xref: /openbmc/u-boot/drivers/net/phy/mv88e61xx.c (revision beff8e34)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2015
4  * Elecsys Corporation <www.elecsyscorp.com>
5  * Kevin Smith <kevin.smith@elecsyscorp.com>
6  *
7  * Original driver:
8  * (C) Copyright 2009
9  * Marvell Semiconductor <www.marvell.com>
10  * Prafulla Wadaskar <prafulla@marvell.com>
11  */
12 
13 /*
14  * PHY driver for mv88e61xx ethernet switches.
15  *
16  * This driver configures the mv88e61xx for basic use as a PHY.  The switch
17  * supports a VLAN configuration that determines how traffic will be routed
18  * between the ports.  This driver uses a simple configuration that routes
19  * traffic from each PHY port only to the CPU port, and from the CPU port to
20  * any PHY port.
21  *
22  * The configuration determines which PHY ports to activate using the
23  * CONFIG_MV88E61XX_PHY_PORTS bitmask.  Setting bit 0 will activate port 0, bit
24  * 1 activates port 1, etc.  Do not set the bit for the port the CPU is
25  * connected to unless it is connected over a PHY interface (not MII).
26  *
27  * This driver was written for and tested on the mv88e6176 with an SGMII
28  * connection.  Other configurations should be supported, but some additions or
29  * changes may be required.
30  */
31 
32 #include <common.h>
33 
34 #include <bitfield.h>
35 #include <errno.h>
36 #include <malloc.h>
37 #include <miiphy.h>
38 #include <netdev.h>
39 
40 #define PHY_AUTONEGOTIATE_TIMEOUT	5000
41 
42 #define PORT_COUNT			11
43 #define PORT_MASK			((1 << PORT_COUNT) - 1)
44 
45 /* Device addresses */
46 #define DEVADDR_PHY(p)			(p)
47 #define DEVADDR_PORT(p)			(0x10 + (p))
48 #define DEVADDR_SERDES			0x0F
49 #define DEVADDR_GLOBAL_1		0x1B
50 #define DEVADDR_GLOBAL_2		0x1C
51 
52 /* SMI indirection registers for multichip addressing mode */
53 #define SMI_CMD_REG			0x00
54 #define SMI_DATA_REG			0x01
55 
56 /* Global registers */
57 #define GLOBAL1_STATUS			0x00
58 #define GLOBAL1_CTRL			0x04
59 #define GLOBAL1_MON_CTRL		0x1A
60 
61 /* Global 2 registers */
62 #define GLOBAL2_REG_PHY_CMD		0x18
63 #define GLOBAL2_REG_PHY_DATA		0x19
64 
65 /* Port registers */
66 #define PORT_REG_STATUS			0x00
67 #define PORT_REG_PHYS_CTRL		0x01
68 #define PORT_REG_SWITCH_ID		0x03
69 #define PORT_REG_CTRL			0x04
70 #define PORT_REG_VLAN_MAP		0x06
71 #define PORT_REG_VLAN_ID		0x07
72 
73 /* Phy registers */
74 #define PHY_REG_CTRL1			0x10
75 #define PHY_REG_STATUS1			0x11
76 #define PHY_REG_PAGE			0x16
77 
78 /* Serdes registers */
79 #define SERDES_REG_CTRL_1		0x10
80 
81 /* Phy page numbers */
82 #define PHY_PAGE_COPPER			0
83 #define PHY_PAGE_SERDES			1
84 
85 /* Register fields */
86 #define GLOBAL1_CTRL_SWRESET		BIT(15)
87 
88 #define GLOBAL1_MON_CTRL_CPUDEST_SHIFT	4
89 #define GLOBAL1_MON_CTRL_CPUDEST_WIDTH	4
90 
91 #define PORT_REG_STATUS_LINK		BIT(11)
92 #define PORT_REG_STATUS_DUPLEX		BIT(10)
93 
94 #define PORT_REG_STATUS_SPEED_SHIFT	8
95 #define PORT_REG_STATUS_SPEED_WIDTH	2
96 #define PORT_REG_STATUS_SPEED_10	0
97 #define PORT_REG_STATUS_SPEED_100	1
98 #define PORT_REG_STATUS_SPEED_1000	2
99 
100 #define PORT_REG_STATUS_CMODE_MASK		0xF
101 #define PORT_REG_STATUS_CMODE_100BASE_X		0x8
102 #define PORT_REG_STATUS_CMODE_1000BASE_X	0x9
103 #define PORT_REG_STATUS_CMODE_SGMII		0xa
104 
105 #define PORT_REG_PHYS_CTRL_PCS_AN_EN	BIT(10)
106 #define PORT_REG_PHYS_CTRL_PCS_AN_RST	BIT(9)
107 #define PORT_REG_PHYS_CTRL_FC_VALUE	BIT(7)
108 #define PORT_REG_PHYS_CTRL_FC_FORCE	BIT(6)
109 #define PORT_REG_PHYS_CTRL_LINK_VALUE	BIT(5)
110 #define PORT_REG_PHYS_CTRL_LINK_FORCE	BIT(4)
111 #define PORT_REG_PHYS_CTRL_DUPLEX_VALUE	BIT(3)
112 #define PORT_REG_PHYS_CTRL_DUPLEX_FORCE	BIT(2)
113 #define PORT_REG_PHYS_CTRL_SPD1000	BIT(1)
114 #define PORT_REG_PHYS_CTRL_SPD_MASK	(BIT(1) | BIT(0))
115 
116 #define PORT_REG_CTRL_PSTATE_SHIFT	0
117 #define PORT_REG_CTRL_PSTATE_WIDTH	2
118 
119 #define PORT_REG_VLAN_ID_DEF_VID_SHIFT	0
120 #define PORT_REG_VLAN_ID_DEF_VID_WIDTH	12
121 
122 #define PORT_REG_VLAN_MAP_TABLE_SHIFT	0
123 #define PORT_REG_VLAN_MAP_TABLE_WIDTH	11
124 
125 #define SERDES_REG_CTRL_1_FORCE_LINK	BIT(10)
126 
127 #define PHY_REG_CTRL1_ENERGY_DET_SHIFT	8
128 #define PHY_REG_CTRL1_ENERGY_DET_WIDTH	2
129 
130 /* Field values */
131 #define PORT_REG_CTRL_PSTATE_DISABLED	0
