1 /* 2 * Driver for Marvell PPv2 network controller for Armada 375 SoC. 3 * 4 * Copyright (C) 2014 Marvell 5 * 6 * Marcin Wojtas <mw@semihalf.com> 7 * 8 * U-Boot version: 9 * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de> 10 * 11 * This file is licensed under the terms of the GNU General Public 12 * License version 2. This program is licensed "as is" without any 13 * warranty of any kind, whether express or implied. 14 */ 15 16 #include <common.h> 17 #include <dm.h> 18 #include <dm/device-internal.h> 19 #include <dm/lists.h> 20 #include <net.h> 21 #include <netdev.h> 22 #include <config.h> 23 #include <malloc.h> 24 #include <asm/io.h> 25 #include <linux/errno.h> 26 #include <phy.h> 27 #include <miiphy.h> 28 #include <watchdog.h> 29 #include <asm/arch/cpu.h> 30 #include <asm/arch/soc.h> 31 #include <linux/compat.h> 32 #include <linux/mbus.h> 33 34 DECLARE_GLOBAL_DATA_PTR; 35 36 /* Some linux -> U-Boot compatibility stuff */ 37 #define netdev_err(dev, fmt, args...) \ 38 printf(fmt, ##args) 39 #define netdev_warn(dev, fmt, args...) \ 40 printf(fmt, ##args) 41 #define netdev_info(dev, fmt, args...) \ 42 printf(fmt, ##args) 43 #define netdev_dbg(dev, fmt, args...) \ 44 printf(fmt, ##args) 45 46 #define ETH_ALEN 6 /* Octets in one ethernet addr */ 47 48 #define __verify_pcpu_ptr(ptr) \ 49 do { \ 50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ 51 (void)__vpp_verify; \ 52 } while (0) 53 54 #define VERIFY_PERCPU_PTR(__p) \ 55 ({ \ 56 __verify_pcpu_ptr(__p); \ 57 (typeof(*(__p)) __kernel __force *)(__p); \ 58 }) 59 60 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); }) 61 #define smp_processor_id() 0 62 #define num_present_cpus() 1 63 #define for_each_present_cpu(cpu) \ 64 for ((cpu) = 0; (cpu) < 1; (cpu)++) 65 66 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE) 67 68 #define CONFIG_NR_CPUS 1 69 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */ 70 71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */ 72 #define WRAP (2 + ETH_HLEN + 4 + 32) 73 #define MTU 1500 74 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN)) 75 76 #define MVPP2_SMI_TIMEOUT 10000 77 78 /* RX Fifo Registers */ 79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port)) 80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port)) 81 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60 82 #define MVPP2_RX_FIFO_INIT_REG 0x64 83 84 /* RX DMA Top Registers */ 85 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port)) 86 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16) 87 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31) 88 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool)) 89 #define MVPP2_POOL_BUF_SIZE_OFFSET 5 90 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq)) 91 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff 92 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9) 93 #define MVPP2_RXQ_POOL_SHORT_OFFS 20 94 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000 95 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000 96 #define MVPP2_RXQ_POOL_LONG_OFFS 24 97 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000 98 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000 99 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28 100 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000 101 #define MVPP2_RXQ_DISABLE_MASK BIT(31) 102 103 /* Parser Registers */ 104 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000 105 #define MVPP2_PRS_PORT_LU_MAX 0xf 106 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4)) 107 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4)) 108 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4)) 109 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8)) 110 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8)) 111 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4)) 112 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8)) 113 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8)) 114 #define MVPP2_PRS_TCAM_IDX_REG 0x1100 115 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4) 116 #define MVPP2_PRS_TCAM_INV_MASK BIT(31) 117 #define MVPP2_PRS_SRAM_IDX_REG 0x1200 118 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4) 119 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230 120 #define MVPP2_PRS_TCAM_EN_MASK BIT(0) 121 122 /* Classifier Registers */ 123 #define MVPP2_CLS_MODE_REG 0x1800 124 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0) 125 #define MVPP2_CLS_PORT_WAY_REG 0x1810 126 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port)) 127 #define MVPP2_CLS_LKP_INDEX_REG 0x1814 128 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6 129 #define MVPP2_CLS_LKP_TBL_REG 0x1818 130 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff 131 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25) 132 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820 133 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824 134 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828 135 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c 136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4)) 137 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3 138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7 139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4)) 140 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0 141 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port)) 142 143 /* Descriptor Manager Top Registers */ 144 #define MVPP2_RXQ_NUM_REG 0x2040 145 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044 146 #define MVPP22_DESC_ADDR_OFFS 8 147 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048 148 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0 149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq)) 150 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0 151 #define MVPP2_RXQ_NUM_NEW_OFFSET 16 152 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq)) 153 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff 154 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16 155 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000 156 #define MVPP2_RXQ_THRESH_REG 0x204c 157 #define MVPP2_OCCUPIED_THRESH_OFFSET 0 158 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff 159 #define MVPP2_RXQ_INDEX_REG 0x2050 160 #define MVPP2_TXQ_NUM_REG 0x2080 161 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084 162 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088 163 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0 164 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090 165 #define MVPP2_TXQ_THRESH_REG 0x2094 166 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16 167 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000 168 #define MVPP2_TXQ_INDEX_REG 0x2098 169 #define MVPP2_TXQ_PREF_BUF_REG 0x209c 170 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff) 171 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13)) 172 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14)) 173 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17) 174 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31) 175 #define MVPP2_TXQ_PENDING_REG 0x20a0 176 #define MVPP2_TXQ_PENDING_MASK 0x3fff 177 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4 178 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq)) 179 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16 180 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000 181 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0 182 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16 183 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4 184 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff 185 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8 186 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16 187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu)) 188 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8 189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu)) 190 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0 191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu)) 192 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff 193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu)) 194 195 /* MBUS bridge registers */ 196 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2)) 197 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2)) 198 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2)) 199 #define MVPP2_BASE_ADDR_ENABLE 0x4060 200 201 /* AXI Bridge Registers */ 202 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100 203 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104 204 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110 205 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114 206 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118 207 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c 208 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120 209 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130 210 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150 