = 10;
1260 			priv->duplexity = 0;
1261 			break;
1262 		case MIIM_LXT971_SR2_10FDX:
1263 			priv->speed = 10;
1264 			priv->duplexity = 1;
1265 			break;
1266 		case MIIM_LXT971_SR2_100HDX:
1267 			priv->speed = 100;
1268 			priv->duplexity = 0;
1269 			break;
1270 		default:
1271 			priv->speed = 100;
1272 			priv->duplexity = 1;
1273 		}
1274 	} else {
1275 		priv->speed = 0;
1276 		priv->duplexity = 0;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 static struct phy_info phy_info_lxt971 = {
1283 	0x0001378e,
1284 	"LXT971",
1285 	4,
1286 	(struct phy_cmd[]){	/* config */
1287 			   {MIIM_CR, MIIM_CR_INIT, mii_cr_init},	/* autonegotiate */
1288 			   {miim_end,}
1289 			   },
1290 	(struct phy_cmd[]){	/* startup - enable interrupts */
1291 			   /* { 0x12, 0x00f2, NULL }, */
1292 			   {MIIM_STATUS, miim_read, NULL},
1293 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1294 			   {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2},
1295 			   {miim_end,}
1296 			   },
1297 	(struct phy_cmd[]){	/* shutdown - disable interrupts */
1298 			   {miim_end,}
1299 			   },
1300 };
1301 
1302 /* Parse the DP83865's link and auto-neg status register for speed and duplex
1303  * information
1304  */
1305 uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv)
1306 {
1307 	switch (mii_reg & MIIM_DP83865_SPD_MASK) {
1308 
1309 	case MIIM_DP83865_SPD_1000:
1310 		priv->speed = 1000;
1311 		break;
1312 
1313 	case MIIM_DP83865_SPD_100:
1314 		priv->speed = 100;
1315 		break;
1316 
1317 	default:
1318 		priv->speed = 10;
1319 		break;
1320 
1321 	}
1322 
1323 	if (mii_reg & MIIM_DP83865_DPX_FULL)
1324 		priv->duplexity = 1;
1325 	else
1326 		priv->duplexity = 0;
1327 
1328 	return 0;
1329 }
1330 
1331 struct phy_info phy_info_dp83865 = {
1332 	0x20005c7,
1333 	"NatSemi DP83865",
1334 	4,
1335 	(struct phy_cmd[]){	/* config */
1336 			   {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL},
1337 			   {miim_end,}
1338 			   },
1339 	(struct phy_cmd[]){	/* startup */
1340 			   /* Status is read once to clear old link state */
1341 			   {MIIM_STATUS, miim_read, NULL},
1342 			   /* Auto-negotiate */
1343 			   {MIIM_STATUS, miim_read, &mii_parse_sr},
1344 			   /* Read the link and auto-neg status */
1345 			   {MIIM_DP83865_LANR, miim_read,
1346 			    &mii_parse_dp83865_lanr},
1347 			   {miim_end,}
1348 			   },
1349 	(struct phy_cmd[]){	/* shutdown */
1350 			   {miim_end,}
1351 			   },
1352 };
1353 
1354 struct phy_info *phy_info[] = {
1355 	&phy_info_cis8204,
1356 	&phy_info_cis8201,
1357 	&phy_info_BCM5461S,
1358 	&phy_info_BCM5464S,
1359 	&phy_info_M88E1011S,
1360 	&phy_info_M88E1111S,
1361 	&phy_info_M88E1145,
1362 	&phy_info_M88E1149S,
1363 	&phy_info_dm9161,
1364 	&phy_info_lxt971,
1365 	&phy_info_VSC8244,
1366 	&phy_info_dp83865,
1367 	&phy_info_generic,
1368 	NULL
1369 };
1370 
1371 /* Grab the identifier of the device's PHY, and search through
1372  * all of the known PHYs to see if one matches.	 If so, return
1373  * it, if not, return NULL
1374  */
1375 struct phy_info *get_phy_info(struct eth_device *dev)
1376 {
1377 	struct tsec_private *priv = (struct tsec_private *)dev->priv;
1378 	uint phy_reg, phy_ID;
1379 	int i;
1380 	struct phy_info *theInfo = NULL;
1381 
1382 	/* Grab the bits from PHYIR1, and put them in the upper half */
1383 	phy_reg = read_phy_reg(priv, MIIM_PHYIR1);
1384 	phy_ID = (phy_reg & 0xffff) << 16;
1385 
1386 	/* Grab the bits from PHYIR2, and put them in the lower half */
1387 	phy_reg = read_phy_reg(priv, MIIM_PHYIR2);
1388 	phy_ID |= (phy_reg & 0xffff);
1389 
1390 	/* loop through all the known PHY types, and find one that */
1391 	/* matches the ID we read from the PHY. */
1392 	for (i = 0; phy_info[i]; i++) {
1393 		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
1394 			theInfo = phy_info[i];
1395 			break;
1396 		}
1397 	}
1398 
1399 	if (theInfo == NULL) {
1400 		printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID);
1401 		return NULL;
1402 	} else {
1403 		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);
1404 	}
1405 
1406 	return theInfo;
1407 }
1408 
1409 /* Execute the given series of commands on the given device's
1410  * PHY, running functions as necessary
1411  */
1412 void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd)
1413 {
1414 	int i;
1415 	uint result;
1416 	volatile tsec_t *phyregs = priv->phyregs;
1417 
1418 	phyregs->miimcfg = MIIMCFG_RESET;
1419 
1420 	phyregs->miimcfg = MIIMCFG_INIT_VALUE;
1421 
1422 	while (phyregs->miimind & MIIMIND_BUSY) ;
1423 
1424 	for (i = 0; cmd->mii_reg != miim_end; i++) {
1425 		if (cmd->mii_data == miim_read) {
1426 			result = read_phy_reg(priv, cmd->mii_reg);