132 #define PORT_REG_CTRL_PSTATE_FORWARD	3
133 
134 #define PHY_REG_CTRL1_ENERGY_DET_OFF	0
135 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY	2
136 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT	3
137 
138 /* PHY Status Register */
139 #define PHY_REG_STATUS1_SPEED		0xc000
140 #define PHY_REG_STATUS1_GBIT		0x8000
141 #define PHY_REG_STATUS1_100		0x4000
142 #define PHY_REG_STATUS1_DUPLEX		0x2000
143 #define PHY_REG_STATUS1_SPDDONE		0x0800
144 #define PHY_REG_STATUS1_LINK		0x0400
145 #define PHY_REG_STATUS1_ENERGY		0x0010
146 
147 /*
148  * Macros for building commands for indirect addressing modes.  These are valid
149  * for both the indirect multichip addressing mode and the PHY indirection
150  * required for the writes to any PHY register.
151  */
152 #define SMI_BUSY			BIT(15)
153 #define SMI_CMD_CLAUSE_22		BIT(12)
154 #define SMI_CMD_CLAUSE_22_OP_READ	(2 << 10)
155 #define SMI_CMD_CLAUSE_22_OP_WRITE	(1 << 10)
156 
157 #define SMI_CMD_READ			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
158 					 SMI_CMD_CLAUSE_22_OP_READ)
159 #define SMI_CMD_WRITE			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
160 					 SMI_CMD_CLAUSE_22_OP_WRITE)
161 
162 #define SMI_CMD_ADDR_SHIFT		5
163 #define SMI_CMD_ADDR_WIDTH		5
164 #define SMI_CMD_REG_SHIFT		0
165 #define SMI_CMD_REG_WIDTH		5
166 
167 /* Check for required macros */
168 #ifndef CONFIG_MV88E61XX_PHY_PORTS
169 #error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
170 	to activate
171 #endif
172 #ifndef CONFIG_MV88E61XX_CPU_PORT
173 #error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
174 #endif
175 
176 /*
177  *  These are ports without PHYs that may be wired directly
178  * to other serdes interfaces
179  */
180 #ifndef CONFIG_MV88E61XX_FIXED_PORTS
181 #define CONFIG_MV88E61XX_FIXED_PORTS 0
182 #endif
183 
184 /* ID register values for different switch models */
185 #define PORT_SWITCH_ID_6096		0x0980
186 #define PORT_SWITCH_ID_6097		0x0990
187 #define PORT_SWITCH_ID_6172		0x1720
188 #define PORT_SWITCH_ID_6176		0x1760
189 #define PORT_SWITCH_ID_6240		0x2400
190 #define PORT_SWITCH_ID_6352		0x3520
191 
192 struct mv88e61xx_phy_priv {
193 	struct mii_dev *mdio_bus;
194 	int smi_addr;
195 	int id;
196 };
197 
smi_cmd(int cmd,int addr,int reg)198 static inline int smi_cmd(int cmd, int addr, int reg)
199 {
200 	cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
201 			       addr);
202 	cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
203 	return cmd;
204 }
205 
smi_cmd_read(int addr,int reg)206 static inline int smi_cmd_read(int addr, int reg)
207 {
208 	return smi_cmd(SMI_CMD_READ, addr, reg);
209 }
210 
smi_cmd_write(int addr,int reg)211 static inline int smi_cmd_write(int addr, int reg)
212 {
213 	return smi_cmd(SMI_CMD_WRITE, addr, reg);
214 }
215 
mv88e61xx_hw_reset(struct phy_device * phydev)216 __weak int mv88e61xx_hw_reset(struct phy_device *phydev)
217 {
218 	return 0;
219 }
220 
221 /* Wait for the current SMI indirect command to complete */
mv88e61xx_smi_wait(struct mii_dev * bus,int smi_addr)222 static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
223 {
224 	int val;
225 	u32 timeout = 100;
226 
227 	do {
228 		val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
229 		if (val >= 0 && (val & SMI_BUSY) == 0)
230 			return 0;
231 
232 		mdelay(1);
233 	} while (--timeout);
234 
235 	puts("SMI busy timeout\n");
236 	return -ETIMEDOUT;
237 }
238 
239 /*
240  * The mv88e61xx has three types of addresses: the smi bus address, the device
241  * address, and the register address.  The smi bus address distinguishes it on
242  * the smi bus from other PHYs or switches.  The device address determines
243  * which on-chip register set you are reading/writing (the various PHYs, their
244  * associated ports, or global configuration registers).  The register address
245  * is the offset of the register you are reading/writing.
246  *
247  * When the mv88e61xx is hardware configured to have address zero, it behaves in
248  * single-chip addressing mode, where it responds to all SMI addresses, using
249  * the smi address as its device address.  This obviously only works when this
250  * is the only chip on the SMI bus.  This allows the driver to access device
251  * registers without using indirection.  When the chip is configured to a