211 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154 212 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160 213 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164 214 215 /* Values for AXI Bridge registers */ 216 #define MVPP22_AXI_ATTR_CACHE_OFFS 0 217 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12 218 219 #define MVPP22_AXI_CODE_CACHE_OFFS 0 220 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4 221 222 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3 223 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7 224 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb 225 226 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2 227 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3 228 229 /* Interrupt Cause and Mask registers */ 230 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq)) 231 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq)) 232 233 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400 234 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf 235 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 236 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7 237 238 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf 239 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 240 241 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404 242 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f 243 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00 244 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8 245 246 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port)) 247 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff) 248 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000) 249 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port)) 250 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 251 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000 252 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24) 253 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25) 254 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26) 255 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29) 256 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30) 257 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31) 258 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port)) 259 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc 260 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 261 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000 262 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31) 263 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0 264 265 /* Buffer Manager registers */ 266 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4)) 267 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80 268 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4)) 269 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0 270 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4)) 271 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0 272 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4)) 273 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0 274 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4)) 275 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4)) 276 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff 277 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16) 278 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4)) 279 #define MVPP2_BM_START_MASK BIT(0) 280 #define MVPP2_BM_STOP_MASK BIT(1) 281 #define MVPP2_BM_STATE_MASK BIT(4) 282 #define MVPP2_BM_LOW_THRESH_OFFS 8 283 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00 284 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \ 285 MVPP2_BM_LOW_THRESH_OFFS) 286 #define MVPP2_BM_HIGH_THRESH_OFFS 16 287 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000 288 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \ 289 MVPP2_BM_HIGH_THRESH_OFFS) 290 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4)) 291 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0) 292 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1) 293 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2) 294 #define MVPP2_BM_BPPE_FULL_MASK BIT(3) 295 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4) 296 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4)) 297 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4)) 298 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0) 299 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440 300 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444 301 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff 302 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00 303 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8 304 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4)) 305 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0) 306 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1) 307 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2) 308 #define MVPP2_BM_VIRT_RLS_REG 0x64c0 309 #define MVPP21_BM_MC_RLS_REG 0x64c4 310 #define MVPP2_BM_MC_ID_MASK 0xfff 311 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12) 312 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4 313 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff 314 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00 315 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8 316 #define MVPP22_BM_MC_RLS_REG 0x64d4 317 318 /* TX Scheduler registers */ 319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000 320 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004 321 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff 322 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8 323 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010 324 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018 325 #define MVPP2_TXP_SCHED_MTU_REG 0x801c 326 #define MVPP2_TXP_MTU_MAX 0x7FFFF 327 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020 328 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff 329 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000 330 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20) 331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024 332 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff 333 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2)) 334 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff 335 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000 336 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20) 337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2)) 338 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff 339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2)) 340 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff 341 342 /* TX general registers */ 343 #define MVPP2_TX_SNOOP_REG 0x8800 344 #define MVPP2_TX_PORT_FLUSH_REG 0x8810 345 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port)) 346 347 /* LMS registers */ 348 #define MVPP2_SRC_ADDR_MIDDLE 0x24 349 #define MVPP2_SRC_ADDR_HIGH 0x28 350 #define MVPP2_PHY_AN_CFG0_REG 0x34 351 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7) 352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c 353 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27 354 355 /* Per-port registers */ 356 #define MVPP2_GMAC_CTRL_0_REG 0x0 357 #define MVPP2_GMAC_PORT_EN_MASK BIT(0) 358 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1) 359 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2 360 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc 361 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15) 362 #define MVPP2_GMAC_CTRL_1_REG 0x4 363 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1) 364 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5) 365 #define MVPP2_GMAC_PCS_LB_EN_BIT 6 366 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6) 367 #define MVPP2_GMAC_SA_LOW_OFFS 7 368 #define MVPP2_GMAC_CTRL_2_REG 0x8 369 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0) 370 #define MVPP2_GMAC_SGMII_MODE_MASK BIT(0) 371 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3) 372 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4) 373 #define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5) 374 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6) 375 #define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9) 376 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc 377 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0) 378 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1) 379 #define MVPP2_GMAC_EN_PCS_AN BIT(2) 380 #define MVPP2_GMAC_AN_BYPASS_EN BIT(3) 381 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5) 382 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6) 383 #define MVPP2_GMAC_AN_SPEED_EN BIT(7) 384 #define MVPP2_GMAC_FC_ADV_EN BIT(9) 385 #define MVPP2_GMAC_EN_FC_AN BIT(11) 386 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12) 387 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13) 388 #define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15) 