1427 
1428 			if (cmd->funct != NULL)
1429 				(*(cmd->funct)) (result, priv);
1430 
1431 		} else {
1432 			if (cmd->funct != NULL)
1433 				result = (*(cmd->funct)) (cmd->mii_reg, priv);
1434 			else
1435 				result = cmd->mii_data;
1436 
1437 			write_phy_reg(priv, cmd->mii_reg, result);
1438 
1439 		}
1440 		cmd++;
1441 	}
1442 }
1443 
1444 /* Relocate the function pointers in the phy cmd lists */
1445 static void relocate_cmds(void)
1446 {
1447 	struct phy_cmd **cmdlistptr;
1448 	struct phy_cmd *cmd;
1449 	int i, j, k;
1450 
1451 	for (i = 0; phy_info[i]; i++) {
1452 		/* First thing's first: relocate the pointers to the
1453 		 * PHY command structures (the structs were done) */
1454 		phy_info[i] = (struct phy_info *)((uint) phy_info[i]
1455 						  + gd->reloc_off);
1456 		phy_info[i]->name += gd->reloc_off;
1457 		phy_info[i]->config =
1458 		    (struct phy_cmd *)((uint) phy_info[i]->config
1459 				       + gd->reloc_off);
1460 		phy_info[i]->startup =
1461 		    (struct phy_cmd *)((uint) phy_info[i]->startup
1462 				       + gd->reloc_off);
1463 		phy_info[i]->shutdown =
1464 		    (struct phy_cmd *)((uint) phy_info[i]->shutdown
1465 				       + gd->reloc_off);
1466 
1467 		cmdlistptr = &phy_info[i]->config;
1468 		j = 0;
1469 		for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) {
1470 			k = 0;
1471 			for (cmd = *cmdlistptr;
1472 			     cmd->mii_reg != miim_end;
1473 			     cmd++) {
1474 				/* Only relocate non-NULL pointers */
1475 				if (cmd->funct)
1476 					cmd->funct += gd->reloc_off;
1477 
1478 				k++;
1479 			}
1480 			j++;
1481 		}
1482 	}
1483 
1484 	relocated = 1;
1485 }
1486 
1487 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
1488 	&& !defined(BITBANGMII)
1489 
1490 struct tsec_private *get_priv_for_phy(unsigned char phyaddr)
1491 {
1492 	int i;
1493 
1494 	for (i = 0; i < MAXCONTROLLERS; i++) {
1495 		if (privlist[i]->phyaddr == phyaddr)
1496 			return privlist[i];
1497 	}
1498 
1499 	return NULL;
1500 }
1501 
1502 /*
1503  * Read a MII PHY register.
1504  *
1505  * Returns:
1506  *  0 on success
1507  */
1508 static int tsec_miiphy_read(char *devname, unsigned char addr,
1509 			    unsigned char reg, unsigned short *value)
1510 {
1511 	unsigned short ret;
1512 	struct tsec_private *priv = get_priv_for_phy(addr);
1513 
1514 	if (NULL == priv) {
1515 		printf("Can't read PHY at address %d\n", addr);
1516 		return -1;
1517 	}
1518 
1519 	ret = (unsigned short)read_phy_reg(priv, reg);
1520 	*value = ret;
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Write a MII PHY register.
1527  *
1528  * Returns:
1529  *  0 on success
1530  */
1531 static int tsec_miiphy_write(char *devname, unsigned char addr,
1532 			     unsigned char reg, unsigned short value)
1533 {
1534 	struct tsec_private *priv = get_priv_for_phy(addr);
1535 
1536 	if (NULL == priv) {
1537 		printf("Can't write PHY at address %d\n", addr);
1538 		return -1;
1539 	}
1540 
1541 	write_phy_reg(priv, reg, value);
1542 
1543 	return 0;
1544 }
1545 
1546 #endif
1547 
1548 #ifdef CONFIG_MCAST_TFTP
1549 
1550 /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */
1551 
1552 /* Set the appropriate hash bit for the given addr */
1553 
1554 /* The algorithm works like so:
1555  * 1) Take the Destination Address (ie the multicast address), and
1556  * do a CRC on it (little endian), and reverse the bits of the
1557  * result.
1558  * 2) Use the 8 most significant bits as a hash into a 256-entry
1559  * table.  The table is controlled through 8 32-bit registers:
1560  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1561  * gaddr7.  This means that the 3 most significant bits in the
1562  * hash index which gaddr register to use, and the 5 other bits
1563  * indicate which bit (assuming an IBM numbering scheme, which
1564  * for PowerPC (tm) is usually the case) in the tregister holds
1565  * the entry. */
1566 static int
1567 tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set)
1568 {
1569  struct tsec_private *priv = privlist[1];
1570  volatile tsec_t *regs = priv->regs;
1571  volatile u32  *reg_array, value;
1572  u8 result, whichbit, whichreg;
1573 
1574 	result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff);
1575 	whichbit = result & 0x1f;	/* the 5 LSB = which bit to set */
1576 	whichreg = result >> 5;		/* the 3 MSB = which reg to set it in */
1577 	value = (1 << (31-whichbit));
1578 
1579 	reg_array = &(regs->hash.gaddr0);
1580 
1581 	if (set) {
1582 		reg_array[whichreg] |= value;
1583 	} else {
1584 		reg_array[whichreg] &= ~value;
1585 	}
1586 	return 0;
1587 }
1588 #endif /* Multicast TFTP ? */
1589 
1590 #endif /* CONFIG_TSEC_ENET */
1591