252  * non-zero address, it only responds to that SMI address and requires indirect
253  * writes to access the different device addresses.
254  */
mv88e61xx_reg_read(struct phy_device * phydev,int dev,int reg)255 static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
256 {
257 	struct mv88e61xx_phy_priv *priv = phydev->priv;
258 	struct mii_dev *mdio_bus = priv->mdio_bus;
259 	int smi_addr = priv->smi_addr;
260 	int res;
261 
262 	/* In single-chip mode, the device can be addressed directly */
263 	if (smi_addr == 0)
264 		return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
265 
266 	/* Wait for the bus to become free */
267 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
268 	if (res < 0)
269 		return res;
270 
271 	/* Issue the read command */
272 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
273 			 smi_cmd_read(dev, reg));
274 	if (res < 0)
275 		return res;
276 
277 	/* Wait for the read command to complete */
278 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
279 	if (res < 0)
280 		return res;
281 
282 	/* Read the data */
283 	res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
284 	if (res < 0)
285 		return res;
286 
287 	return bitfield_extract(res, 0, 16);
288 }
289 
290 /* See the comment above mv88e61xx_reg_read */
mv88e61xx_reg_write(struct phy_device * phydev,int dev,int reg,u16 val)291 static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
292 			       u16 val)
293 {
294 	struct mv88e61xx_phy_priv *priv = phydev->priv;
295 	struct mii_dev *mdio_bus = priv->mdio_bus;
296 	int smi_addr = priv->smi_addr;
297 	int res;
298 
299 	/* In single-chip mode, the device can be addressed directly */
300 	if (smi_addr == 0) {
301 		return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
302 				val);
303 	}
304 
305 	/* Wait for the bus to become free */
306 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
307 	if (res < 0)
308 		return res;
309 
310 	/* Set the data to write */
311 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
312 				SMI_DATA_REG, val);
313 	if (res < 0)
314 		return res;
315 
316 	/* Issue the write command */
317 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
318 				smi_cmd_write(dev, reg));
319 	if (res < 0)
320 		return res;
321 
322 	/* Wait for the write command to complete */
323 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
324 	if (res < 0)
325 		return res;
326 
327 	return 0;
328 }
329 
mv88e61xx_phy_wait(struct phy_device * phydev)330 static int mv88e61xx_phy_wait(struct phy_device *phydev)
331 {
332 	int val;
333 	u32 timeout = 100;
334 
335 	do {
336 		val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
337 					 GLOBAL2_REG_PHY_CMD);
338 		if (val >= 0 && (val & SMI_BUSY) == 0)
339 			return 0;
340 
341 		mdelay(1);
342 	} while (--timeout);
343 
344 	return -ETIMEDOUT;
345 }
346 
mv88e61xx_phy_read_indirect(struct mii_dev * smi_wrapper,int dev,int devad,int reg)347 static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
348 		int devad, int reg)
349 {
350 	struct phy_device *phydev;
351 	int res;
352 
353 	phydev = (struct phy_device *)smi_wrapper->priv;
354 
355 	/* Issue command to read */
356 	res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
357 				  GLOBAL2_REG_PHY_CMD,
358 				  smi_cmd_read(dev, reg));
359 
360 	/* Wait for data to be read */
361 	res = mv88e61xx_phy_wait(phydev);
362 	if (res < 0)
363 		return res;
364 
365 	/* Read retrieved data */
366 	return mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
367 				  GLOBAL2_REG_PHY_DATA);
368 }
369 
mv88e61xx_phy_write_indirect(struct mii_dev * smi_wrapper,int dev,int devad,int reg,u16 data)370 static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
371 		int devad, int reg, u16 data)
372 {
373 	struct phy_device *phydev;
374 	int res;
375 
376 	phydev = (struct phy_device *)smi_wrapper->priv;
377 
378 	/* Set the data to write */
379 	res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
380 				  GLOBAL2_REG_PHY_DATA, data);
381 	if (res < 0)
382 		return res;
383 	/* Issue the write command */
384 	res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
385 				  GLOBAL2_REG_PHY_CMD,
386 				  smi_cmd_write(dev, reg));
387 	if (res < 0)
388 		return res;
389 