389 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c 390 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6 391 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0 392 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \ 393 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK) 394 #define MVPP2_GMAC_CTRL_4_REG 0x90 395 #define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0) 396 #define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5) 397 #define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6) 398 #define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7) 399 400 /* 401 * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0, 402 * relative to port->base. 403 */ 404 405 /* Port Mac Control0 */ 406 #define MVPP22_XLG_CTRL0_REG 0x100 407 #define MVPP22_XLG_PORT_EN BIT(0) 408 #define MVPP22_XLG_MAC_RESETN BIT(1) 409 #define MVPP22_XLG_RX_FC_EN BIT(7) 410 #define MVPP22_XLG_MIBCNT_DIS BIT(13) 411 /* Port Mac Control1 */ 412 #define MVPP22_XLG_CTRL1_REG 0x104 413 #define MVPP22_XLG_MAX_RX_SIZE_OFFS 0 414 #define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff 415 /* Port Interrupt Mask */ 416 #define MVPP22_XLG_INTERRUPT_MASK_REG 0x118 417 #define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1) 418 /* Port Mac Control3 */ 419 #define MVPP22_XLG_CTRL3_REG 0x11c 420 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13) 421 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13) 422 #define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13) 423 /* Port Mac Control4 */ 424 #define MVPP22_XLG_CTRL4_REG 0x184 425 #define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5) 426 #define MVPP22_XLG_FORWARD_PFC_EN BIT(6) 427 #define MVPP22_XLG_MODE_DMA_1G BIT(12) 428 #define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14) 429 430 /* XPCS registers */ 431 432 /* Global Configuration 0 */ 433 #define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0 434 #define MVPP22_XPCS_PCSRESET BIT(0) 435 #define MVPP22_XPCS_PCSMODE_OFFS 3 436 #define MVPP22_XPCS_PCSMODE_MASK (0x3 << \ 437 MVPP22_XPCS_PCSMODE_OFFS) 438 #define MVPP22_XPCS_LANEACTIVE_OFFS 5 439 #define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \ 440 MVPP22_XPCS_LANEACTIVE_OFFS) 441 442 /* MPCS registers */ 443 444 #define PCS40G_COMMON_CONTROL 0x14 445 #define FORWARD_ERROR_CORRECTION_MASK BIT(1) 446 447 #define PCS_CLOCK_RESET 0x14c 448 #define TX_SD_CLK_RESET_MASK BIT(0) 449 #define RX_SD_CLK_RESET_MASK BIT(1) 450 #define MAC_CLK_RESET_MASK BIT(2) 451 #define CLK_DIVISION_RATIO_OFFS 4 452 #define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS) 453 #define CLK_DIV_PHASE_SET_MASK BIT(11) 454 455 /* System Soft Reset 1 */ 456 #define GOP_SOFT_RESET_1_REG 0x108 457 #define NETC_GOP_SOFT_RESET_OFFS 6 458 #define NETC_GOP_SOFT_RESET_MASK (0x1 << \ 459 NETC_GOP_SOFT_RESET_OFFS) 460 461 /* Ports Control 0 */ 462 #define NETCOMP_PORTS_CONTROL_0_REG 0x110 463 #define NETC_BUS_WIDTH_SELECT_OFFS 1 464 #define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \ 465 NETC_BUS_WIDTH_SELECT_OFFS) 466 #define NETC_GIG_RX_DATA_SAMPLE_OFFS 29 467 #define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \ 468 NETC_GIG_RX_DATA_SAMPLE_OFFS) 469 #define NETC_CLK_DIV_PHASE_OFFS 31 470 #define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS) 471 /* Ports Control 1 */ 472 #define NETCOMP_PORTS_CONTROL_1_REG 0x114 473 #define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p) 474 #define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \ 475 NETC_PORTS_ACTIVE_OFFSET(p)) 476 #define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p) 477 #define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \ 478 NETC_PORT_GIG_RF_RESET_OFFS(p)) 479 #define NETCOMP_CONTROL_0_REG 0x120 480 #define NETC_GBE_PORT0_SGMII_MODE_OFFS 0 481 #define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \ 482 NETC_GBE_PORT0_SGMII_MODE_OFFS) 483 #define NETC_GBE_PORT1_SGMII_MODE_OFFS 1 484 #define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \ 485 NETC_GBE_PORT1_SGMII_MODE_OFFS) 486 #define NETC_GBE_PORT1_MII_MODE_OFFS 2 487 #define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \ 488 NETC_GBE_PORT1_MII_MODE_OFFS) 489 490 #define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04) 491 #define MVPP22_SMI_POLLING_EN BIT(10) 492 493 #define MVPP22_SMI_PHY_ADDR_REG(port) (MVPP22_SMI + 0x04 + \ 494 (0x4 * (port))) 495 496 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 497 498 /* Descriptor ring Macros */ 499 #define MVPP2_QUEUE_NEXT_DESC(q, index) \ 500 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 501 502 /* SMI: 0xc0054 -> offset 0x54 to lms_base */ 503 #define MVPP21_SMI 0x0054 504 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */ 505 #define MVPP22_SMI 0x1200 506 #define MVPP2_PHY_REG_MASK 0x1f 507 /* SMI register fields */ 508 #define MVPP2_SMI_DATA_OFFS 0 /* Data */ 509 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS) 510 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */ 511 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/ 512 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */ 513 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS) 514 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */ 515 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */ 516 517 #define MVPP2_PHY_ADDR_MASK 0x1f 518 #define MVPP2_PHY_REG_MASK 0x1f 519 520 /* Additional PPv2.2 offsets */ 521 #define MVPP22_MPCS 0x007000 522 #define MVPP22_XPCS 0x007400 523 #define MVPP22_PORT_BASE 0x007e00 524 #define MVPP22_PORT_OFFSET 0x001000 525 #define MVPP22_RFU1 0x318000 526 527 /* Maximum number of ports */ 528 #define MVPP22_GOP_MAC_NUM 4 529 530 /* Sets the field located at the specified in data */ 531 #define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41 532 #define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5 533 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb 534 535 /* Net Complex */ 536 enum mv_netc_topology { 537 MV_NETC_GE_MAC2_SGMII = BIT(0), 538 MV_NETC_GE_MAC3_SGMII = BIT(1), 539 MV_NETC_GE_MAC3_RGMII = BIT(2), 540 }; 541 542 enum mv_netc_phase { 543 MV_NETC_FIRST_PHASE, 544 MV_NETC_SECOND_PHASE, 545 }; 546 547 enum mv_netc_sgmii_xmi_mode { 548 MV_NETC_GBE_SGMII, 549 MV_NETC_GBE_XMII, 550 }; 551 552 enum mv_netc_mii_mode { 553 MV_NETC_GBE_RGMII, 554 MV_NETC_GBE_MII, 555 }; 556 557 enum mv_netc_lanes { 558 MV_NETC_LANE_23, 559 MV_NETC_LANE_45, 560 }; 561 562 /* Various constants */ 563 564 /* Coalescing */ 565 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15 566 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL 567 #define MVPP2_RX_COAL_PKTS 32 568 #define MVPP2_RX_COAL_USEC 100 569 570 /* The two bytes Marvell header. Either contains a special value used 571 * by Marvell switches when a specific hardware mode is enabled (not 572 * supported by this driver) or is filled automatically by zeroes on 573 * the RX side. Those two bytes being at the front of the Ethernet 574 * header, they allow to have the IP header aligned on a 4 bytes 575 * boundary automatically: the hardware skips those two bytes on its 576 * own. 577 */ 578 #define MVPP2_MH_SIZE 2 579 #define MVPP2_ETH_TYPE_LEN 2 580 #define MVPP2_PPPOE_HDR_SIZE 8 581 #define MVPP2_VLAN_TAG_LEN 4 582 583 /* Lbtd 802.3 type */ 584 #define MVPP2_IP_LBDT_TYPE 0xfffa 585 586 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32 587 #define MVPP2_TX_CSUM_MAX_SIZE 9800 588 589 /* Timeout constants */ 590 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000 591 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000 592 593 #define MVPP2_TX_MTU_MAX 0x7ffff 594 595 /* Maximum number of T-CONTs of PON port */ 596 #define MVPP2_MAX_TCONT 16 597 598 /* Maximum number of supported ports */ 599 #define MVPP2_MAX_PORTS 4 600 601 /* Maximum number of TXQs used by single port */ 602 #define MVPP2_MAX_TXQ 8 603 604 /* Default number of TXQs in use */ 605 #define MVPP2_DEFAULT_TXQ 1 606 607 /* Dfault number of RXQs in use */ 608 #define MVPP2_DEFAULT_RXQ 1 609 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */ 610 611 /* Max number of Rx descriptors */ 612 #define MVPP2_MAX_RXD 16 613 614 /* Max number of Tx descriptors */ 615 #define MVPP2_MAX_TXD 16 616 617 /* Amount of Tx descriptors that can be reserved at once by CPU */ 618 #define MVPP2_CPU_DESC_CHUNK 64 619 620 /* Max number of Tx descriptors in each aggregated queue */ 621 #define MVPP2_AGGR_TXQ_SIZE 256 622 623 /* Descriptor aligned size */ 624 #define MVPP2_DESC_ALIGNED_SIZE 32 625 626 /* Descriptor alignment mask */ 627 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1) 628 629 /* RX FIFO constants */ 630 #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000 631 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80 632 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000 633 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000 634 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000 635 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200 636 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80 637 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40 638 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80 639 640 /* TX general registers */ 641 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2)) 642 #define MVPP22_TX_FIFO_SIZE_MASK 0xf 643 644 /* TX FIFO constants */ 645 #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa 646 #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3 647 648 /* RX buffer constants */ 649 #define MVPP2_SKB_SHINFO_SIZE \ 650 0 651 652 #define MVPP2_RX_PKT_SIZE(mtu) \ 653 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \ 654 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE) 655 656 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 657 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE) 658 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \ 659 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE) 660 661 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8) 662 663 /* IPv6 max L3 address size */ 664 #define MVPP2_MAX_L3_ADDR_SIZE 16 665 666 /* Port flags */ 667 #define MVPP2_F_LOOPBACK BIT(0) 668 669 /* Marvell tag types */ 670 enum mvpp2_tag_type { 671 MVPP2_TAG_TYPE_NONE = 0, 672 MVPP2_TAG_TYPE_MH = 1, 673 MVPP2_TAG_TYPE_DSA = 2, 674 MVPP2_TAG_TYPE_EDSA = 3, 675 MVPP2_TAG_TYPE_VLAN = 4, 676 MVPP2_TAG_TYPE_LAST = 5 677 }; 678 679 /* Parser constants */ 680 #define MVPP2_PRS_TCAM_SRAM_SIZE 256 681 #define MVPP2_PRS_TCAM_WORDS 6 682 #define MVPP2_PRS_SRAM_WORDS 4 683 #define MVPP2_PRS_FLOW_ID_SIZE 64 684 #define MVPP2_PRS_FLOW_ID_MASK 0x3f 685 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1 686 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5) 687 #define MVPP2_PRS_IPV4_HEAD 0x40 688 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0 689 #define MVPP2_PRS_IPV4_MC 0xe0 690 #define MVPP2_PRS_IPV4_MC_MASK 0xf0 691 #define MVPP2_PRS_IPV4_BC_MASK 0xff 692 #define MVPP2_PRS_IPV4_IHL 0x5 693 #define MVPP2_PRS_IPV4_IHL_MASK 0xf 694 #define MVPP2_PRS_IPV6_MC 0xff 695 #define MVPP2_PRS_IPV6_MC_MASK 0xff 696 #define MVPP2_PRS_IPV6_HOP_MASK 0xff 697 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff 698 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f 699 #define MVPP2_PRS_DBL_VLANS_MAX 100 700 701 /* Tcam structure: 702 * - lookup ID - 4 bits 703 * - port ID - 1 byte 704 * - additional information - 1 byte 705 * - header data - 8 bytes 706 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0). 707 */ 708 #define MVPP2_PRS_AI_BITS 8 709 #define MVPP2_PRS_PORT_MASK 0xff 710 #define MVPP2_PRS_LU_MASK 0xf 711 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \ 712 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2)) 713 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \ 714 (((offs) * 2) - ((offs) % 2) + 2) 715 #define MVPP2_PRS_TCAM_AI_BYTE 16 716 #define MVPP2_PRS_TCAM_PORT_BYTE 17 717 #define MVPP2_PRS_TCAM_LU_BYTE 20 718 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2) 719 #define MVPP2_PRS_TCAM_INV_WORD 5 720 /* Tcam entries ID */ 721 #define MVPP2_PE_DROP_ALL 0 722 #define MVPP2_PE_FIRST_FREE_TID 1 723 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31) 724 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30) 725 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29) 726 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28) 727 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27) 728 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26) 729 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19) 730 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18) 731 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17) 732 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16) 733 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15) 734 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14) 735 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13) 736 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12) 737 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11) 738 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10) 739 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9) 740 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8) 741 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7) 742 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6) 743 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5) 744 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4) 745 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3) 746 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2) 747 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1) 748 749 /* Sram structure 750 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0). 751 */ 752 #define MVPP2_PRS_SRAM_RI_OFFS 0 753 #define MVPP2_PRS_SRAM_RI_WORD 0 754 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32 755 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1 756 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32 757 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64 758 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72 759 #define MVPP2_PRS_SRAM_UDF_OFFS 73 760 #define MVPP2_PRS_SRAM_UDF_BITS 8 761 #define MVPP2_PRS_SRAM_UDF_MASK 0xff 762 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81 763 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82 764 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7 765 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1 766 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4 767 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85 768 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3 769 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1 770 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2 771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3 772 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87 773 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2 774 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3 775 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0 776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2 777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3 778 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89 779 #define MVPP2_PRS_SRAM_AI_OFFS 90 780 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98 781 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8 782 #define MVPP2_PRS_SRAM_AI_MASK 0xff 783 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106 784 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf 785 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110 786 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111 787 788 /* Sram result info bits assignment */ 789 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1 790 #define MVPP2_PRS_RI_DSA_MASK 0x2 791 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3)) 792 #define MVPP2_PRS_RI_VLAN_NONE 0x0 793 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2) 794 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3) 795 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3)) 796 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70 797 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4) 798 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) 799 #define MVPP2_PRS_RI_L2_UCAST 0x0 800 #define MVPP2_PRS_RI_L2_MCAST BIT(9) 801 #define MVPP2_PRS_RI_L2_BCAST BIT(10) 802 #define MVPP2_PRS_RI_PPPOE_MASK 0x800 803 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14)) 804 #define MVPP2_PRS_RI_L3_UN 0x0 805 #define MVPP2_PRS_RI_L3_IP4 BIT(12) 806 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13) 807 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13)) 808 #define MVPP2_PRS_RI_L3_IP6 BIT(14) 809 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14)) 810 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14)) 811 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16)) 812 #define MVPP2_PRS_RI_L3_UCAST 0x0 813 #define MVPP2_PRS_RI_L3_MCAST BIT(15) 814 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16)) 815 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000 816 #define MVPP2_PRS_RI_UDF3_MASK 0x300000 817 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21) 818 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000 819 #define MVPP2_PRS_RI_L4_TCP BIT(22) 820 #define MVPP2_PRS_RI_L4_UDP BIT(23) 821 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23)) 822 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000 823 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29) 824 #define MVPP2_PRS_RI_DROP_MASK 0x80000000 825 826 /* Sram additional info bits assignment */ 827 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0) 828 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0) 829 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1) 830 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2) 831 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3) 832 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4) 833 #define MVPP2_PRS_SINGLE_VLAN_AI 0 834 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7) 