390 	/* Wait for command to complete */
391 	return mv88e61xx_phy_wait(phydev);
392 }
393 
394 /* Wrapper function to make calls to phy_read_indirect simpler */
mv88e61xx_phy_read(struct phy_device * phydev,int phy,int reg)395 static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
396 {
397 	return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
398 					   MDIO_DEVAD_NONE, reg);
399 }
400 
401 /* Wrapper function to make calls to phy_read_indirect simpler */
mv88e61xx_phy_write(struct phy_device * phydev,int phy,int reg,u16 val)402 static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
403 		int reg, u16 val)
404 {
405 	return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
406 					    MDIO_DEVAD_NONE, reg, val);
407 }
408 
mv88e61xx_port_read(struct phy_device * phydev,u8 port,u8 reg)409 static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
410 {
411 	return mv88e61xx_reg_read(phydev, DEVADDR_PORT(port), reg);
412 }
413 
mv88e61xx_port_write(struct phy_device * phydev,u8 port,u8 reg,u16 val)414 static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
415 								u16 val)
416 {
417 	return mv88e61xx_reg_write(phydev, DEVADDR_PORT(port), reg, val);
418 }
419 
mv88e61xx_set_page(struct phy_device * phydev,u8 phy,u8 page)420 static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
421 {
422 	return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
423 }
424 
mv88e61xx_get_switch_id(struct phy_device * phydev)425 static int mv88e61xx_get_switch_id(struct phy_device *phydev)
426 {
427 	int res;
428 
429 	res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
430 	if (res < 0)
431 		return res;
432 	return res & 0xfff0;
433 }
434 
mv88e61xx_6352_family(struct phy_device * phydev)435 static bool mv88e61xx_6352_family(struct phy_device *phydev)
436 {
437 	struct mv88e61xx_phy_priv *priv = phydev->priv;
438 
439 	switch (priv->id) {
440 	case PORT_SWITCH_ID_6172:
441 	case PORT_SWITCH_ID_6176:
442 	case PORT_SWITCH_ID_6240:
443 	case PORT_SWITCH_ID_6352:
444 		return true;
445 	}
446 	return false;
447 }
448 
mv88e61xx_get_cmode(struct phy_device * phydev,u8 port)449 static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
450 {
451 	int res;
452 
453 	res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
454 	if (res < 0)
455 		return res;
456 	return res & PORT_REG_STATUS_CMODE_MASK;
457 }
458 
mv88e61xx_parse_status(struct phy_device * phydev)459 static int mv88e61xx_parse_status(struct phy_device *phydev)
460 {
461 	unsigned int speed;
462 	unsigned int mii_reg;
463 
464 	mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
465 
466 	if ((mii_reg & PHY_REG_STATUS1_LINK) &&
467 	    !(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
468 		int i = 0;
469 
470 		puts("Waiting for PHY realtime link");
471 		while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
472 			/* Timeout reached ? */
473 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
474 				puts(" TIMEOUT !\n");
475 				phydev->link = 0;
476 				break;
477 			}
478 
479 			if ((i++ % 1000) == 0)
480 				putc('.');
481 			udelay(1000);
482 			mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
483 					PHY_REG_STATUS1);
484 		}
485 		puts(" done\n");
486 		udelay(500000);	/* another 500 ms (results in faster booting) */
487 	} else {
488 		if (mii_reg & PHY_REG_STATUS1_LINK)
489 			phydev->link = 1;
490 		else
491 			phydev->link = 0;
492 	}
493 
494 	if (mii_reg & PHY_REG_STATUS1_DUPLEX)
495 		phydev->duplex = DUPLEX_FULL;
496 	else
497 		phydev->duplex = DUPLEX_HALF;
498 
499 	speed = mii_reg & PHY_REG_STATUS1_SPEED;
500 
501 	switch (speed) {
502 	case PHY_REG_STATUS1_GBIT:
503 		phydev->speed = SPEED_1000;
504 		break;
505 	case PHY_REG_STATUS1_100:
506 		phydev->speed = SPEED_100;
507 		break;
508 	default:
509 		phydev->speed = SPEED_10;
510 		break;
511 	}
512 
513 	return 0;
514 }
515 
mv88e61xx_switch_reset(struct phy_device * phydev)516 static int mv88e61xx_switch_reset(struct phy_device *phydev)
517 {
518 	int time;
519 	int val;
520 	u8 port;
521 
522 	/* Disable all ports */
523 	for (port = 0; port < PORT_COUNT; port++) {
524 		val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
525 		if (val < 0)
526 			return val;
527 		val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
528 				       PORT_REG_CTRL_PSTATE_WIDTH,
529 				       PORT_REG_CTRL_PSTATE_DISABLED);
530 		val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
531 		if (val < 0)
532 			return val;
533 	}
534 
535 	/* Wait 2 ms for queues to drain */
536 	udelay(2000);
537 
538 	/* Reset switch */
539 	val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_CTRL);
540 	if (val < 0)
541 		return val;
542 	val |= GLOBAL1_CTRL_SWRESET;
543 	val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
544 				     GLOBAL1_CTRL, val);
545 	if (val < 0)
546 		return val;
547 
548 	/* Wait up to 1 second for switch reset complete */
549 	for (time = 1000; time; time--) {
550 		val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1,
551 					    GLOBAL1_CTRL);
552 		if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
553 			break;
554 		udelay(1000);
555 	}
556 	if (!time)
557 		return -ETIMEDOUT;
558 
559 	return 0;
560 }
561 
mv88e61xx_serdes_init(struct phy_device * phydev)562 static int mv88e61xx_serdes_init(struct phy_device *phydev)
563 {
564 	int val;
565 
566 	val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
567 	if (val < 0)
568 		return val;
569 
570 	/* Power up serdes module */
571 	val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
572 	if (val < 0)
573 		return val;
574 	val &= ~(BMCR_PDOWN);
575 	val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
576 	if (val < 0)
577 		return val;
578 
579 	return 0;
580 }
581 
mv88e61xx_port_enable(struct phy_device * phydev,u8 port)582 static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
583 {
584 	int val;
585 
586 	val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
587 	if (val < 0)
588 		return val;
589 	val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
590 			       PORT_REG_CTRL_PSTATE_WIDTH,
591 			       PORT_REG_CTRL_PSTATE_FORWARD);
592 	val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
593 	if (val < 0)
594 		return val;
595 
596 	return 0;
597 }
598 
mv88e61xx_port_set_vlan(struct phy_device * phydev,u8 port,u16 mask)599 static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
600 							u16 mask)
601 {
602 	int val;
603 
604 	/* Set VID to port number plus one */
605 	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
606 	if (val < 0)
607 		return val;
608 	val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
609 			       PORT_REG_VLAN_ID_DEF_VID_WIDTH,
610 			       port + 1);
611 	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
612 	if (val < 0)
613 		return val;
614 
615 	/* Set VID mask */
616 	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
617 	if (val < 0)
618 		return val;
619 	val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
620 			       PORT_REG_VLAN_MAP_TABLE_WIDTH,
621 			       mask);
622 	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
623 	if (val < 0)
624 		return val;
625 
626 	return 0;
627 }
628 
mv88e61xx_read_port_config(struct phy_device * phydev,u8 port)629 static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
630 {
631 	int res;
632 	int val;
633 	bool forced = false;
634 
635 	val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
636 	if (val < 0)
637 		return val;
638 	if (!(val & PORT_REG_STATUS_LINK)) {
639 		/* Temporarily force link to read port configuration */
640 		u32 timeout = 100;
641 		forced = true;
642 
643 		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
644 		if (val < 0)
645 			return val;
646 		val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
647 				PORT_REG_PHYS_CTRL_LINK_VALUE);
648 		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
649 					   val);
650 		if (val < 0)
651 			return val;
652 
653 		/* Wait for status register to reflect forced link */
654 		do {
655 			val = mv88e61xx_port_read(phydev, port,
656 						  PORT_REG_STATUS);
657 			if (val < 0) {
658 				res = -EIO;
659 				goto unforce;
660 			}
661 			if (val & PORT_REG_STATUS_LINK)
662 				break;
663 		} while (--timeout);
664 
665 		if (timeout == 0) {
666 			res = -ETIMEDOUT;
667 			goto unforce;
668 		}
669 	}
670 
671 	if (val & PORT_REG_STATUS_DUPLEX)
672 		phydev->duplex = DUPLEX_FULL;
673 	else
674 		phydev->duplex = DUPLEX_HALF;
675 
676 	val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
677 			       PORT_REG_STATUS_SPEED_WIDTH);