835 836 /* DSA/EDSA type */ 837 #define MVPP2_PRS_TAGGED true 838 #define MVPP2_PRS_UNTAGGED false 839 #define MVPP2_PRS_EDSA true 840 #define MVPP2_PRS_DSA false 841 842 /* MAC entries, shadow udf */ 843 enum mvpp2_prs_udf { 844 MVPP2_PRS_UDF_MAC_DEF, 845 MVPP2_PRS_UDF_MAC_RANGE, 846 MVPP2_PRS_UDF_L2_DEF, 847 MVPP2_PRS_UDF_L2_DEF_COPY, 848 MVPP2_PRS_UDF_L2_USER, 849 }; 850 851 /* Lookup ID */ 852 enum mvpp2_prs_lookup { 853 MVPP2_PRS_LU_MH, 854 MVPP2_PRS_LU_MAC, 855 MVPP2_PRS_LU_DSA, 856 MVPP2_PRS_LU_VLAN, 857 MVPP2_PRS_LU_L2, 858 MVPP2_PRS_LU_PPPOE, 859 MVPP2_PRS_LU_IP4, 860 MVPP2_PRS_LU_IP6, 861 MVPP2_PRS_LU_FLOWS, 862 MVPP2_PRS_LU_LAST, 863 }; 864 865 /* L3 cast enum */ 866 enum mvpp2_prs_l3_cast { 867 MVPP2_PRS_L3_UNI_CAST, 868 MVPP2_PRS_L3_MULTI_CAST, 869 MVPP2_PRS_L3_BROAD_CAST 870 }; 871 872 /* Classifier constants */ 873 #define MVPP2_CLS_FLOWS_TBL_SIZE 512 874 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3 875 #define MVPP2_CLS_LKP_TBL_SIZE 64 876 877 /* BM constants */ 878 #define MVPP2_BM_POOLS_NUM 1 879 #define MVPP2_BM_LONG_BUF_NUM 16 880 #define MVPP2_BM_SHORT_BUF_NUM 16 881 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4) 882 #define MVPP2_BM_POOL_PTR_ALIGN 128 883 #define MVPP2_BM_SWF_LONG_POOL(port) 0 884 885 /* BM cookie (32 bits) definition */ 886 #define MVPP2_BM_COOKIE_POOL_OFFS 8 887 #define MVPP2_BM_COOKIE_CPU_OFFS 24 888 889 /* BM short pool packet size 890 * These value assure that for SWF the total number 891 * of bytes allocated for each buffer will be 512 892 */ 893 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512) 894 895 enum mvpp2_bm_type { 896 MVPP2_BM_FREE, 897 MVPP2_BM_SWF_LONG, 898 MVPP2_BM_SWF_SHORT 899 }; 900 901 /* Definitions */ 902 903 /* Shared Packet Processor resources */ 904 struct mvpp2 { 905 /* Shared registers' base addresses */ 906 void __iomem *base; 907 void __iomem *lms_base; 908 void __iomem *iface_base; 909 void __iomem *mdio_base; 910 911 void __iomem *mpcs_base; 912 void __iomem *xpcs_base; 913 void __iomem *rfu1_base; 914 915 u32 netc_config; 916 917 /* List of pointers to port structures */ 918 struct mvpp2_port **port_list; 919 920 /* Aggregated TXQs */ 921 struct mvpp2_tx_queue *aggr_txqs; 922 923 /* BM pools */ 924 struct mvpp2_bm_pool *bm_pools; 925 926 /* PRS shadow table */ 927 struct mvpp2_prs_shadow *prs_shadow; 928 /* PRS auxiliary table for double vlan entries control */ 929 bool *prs_double_vlans; 930 931 /* Tclk value */ 932 u32 tclk; 933 934 /* HW version */ 935 enum { MVPP21, MVPP22 } hw_version; 936 937 /* Maximum number of RXQs per port */ 938 unsigned int max_port_rxqs; 939 940 struct mii_dev *bus; 941 942 int probe_done; 943 }; 944 945 struct mvpp2_pcpu_stats { 946 u64 rx_packets; 947 u64 rx_bytes; 948 u64 tx_packets; 949 u64 tx_bytes; 950 }; 951 952 struct mvpp2_port { 953 u8 id; 954 955 /* Index of the port from the "group of ports" complex point 956 * of view 957 */ 958 int gop_id; 959 960 int irq; 961 962 struct mvpp2 *priv; 963 964 /* Per-port registers' base address */ 965 void __iomem *base; 966 967 struct mvpp2_rx_queue **rxqs; 968 struct mvpp2_tx_queue **txqs; 969 970 int pkt_size; 971 972 u32 pending_cause_rx; 973 974 /* Per-CPU port control */ 975 struct mvpp2_port_pcpu __percpu *pcpu; 976 977 /* Flags */ 978 unsigned long flags; 979 980 u16 tx_ring_size; 981 u16 rx_ring_size; 982 struct mvpp2_pcpu_stats __percpu *stats; 983 984 struct phy_device *phy_dev; 985 phy_interface_t phy_interface; 986 int phy_node; 987 int phyaddr; 988 int init; 989 unsigned int link; 990 unsigned int duplex; 991 unsigned int speed; 992 993 unsigned int phy_speed; /* SGMII 1Gbps vs 2.5Gbps */ 994 995 struct mvpp2_bm_pool *pool_long; 996 struct mvpp2_bm_pool *pool_short; 997 998 /* Index of first port's physical RXQ */ 999 u8 first_rxq; 1000 1001 u8 dev_addr[ETH_ALEN]; 1002 }; 1003 1004 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the 1005 * layout of the transmit and reception DMA descriptors, and their 1006 * layout is therefore defined by the hardware design 1007 */ 1008 1009 #define MVPP2_TXD_L3_OFF_SHIFT 0 1010 #define MVPP2_TXD_IP_HLEN_SHIFT 8 1011 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13) 1012 #define MVPP2_TXD_L4_CSUM_NOT BIT(14) 1013 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15) 1014 #define MVPP2_TXD_PADDING_DISABLE BIT(23) 1015 #define MVPP2_TXD_L4_UDP BIT(24) 1016 #define MVPP2_TXD_L3_IP6 BIT(26) 1017 #define MVPP2_TXD_L_DESC BIT(28) 1018 #define MVPP2_TXD_F_DESC BIT(29) 1019 1020 #define MVPP2_RXD_ERR_SUMMARY BIT(15) 1021 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14)) 1022 #define MVPP2_RXD_ERR_CRC 0x0 1023 #define MVPP2_RXD_ERR_OVERRUN BIT(13) 1024 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14)) 1025 #define MVPP2_RXD_BM_POOL_ID_OFFS 16 1026 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18)) 1027 #define MVPP2_RXD_HWF_SYNC BIT(21) 1028 #define MVPP2_RXD_L4_CSUM_OK BIT(22) 1029 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24) 1030 #define MVPP2_RXD_L4_TCP BIT(25) 1031 #define MVPP2_RXD_L4_UDP BIT(26) 1032 #define MVPP2_RXD_L3_IP4 BIT(28) 1033 #define MVPP2_RXD_L3_IP6 BIT(30) 1034 #define MVPP2_RXD_BUF_HDR BIT(31) 1035 1036 /* HW TX descriptor for PPv2.1 */ 1037 struct mvpp21_tx_desc { 1038 u32 command; /* Options used by HW for packet transmitting.*/ 1039 u8 packet_offset; /* the offset from the buffer beginning */ 1040 u8 phys_txq; /* destination queue ID */ 1041 u16 data_size; /* data size of transmitted packet in bytes */ 1042 u32 buf_dma_addr; /* physical addr of transmitted buffer */ 1043 u32 buf_cookie; /* cookie for access to TX buffer in tx path */ 1044 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */ 1045 u32 reserved2; /* reserved (for future use) */ 1046 }; 1047 1048 /* HW RX descriptor for PPv2.1 */ 1049 struct mvpp21_rx_desc { 1050 u32 status; /* info about received packet */ 1051 u16 reserved1; /* parser_info (for future use, PnC) */ 1052 u16 data_size; /* size of received packet in bytes */ 1053 u32 buf_dma_addr; /* physical address of the buffer */ 1054 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 1055 u16 reserved2; /* gem_port_id (for future use, PON) */ 1056 u16 reserved3; /* csum_l4 (for future use, PnC) */ 1057 u8 reserved4; /* bm_qset (for future use, BM) */ 1058 u8 reserved5; 1059 u16 reserved6; /* classify_info (for future use, PnC) */ 1060 u32 reserved7; /* flow_id (for future use, PnC) */ 1061 u32 reserved8; 1062 }; 1063 1064 /* HW TX descriptor for PPv2.2 */ 1065 struct mvpp22_tx_desc { 1066 u32 command; 1067 u8 packet_offset; 1068 u8 phys_txq; 1069 u16 data_size; 1070 u64 reserved1; 1071 u64 buf_dma_addr_ptp; 1072 u64 buf_cookie_misc; 1073 }; 1074 1075 /* HW RX descriptor for PPv2.2 */ 1076 struct mvpp22_rx_desc { 1077 u32 status; 1078 u16 reserved1; 1079 u16 data_size; 1080 u32 reserved2; 1081 u32 reserved3; 1082 u64 buf_dma_addr_key_hash; 1083 u64 buf_cookie_misc; 1084 }; 1085 1086 /* Opaque type used by the driver to manipulate the HW TX and RX 1087 * descriptors 1088 */ 1089 struct mvpp2_tx_desc { 1090 union { 1091 struct mvpp21_tx_desc pp21; 1092 struct mvpp22_tx_desc pp22; 1093 }; 1094 }; 1095 1096 struct mvpp2_rx_desc { 1097 union { 1098 struct mvpp21_rx_desc pp21; 1099 struct mvpp22_rx_desc pp22; 1100 }; 1101 }; 1102 1103 /* Per-CPU Tx queue control */ 1104 struct mvpp2_txq_pcpu { 1105 int cpu; 1106 1107 /* Number of Tx DMA descriptors in the descriptor ring */ 1108 int size; 1109 1110 /* Number of currently used Tx DMA descriptor in the 1111 * descriptor ring 1112 */ 1113 int count; 1114 1115 /* Number of Tx DMA descriptors reserved for each CPU */ 1116 int reserved_num; 1117 1118 /* Index of last TX DMA descriptor that was inserted */ 1119 int txq_put_index; 1120 1121 /* Index of the TX DMA descriptor to be cleaned up */ 1122 int txq_get_index; 1123 }; 1124 1125 struct mvpp2_tx_queue { 1126 /* Physical number of this Tx queue */ 1127 u8 id; 1128 1129 /* Logical number of this Tx queue */ 1130 u8 log_id; 1131 1132 /* Number of Tx DMA descriptors in the descriptor ring */ 1133 int size; 1134 1135 /* Number of currently used Tx DMA descriptor in the descriptor ring */ 1136 int count; 1137 1138 /* Per-CPU control of physical Tx queues */ 1139 struct mvpp2_txq_pcpu __percpu *pcpu; 1140 1141 u32 done_pkts_coal; 1142 1143 /* Virtual address of thex Tx DMA descriptors array */ 1144 struct mvpp2_tx_desc *descs; 1145 1146 /* DMA address of the Tx DMA descriptors array */ 1147 dma_addr_t descs_dma; 1148 1149 /* Index of the last Tx DMA descriptor */ 1150 int last_desc; 1151 1152 /* Index of the next Tx DMA descriptor to process */ 1153 int next_desc_to_proc; 1154 }; 1155 1156 struct mvpp2_rx_queue { 1157 /* RX queue number, in the range 0-31 for physical RXQs */ 1158 u8 id; 1159 1160 /* Num of rx descriptors in the rx descriptor ring */ 1161 int size; 1162 1163 u32 pkts_coal; 1164 u32 time_coal; 1165 1166 /* Virtual address of the RX DMA descriptors array */ 1167 struct mvpp2_rx_desc *descs; 1168 1169 /* DMA address of the RX DMA descriptors array */ 1170 dma_addr_t