678 	switch (val) {
679 	case PORT_REG_STATUS_SPEED_1000:
680 		phydev->speed = SPEED_1000;
681 		break;
682 	case PORT_REG_STATUS_SPEED_100:
683 		phydev->speed = SPEED_100;
684 		break;
685 	default:
686 		phydev->speed = SPEED_10;
687 		break;
688 	}
689 
690 	res = 0;
691 
692 unforce:
693 	if (forced) {
694 		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
695 		if (val < 0)
696 			return val;
697 		val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
698 				PORT_REG_PHYS_CTRL_LINK_VALUE);
699 		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
700 					   val);
701 		if (val < 0)
702 			return val;
703 	}
704 
705 	return res;
706 }
707 
mv88e61xx_fixed_port_setup(struct phy_device * phydev,u8 port)708 static int mv88e61xx_fixed_port_setup(struct phy_device *phydev, u8 port)
709 {
710 	int val;
711 
712 	val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
713 	if (val < 0)
714 		return val;
715 
716 	val &= ~(PORT_REG_PHYS_CTRL_SPD_MASK |
717 		 PORT_REG_PHYS_CTRL_FC_VALUE);
718 	val |= PORT_REG_PHYS_CTRL_PCS_AN_EN |
719 	       PORT_REG_PHYS_CTRL_PCS_AN_RST |
720 	       PORT_REG_PHYS_CTRL_FC_FORCE |
721 	       PORT_REG_PHYS_CTRL_DUPLEX_VALUE |
722 	       PORT_REG_PHYS_CTRL_DUPLEX_FORCE |
723 	       PORT_REG_PHYS_CTRL_SPD1000;
724 
725 	if (port == CONFIG_MV88E61XX_CPU_PORT)
726 		val |= PORT_REG_PHYS_CTRL_LINK_VALUE |
727 		       PORT_REG_PHYS_CTRL_LINK_FORCE;
728 
729 	return mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
730 				   val);
731 }
732 
mv88e61xx_set_cpu_port(struct phy_device * phydev)733 static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
734 {
735 	int val;
736 
737 	/* Set CPUDest */
738 	val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_MON_CTRL);
739 	if (val < 0)
740 		return val;
741 	val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
742 			       GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
743 			       CONFIG_MV88E61XX_CPU_PORT);
744 	val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
745 				     GLOBAL1_MON_CTRL, val);
746 	if (val < 0)
747 		return val;
748 
749 	/* Allow CPU to route to any port */
750 	val = PORT_MASK & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
751 	val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
752 	if (val < 0)
753 		return val;
754 
755 	/* Enable CPU port */
756 	val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
757 	if (val < 0)
758 		return val;
759 
760 	val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
761 	if (val < 0)
762 		return val;
763 
764 	/* If CPU is connected to serdes, initialize serdes */
765 	if (mv88e61xx_6352_family(phydev)) {
766 		val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
767 		if (val < 0)
768 			return val;
769 		if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
770 		    val == PORT_REG_STATUS_CMODE_1000BASE_X ||
771 		    val == PORT_REG_STATUS_CMODE_SGMII) {
772 			val = mv88e61xx_serdes_init(phydev);
773 			if (val < 0)
774 				return val;
775 		}
776 	} else {
777 		val = mv88e61xx_fixed_port_setup(phydev,
778 						 CONFIG_MV88E61XX_CPU_PORT);
779 		if (val < 0)
780 			return val;
781 	}
782 
783 	return 0;
784 }
785 
mv88e61xx_switch_init(struct phy_device * phydev)786 static int mv88e61xx_switch_init(struct phy_device *phydev)
787 {
788 	static int init;
789 	int res;
790 
791 	if (init)
792 		return 0;
793 
794 	res = mv88e61xx_switch_reset(phydev);
795 	if (res < 0)
796 		return res;
797 
798 	res = mv88e61xx_set_cpu_port(phydev);
799 	if (res < 0)
800 		return res;
801 
802 	init = 1;
803 
804 	return 0;
805 }
806 
mv88e61xx_phy_enable(struct phy_device * phydev,u8 phy)807 static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
808 {
809 	int val;
810 
811 	val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
812 	if (val < 0)
813 		return val;
814 	val &= ~(BMCR_PDOWN);
815 	val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
816 	if (val < 0)
817 		return val;
818 
819 	return 0;
820 }
821 
mv88e61xx_phy_setup(struct phy_device * phydev,u8 phy)822 static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
823 {
824 	int val;
825 
826 	/*
827 	 * Enable energy-detect sensing on PHY, used to determine when a PHY
828 	 * port is physically connected
829 	 */
830 	val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