descs_dma; 1171 1172 /* Index of the last RX DMA descriptor */ 1173 int last_desc; 1174 1175 /* Index of the next RX DMA descriptor to process */ 1176 int next_desc_to_proc; 1177 1178 /* ID of port to which physical RXQ is mapped */ 1179 int port; 1180 1181 /* Port's logic RXQ number to which physical RXQ is mapped */ 1182 int logic_rxq; 1183 }; 1184 1185 union mvpp2_prs_tcam_entry { 1186 u32 word[MVPP2_PRS_TCAM_WORDS]; 1187 u8 byte[MVPP2_PRS_TCAM_WORDS * 4]; 1188 }; 1189 1190 union mvpp2_prs_sram_entry { 1191 u32 word[MVPP2_PRS_SRAM_WORDS]; 1192 u8 byte[MVPP2_PRS_SRAM_WORDS * 4]; 1193 }; 1194 1195 struct mvpp2_prs_entry { 1196 u32 index; 1197 union mvpp2_prs_tcam_entry tcam; 1198 union mvpp2_prs_sram_entry sram; 1199 }; 1200 1201 struct mvpp2_prs_shadow { 1202 bool valid; 1203 bool finish; 1204 1205 /* Lookup ID */ 1206 int lu; 1207 1208 /* User defined offset */ 1209 int udf; 1210 1211 /* Result info */ 1212 u32 ri; 1213 u32 ri_mask; 1214 }; 1215 1216 struct mvpp2_cls_flow_entry { 1217 u32 index; 1218 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS]; 1219 }; 1220 1221 struct mvpp2_cls_lookup_entry { 1222 u32 lkpid; 1223 u32 way; 1224 u32 data; 1225 }; 1226 1227 struct mvpp2_bm_pool { 1228 /* Pool number in the range 0-7 */ 1229 int id; 1230 enum mvpp2_bm_type type; 1231 1232 /* Buffer Pointers Pool External (BPPE) size */ 1233 int size; 1234 /* Number of buffers for this pool */ 1235 int buf_num; 1236 /* Pool buffer size */ 1237 int buf_size; 1238 /* Packet size */ 1239 int pkt_size; 1240 1241 /* BPPE virtual base address */ 1242 unsigned long *virt_addr; 1243 /* BPPE DMA base address */ 1244 dma_addr_t dma_addr; 1245 1246 /* Ports using BM pool */ 1247 u32 port_map; 1248 }; 1249 1250 /* Static declaractions */ 1251 1252 /* Number of RXQs used by single port */ 1253 static int rxq_number = MVPP2_DEFAULT_RXQ; 1254 /* Number of TXQs used by single port */ 1255 static int txq_number = MVPP2_DEFAULT_TXQ; 1256 1257 static int base_id; 1258 1259 #define MVPP2_DRIVER_NAME "mvpp2" 1260 #define MVPP2_DRIVER_VERSION "1.0" 1261 1262 /* 1263 * U-Boot internal data, mostly uncached buffers for descriptors and data 1264 */ 1265 struct buffer_location { 1266 struct mvpp2_tx_desc *aggr_tx_descs; 1267 struct mvpp2_tx_desc *tx_descs; 1268 struct mvpp2_rx_desc *rx_descs; 1269 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM]; 1270 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM]; 1271 int first_rxq; 1272 }; 1273 1274 /* 1275 * All 4 interfaces use the same global buffer, since only one interface 1276 * can be enabled at once 1277 */ 1278 static struct buffer_location buffer_loc; 1279 1280 /* 1281 * Page table entries are set to 1MB, or multiples of 1MB 1282 * (not < 1MB). driver uses less bd's so use 1MB bdspace. 1283 */ 1284 #define BD_SPACE (1 << 20) 1285 1286 /* Utility/helper methods */ 1287 1288 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) 1289 { 1290 writel(data, priv->base + offset); 1291 } 1292 1293 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset) 1294 { 1295 return readl(priv->base + offset); 1296 } 1297 1298 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port, 1299 struct mvpp2_tx_desc *tx_desc, 1300 dma_addr_t dma_addr) 1301 { 1302 if (port->priv->hw_version == MVPP21) { 1303 tx_desc->pp21.buf_dma_addr = dma_addr; 1304 } else { 1305 u64 val = (u64)dma_addr; 1306 1307 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0); 1308 tx_desc->pp22.buf_dma_addr_ptp |= val; 1309 } 1310 } 1311 1312 static void mvpp2_txdesc_size_set(struct mvpp2_port *port, 1313 struct mvpp2_tx_desc *tx_desc, 1314 size_t size) 1315 { 1316 if (port->priv->hw_version == MVPP21) 1317 tx_desc->pp21.data_size = size; 1318 else 1319 tx_desc->pp22.data_size = size; 1320 } 1321 1322 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port, 1323 struct mvpp2_tx_desc *tx_desc, 1324 unsigned int txq) 1325 { 1326 if (port->priv->hw_version == MVPP21) 1327 tx_desc->pp21.phys_txq = txq; 1328 else 1329 tx_desc->pp22.phys_txq = txq; 1330 } 1331 1332 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port, 1333 struct mvpp2_tx_desc *tx_desc, 1334 unsigned int command) 1335 { 1336 if (port->priv->hw_version == MVPP21) 1337 tx_desc->pp21.command = command; 1338 else 1339 tx_desc->pp22.command = command; 1340 } 1341 1342 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port, 1343 struct mvpp2_tx_desc *tx_desc, 1344 unsigned int offset) 1345 { 1346 if (port->priv->hw_version == MVPP21) 1347 tx_desc->pp21.packet_offset = offset; 1348 else 1349 tx_desc->pp22.packet_offset = offset; 1350 } 1351 1352 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port, 1353 struct mvpp2_rx_desc *rx_desc) 1354 { 1355 if (port->priv->hw_version == MVPP21) 1356 return rx_desc->pp21.buf_dma_addr; 1357 else 1358 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0); 1359 } 1360 1361 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port, 1362 struct mvpp2_rx_desc *rx_desc) 1363 { 1364 if (port->priv->hw_version == MVPP21) 1365 return rx_desc->pp21.buf_cookie; 1366 else 1367 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0); 1368 } 1369 1370 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port, 1371 struct mvpp2_rx_desc *rx_desc) 1372 { 1373 if (port->priv->hw_version == MVPP21) 1374 return rx_desc->pp21.data_size; 1375 else 1376 return rx_desc->pp22.data_size; 1377 } 1378 1379 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port, 1380 struct mvpp2_rx_desc *rx_desc) 1381 { 1382 if (port->priv->hw_version == MVPP21) 1383 return rx_desc->pp21.status; 1384 else 1385 return rx_desc->pp22.status; 1386 } 1387 1388 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) 1389 { 1390 txq_pcpu->txq_get_index++; 1391 if (txq_pcpu->txq_get_index == txq_pcpu->size) 1392 txq_pcpu->txq_get_index = 0; 1393 } 1394 1395 /* Get number of physical egress port */ 1396 static inline int mvpp2_egress_port(struct mvpp2_port *port) 1397 { 1398 return MVPP2_MAX_TCONT + port->id; 1399 } 1400 1401 /* Get number of physical TXQ */ 1402 static inline int mvpp2_txq_phys(int port, int txq) 1403 { 1404 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; 1405 } 1406 1407 /* Parser configuration routines */ 1408 1409 /* Update parser tcam and sram hw entries */ 1410 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1411 { 1412 int i; 1413 1414 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1415 return -EINVAL; 1416 1417 /* Clear entry invalidation bit */ 1418 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK; 1419 1420 /* Write tcam index - indirect access */ 1421 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1422 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1423 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]); 1424 1425 /* Write sram index - indirect access */ 1426 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1427 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1428 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]); 1429 1430 return 0; 1431 } 1432 1433 /* Read tcam entry from hw */ 1434 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1435 { 1436 int i; 1437 1438 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1439 return -EINVAL; 1440 1441 /* Write tcam index - indirect access */ 1442 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1443 1444 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv, 1445 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD)); 1446 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK) 1447 return MVPP2_PRS_TCAM_ENTRY_INVALID; 1448 1449 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1450 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i)); 1451 1452 /* Write sram index - indirect access */ 1453 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1454 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1455 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i)); 1456 1457 return 0; 1458 } 1459 1460 /* Invalidate tcam hw entry */ 1461 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index) 1462 { 1463 /* Write index - indirect access */ 1464 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 1465 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD), 1466 MVPP2_PRS_TCAM_INV_MASK); 1467 } 1468 1469 /* Enable shadow table entry and set its lookup ID */ 1470 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu) 1471 { 1472 priv->prs_shadow[index].valid = true; 1473 priv->prs_shadow[index].lu = lu; 1474 } 1475 1476 /* Update ri fields in shadow table entry */ 1477 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index, 1478 unsigned int ri, unsigned int ri_mask) 1479 { 1480 priv->prs_shadow[index].ri_mask = ri_mask; 1481 priv->prs_shadow[index].ri = ri; 1482 } 1483 1484 /* Update lookup field in tcam sw entry */ 1485 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) 1486 { 1487 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE); 1488 1489 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu; 1490 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK; 1491 } 1492 1493 /* Update mask for single