831 	if (val < 0)
832 		return val;
833 	val = bitfield_replace(val, PHY_REG_CTRL1_ENERGY_DET_SHIFT,
834 			       PHY_REG_CTRL1_ENERGY_DET_WIDTH,
835 			       PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT);
836 	val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
837 	if (val < 0)
838 		return val;
839 
840 	return 0;
841 }
842 
mv88e61xx_phy_config_port(struct phy_device * phydev,u8 phy)843 static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
844 {
845 	int val;
846 
847 	val = mv88e61xx_port_enable(phydev, phy);
848 	if (val < 0)
849 		return val;
850 
851 	val = mv88e61xx_port_set_vlan(phydev, phy,
852 			1 << CONFIG_MV88E61XX_CPU_PORT);
853 	if (val < 0)
854 		return val;
855 
856 	return 0;
857 }
858 
mv88e61xx_probe(struct phy_device * phydev)859 static int mv88e61xx_probe(struct phy_device *phydev)
860 {
861 	struct mii_dev *smi_wrapper;
862 	struct mv88e61xx_phy_priv *priv;
863 	int res;
864 
865 	res = mv88e61xx_hw_reset(phydev);
866 	if (res < 0)
867 		return res;
868 
869 	priv = malloc(sizeof(*priv));
870 	if (!priv)
871 		return -ENOMEM;
872 
873 	memset(priv, 0, sizeof(*priv));
874 
875 	/*
876 	 * This device requires indirect reads/writes to the PHY registers
877 	 * which the generic PHY code can't handle.  Make a wrapper MII device
878 	 * to handle reads/writes
879 	 */
880 	smi_wrapper = mdio_alloc();
881 	if (!smi_wrapper) {
882 		free(priv);
883 		return -ENOMEM;
884 	}
885 
886 	/*
887 	 * Store the mdio bus in the private data, as we are going to replace
888 	 * the bus with the wrapper bus
889 	 */
890 	priv->mdio_bus = phydev->bus;
891 
892 	/*
893 	 * Store the smi bus address in private data.  This lets us use the
894 	 * phydev addr field for device address instead, as the genphy code
895 	 * expects.
896 	 */
897 	priv->smi_addr = phydev->addr;
898 
899 	/*
900 	 * Store the phy_device in the wrapper mii device. This lets us get it
901 	 * back when genphy functions call phy_read/phy_write.
902 	 */
903 	smi_wrapper->priv = phydev;
904 	strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
905 	smi_wrapper->read = mv88e61xx_phy_read_indirect;
906 	smi_wrapper->write = mv88e61xx_phy_write_indirect;
907 
908 	/* Replace the bus with the wrapper device */
909 	phydev->bus = smi_wrapper;
910 
911 	phydev->priv = priv;
912 
913 	priv->id = mv88e61xx_get_switch_id(phydev);
914 
915 	return 0;
916 }
917 
mv88e61xx_phy_config(struct phy_device * phydev)918 static int mv88e61xx_phy_config(struct phy_device *phydev)
919 {
920 	int res;
921 	int i;
922 	int ret = -1;
923 
924 	res = mv88e61xx_switch_init(phydev);
925 	if (res < 0)
926 		return res;
927 
928 	for (i = 0; i < PORT_COUNT; i++) {
929 		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
930 			phydev->addr = i;
931 
932 			res = mv88e61xx_phy_enable(phydev, i);
933 			if (res < 0) {
934 				printf("Error enabling PHY %i\n", i);
935 				continue;
936 			}
937 			res = mv88e61xx_phy_setup(phydev, i);
938 			if (res < 0) {
939 				printf("Error setting up PHY %i\n", i);
940 				continue;
941 			}
942 			res = mv88e61xx_phy_config_port(phydev, i);
943 			if (res < 0) {
944 				printf("Error configuring PHY %i\n", i);
945 				continue;
946 			}
947 
948 			res = phy_reset(phydev);
949 			if (res < 0) {
950 				printf("Error resetting PHY %i\n", i);
951 				continue;
952 			}
953 			res = genphy_config_aneg(phydev);
954 			if (res < 0) {
955 				printf("Error setting PHY %i autoneg\n", i);
956 				continue;
957 			}
958 
959 			/* Return success if any PHY succeeds */
960 			ret = 0;
961 		} else if ((1 << i) & CONFIG_MV88E61XX_FIXED_PORTS) {
962 			res = mv88e61xx_fixed_port_setup(phydev, i);
963 			if (res < 0) {
964 				printf("Error configuring port %i\n", i);
965 				continue;
966 			}
967 		}
968 	}
969 
970 	return ret;
971 }
972 
mv88e61xx_phy_is_connected(struct phy_device * phydev)973 static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
974 {
975 	int val;
976 
977 	val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
978 	if (val < 0)
979 		return 0;
980 
981 	/*
982 	 * After reset, the energy detect signal remains high for a few seconds
983 	 * regardless of whether a cable is connected.  This function will
984 	 * return false positives during this time.