port in tcam sw entry */ 1494 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe, 1495 unsigned int port, bool add) 1496 { 1497 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1498 1499 if (add) 1500 pe->tcam.byte[enable_off] &= ~(1 << port); 1501 else 1502 pe->tcam.byte[enable_off] |= 1 << port; 1503 } 1504 1505 /* Update port map in tcam sw entry */ 1506 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe, 1507 unsigned int ports) 1508 { 1509 unsigned char port_mask = MVPP2_PRS_PORT_MASK; 1510 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1511 1512 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0; 1513 pe->tcam.byte[enable_off] &= ~port_mask; 1514 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK; 1515 } 1516 1517 /* Obtain port map from tcam sw entry */ 1518 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe) 1519 { 1520 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1521 1522 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK; 1523 } 1524 1525 /* Set byte of data and its enable bits in tcam sw entry */ 1526 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe, 1527 unsigned int offs, unsigned char byte, 1528 unsigned char enable) 1529 { 1530 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte; 1531 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable; 1532 } 1533 1534 /* Get byte of data and its enable bits from tcam sw entry */ 1535 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe, 1536 unsigned int offs, unsigned char *byte, 1537 unsigned char *enable) 1538 { 1539 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)]; 1540 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)]; 1541 } 1542 1543 /* Set ethertype in tcam sw entry */ 1544 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset, 1545 unsigned short ethertype) 1546 { 1547 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff); 1548 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff); 1549 } 1550 1551 /* Set bits in sram sw entry */ 1552 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num, 1553 int val) 1554 { 1555 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8)); 1556 } 1557 1558 /* Clear bits in sram sw entry */ 1559 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num, 1560 int val) 1561 { 1562 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8)); 1563 } 1564 1565 /* Update ri bits in sram sw entry */ 1566 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe, 1567 unsigned int bits, unsigned int mask) 1568 { 1569 unsigned int i; 1570 1571 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) { 1572 int ri_off = MVPP2_PRS_SRAM_RI_OFFS; 1573 1574 if (!(mask & BIT(i))) 1575 continue; 1576 1577 if (bits & BIT(i)) 1578 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1); 1579 else 1580 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1); 1581 1582 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1); 1583 } 1584 } 1585 1586 /* Update ai bits in sram sw entry */ 1587 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe, 1588 unsigned int bits, unsigned int mask) 1589 { 1590 unsigned int i; 1591 int ai_off = MVPP2_PRS_SRAM_AI_OFFS; 1592 1593 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) { 1594 1595 if (!(mask & BIT(i))) 1596 continue; 1597 1598 if (bits & BIT(i)) 1599 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1); 1600 else 1601 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1); 1602 1603 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1); 1604 } 1605 } 1606 1607 /* Read ai bits from sram sw entry */ 1608 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe) 1609 { 1610 u8 bits; 1611 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS); 1612 int ai_en_off = ai_off + 1; 1613 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8; 1614 1615 bits = (pe->sram.byte[ai_off] >> ai_shift) | 1616 (pe->sram.byte[ai_en_off] << (8 - ai_shift)); 1617 1618 return bits; 1619 } 1620 1621 /* In sram sw entry set lookup ID field of the tcam key to be used in the next 1622 * lookup interation 1623 */ 1624 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe, 1625 unsigned int lu) 1626 { 1627 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS; 1628 1629 mvpp2_prs_sram_bits_clear(pe, sram_next_off, 1630 MVPP2_PRS_SRAM_NEXT_LU_MASK); 1631 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu); 1632 } 1633 1634 /* In the sram sw entry set sign and value of the next lookup offset 1635 * and the offset value generated to the classifier 1636 */ 1637 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift, 1638 unsigned int op) 1639 { 1640 /* Set sign */ 1641 if (shift < 0) { 1642 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1643 shift = 0 - shift; 1644 } else { 1645 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1646 } 1647 1648 /* Set value */ 1649 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] = 1650 (unsigned char)shift; 1651 1652 /* Reset and set operation */ 1653 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, 1654 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK); 1655 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op); 1656 1657 /* Set base offset as current */ 1658 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1659 } 1660 1661 /* In the sram sw entry set sign and value of the user defined offset 1662 * generated to the classifier 1663 */ 1664 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe, 1665 unsigned int type, int offset, 1666 unsigned int op) 1667 { 1668 /* Set sign */ 1669 if (offset < 0) { 1670 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1671 offset = 0 - offset; 1672 } else { 1673 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1674 } 1675 1676 /* Set value */ 1677 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS, 1678 MVPP2_PRS_SRAM_UDF_MASK); 1679 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset); 1680 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1681 MVPP2_PRS_SRAM_UDF_BITS)] &= 1682 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1683 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1684 MVPP2_PRS_SRAM_UDF_BITS)] |= 1685 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1686 1687 /* Set offset type */ 1688 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, 1689 MVPP2_PRS_SRAM_UDF_TYPE_MASK); 1690 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type); 1691 1692 /* Set offset operation */ 1693 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, 1694 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK); 1695 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op); 1696 1697 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1698 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &= 1699 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >> 1700 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1701 1702 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1703 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |= 1704 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1705 1706 /* Set base offset as current */ 1707 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1708 } 1709 1710 /* Find parser flow entry */ 1711 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow) 1712 { 1713 struct mvpp2_prs_entry *pe; 1714 int tid; 1715 1716 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1717 if (!pe) 1718 return NULL; 1719 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 1720 1721 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */ 1722 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) { 1723 u8 bits; 1724 1725 if (!priv->prs_shadow[tid].valid || 1726 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS) 1727 continue; 1728 1729 pe->index = tid; 1730 mvpp2_prs_hw_read(priv, pe); 1731 bits = mvpp2_prs_sram_ai_get(pe); 1732 1733 /* Sram store classification lookup ID in AI bits [5:0] */ 1734 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow) 1735 return pe; 1736 } 1737 kfree(pe); 1738 1739 return NULL; 1740 } 1741 1742 /* Return first free tcam index, seeking from start to end */ 1743 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start, 1744 unsigned char end) 1745 { 1746 int tid; 1747 1748 if (start > end) 1749 swap(start, end); 1750 1751 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE) 1752 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1; 1753 1754 for (tid = start; tid <= end; tid++) { 1755 if (!priv->prs_shadow[tid].valid) 1756 return tid; 1757 } 1758 1759 return -EINVAL; 1760 } 1761 1762 /* Enable/disable dropping all mac da's */ 1763 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add) 1764 { 1765 struct mvpp2_prs_entry pe; 1766 1767 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) { 1768 /* Entry exist - update port only */ 1769 pe.index = MVPP2_PE_DROP_ALL; 1770 mvpp2_prs_hw_read(priv, &pe); 1771 } else { 1772 /* Entry doesn't exist - create new */ 1773 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1774 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1775 pe.index = MVPP2_PE_DROP_ALL; 1776 1777 