985 	 */
986 	return (val & PHY_REG_STATUS1_ENERGY) == 0;
987 }
988 
mv88e61xx_phy_startup(struct phy_device * phydev)989 static int mv88e61xx_phy_startup(struct phy_device *phydev)
990 {
991 	int i;
992 	int link = 0;
993 	int res;
994 	int speed = phydev->speed;
995 	int duplex = phydev->duplex;
996 
997 	for (i = 0; i < PORT_COUNT; i++) {
998 		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
999 			phydev->addr = i;
1000 			if (!mv88e61xx_phy_is_connected(phydev))
1001 				continue;
1002 			res = genphy_update_link(phydev);
1003 			if (res < 0)
1004 				continue;
1005 			res = mv88e61xx_parse_status(phydev);
1006 			if (res < 0)
1007 				continue;
1008 			link = (link || phydev->link);
1009 		}
1010 	}
1011 	phydev->link = link;
1012 
1013 	/* Restore CPU interface speed and duplex after it was changed for
1014 	 * other ports */
1015 	phydev->speed = speed;
1016 	phydev->duplex = duplex;
1017 
1018 	return 0;
1019 }
1020 
1021 static struct phy_driver mv88e61xx_driver = {
1022 	.name = "Marvell MV88E61xx",
1023 	.uid = 0x01410eb1,
1024 	.mask = 0xfffffff0,
1025 	.features = PHY_GBIT_FEATURES,
1026 	.probe = mv88e61xx_probe,
1027 	.config = mv88e61xx_phy_config,
1028 	.startup = mv88e61xx_phy_startup,
1029 	.shutdown = &genphy_shutdown,
1030 };
1031 
1032 static struct phy_driver mv88e609x_driver = {
1033 	.name = "Marvell MV88E609x",
1034 	.uid = 0x1410c89,
1035 	.mask = 0xfffffff0,
1036 	.features = PHY_GBIT_FEATURES,
1037 	.probe = mv88e61xx_probe,
1038 	.config = mv88e61xx_phy_config,
1039 	.startup = mv88e61xx_phy_startup,
1040 	.shutdown = &genphy_shutdown,
1041 };
1042 
phy_mv88e61xx_init(void)1043 int phy_mv88e61xx_init(void)
1044 {
1045 	phy_register(&mv88e61xx_driver);
1046 	phy_register(&mv88e609x_driver);
1047 
1048 	return 0;
1049 }
1050 
1051 /*
1052  * Overload weak get_phy_id definition since we need non-standard functions
1053  * to read PHY registers
1054  */
get_phy_id(struct mii_dev * bus,int smi_addr,int devad,u32 * phy_id)1055 int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
1056 {
1057 	struct phy_device temp_phy;
1058 	struct mv88e61xx_phy_priv temp_priv;
1059 	struct mii_dev temp_mii;
1060 	int val;
1061 
1062 	/*
1063 	 * Buid temporary data structures that the chip reading code needs to
1064 	 * read the ID
1065 	 */
1066 	temp_priv.mdio_bus = bus;
1067 	temp_priv.smi_addr = smi_addr;
1068 	temp_phy.priv = &temp_priv;
1069 	temp_mii.priv = &temp_phy;
1070 
1071 	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
1072 	if (val < 0)
1073 		return -EIO;
1074 
1075 	*phy_id = val << 16;
1076 
1077 	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
1078 	if (val < 0)
1079 		return -EIO;
1080 
1081 	*phy_id |= (val & 0xffff);
1082 
1083 	return 0;
1084 }
1085