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1778 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1779 MVPP2_PRS_RI_DROP_MASK); 1780 1781 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1782 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1783 1784 /* Update shadow table */ 1785 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1786 1787 /* Mask all ports */ 1788 mvpp2_prs_tcam_port_map_set(&pe, 0); 1789 } 1790 1791 /* Update port mask */ 1792 mvpp2_prs_tcam_port_set(&pe, port, add); 1793 1794 mvpp2_prs_hw_write(priv, &pe); 1795 } 1796 1797 /* Set port to promiscuous mode */ 1798 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add) 1799 { 1800 struct mvpp2_prs_entry pe; 1801 1802 /* Promiscuous mode - Accept unknown packets */ 1803 1804 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) { 1805 /* Entry exist - update port only */ 1806 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1807 mvpp2_prs_hw_read(priv, &pe); 1808 } else { 1809 /* Entry doesn't exist - create new */ 1810 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1811 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1812 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1813 1814 /* Continue - set next lookup */ 1815 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1816 1817 /* Set result info bits */ 1818 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, 1819 MVPP2_PRS_RI_L2_CAST_MASK); 1820 1821 /* Shift to ethertype */ 1822 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1823 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1824 1825 /* Mask all ports */ 1826 mvpp2_prs_tcam_port_map_set(&pe, 0); 1827 1828 /* Update shadow table */ 1829 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1830 } 1831 1832 /* Update port mask */ 1833 mvpp2_prs_tcam_port_set(&pe, port, add); 1834 1835 mvpp2_prs_hw_write(priv, &pe); 1836 } 1837 1838 /* Accept multicast */ 1839 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index, 1840 bool add) 1841 { 1842 struct mvpp2_prs_entry pe; 1843 unsigned char da_mc; 1844 1845 /* Ethernet multicast address first byte is 1846 * 0x01 for IPv4 and 0x33 for IPv6 1847 */ 1848 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33; 1849 1850 if (priv->prs_shadow[index].valid) { 1851 /* Entry exist - update port only */ 1852 pe.index = index; 1853 mvpp2_prs_hw_read(priv, &pe); 1854 } else { 1855 /* Entry doesn't exist - create new */ 1856 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1857 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1858 pe.index = index; 1859 1860 /* Continue - set next lookup */ 1861 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1862 1863 /* Set result info bits */ 1864 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST, 1865 MVPP2_PRS_RI_L2_CAST_MASK); 1866 1867 /* Update tcam entry data first byte */ 1868 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff); 1869 1870 /* Shift to ethertype */ 1871 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1872 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1873 1874 /* Mask all ports */ 1875 mvpp2_prs_tcam_port_map_set(&pe, 0); 1876 1877 /* Update shadow table */ 1878 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1879 } 1880 1881 /* Update port mask */ 1882 mvpp2_prs_tcam_port_set(&pe, port, add); 1883 1884 mvpp2_prs_hw_write(priv, &pe); 1885 } 1886 1887 /* Parser per-port initialization */ 1888 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first, 1889 int lu_max, int offset) 1890 { 1891 u32 val; 1892 1893 /* Set lookup ID */ 1894 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG); 1895 val &= ~MVPP2_PRS_PORT_LU_MASK(port); 1896 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first); 1897 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val); 1898 1899 /* Set maximum number of loops for packet received from port */ 1900 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port)); 1901 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port); 1902 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max); 1903 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val); 1904 1905 /* Set initial offset for packet header extraction for the first 1906 * searching loop 1907 */ 1908 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port)); 1909 val &= ~MVPP2_PRS_INIT_OFF_MASK(port); 1910 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset); 1911 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val); 1912 } 1913 1914 /* Default flow entries initialization for all ports */ 1915 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv) 1916 { 1917 struct mvpp2_prs_entry pe; 1918 int port; 1919 1920 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 1921 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1922 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1923 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port; 1924 1925 /* Mask all ports */ 1926 mvpp2_prs_tcam_port_map_set(&pe, 0); 1927 1928 /* Set flow ID*/ 1929 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK); 1930 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 1931 1932 /* Update shadow table and hw entry */ 1933 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS); 1934 mvpp2_prs_hw_write(priv, &pe); 1935 } 1936 } 1937 1938 /* Set default entry for Marvell Header field */ 1939 static void mvpp2_prs_mh_init(struct mvpp2 *priv) 1940 { 1941 struct mvpp2_prs_entry pe; 1942 1943 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1944 1945 pe.index = MVPP2_PE_MH_DEFAULT; 1946 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH); 1947 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE, 1948 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1949 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC); 1950 1951 /* Unmask all ports */ 1952 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1953 1954 /* Update shadow table and hw entry */ 1955 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH); 1956 mvpp2_prs_hw_write(priv, &pe); 1957 } 1958 1959 /* Set default entires (place holder) for promiscuous, non-promiscuous and 1960 * multicast MAC addresses 1961 */ 1962 static void mvpp2_prs_mac_init(struct mvpp2 *priv) 1963 { 1964 struct mvpp2_prs_entry pe; 1965 1966 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1967 1968 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1969 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS; 1970 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1971 1972 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1973 MVPP2_PRS_RI_DROP_MASK); 1974 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1975 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1976 1977 /* Unmask all ports */ 1978 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1979 1980 /* Update shadow table and hw entry */ 1981 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1982 mvpp2_prs_hw_write(priv, &pe); 1983 1984 /* place holders only - no ports */ 1985 mvpp2_prs_mac_drop_all_set(priv, 0, false); 1986 mvpp2_prs_mac_promisc_set(priv, 0, false); 1987 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false); 1988 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false); 1989 } 1990 1991 /* Match basic ethertypes */ 1992 static int mvpp2_prs_etype_init(struct mvpp2 *priv) 1993 { 1994 struct mvpp2_prs_entry pe; 1995 int tid; 1996 1997 /* Ethertype: PPPoE */ 1998 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 1999 MVPP2_PE_LAST_FREE_TID); 2000 if (tid < 0) 2001 return tid; 2002 2003 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2004 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2005 pe.index = tid; 2006 2007 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES); 2008 2009 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE, 2010 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2011 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2012 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK, 2013 MVPP2_PRS_RI_PPPOE_MASK); 2014 2015 /* Update shadow table and hw entry */ 2016 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2017 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2018 priv->prs_shadow[pe.index].finish = false; 2019 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK, 2020 MVPP2_PRS_RI_PPPOE_MASK); 2021 mvpp2_prs_hw_write(priv, &pe); 2022 2023 /* Ethertype: ARP */ 2024 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2025 MVPP2_PE_LAST_FREE_TID); 2026 if (tid < 0) 2027 return tid; 2028 2029 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2030 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2031 pe.index = tid; 2032 2033 mvpp2_prs_match_etype(&pe, 0, PROT_ARP); 2034 2035 /* Generate flow in the next iteration*/ 2036 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2037 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2038 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP, 2039 MVPP2_PRS_RI_L3_PROTO_MASK); 2040 /* Set L3 offset */ 2041 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2042 MVPP2_ETH_TYPE_LEN, 2043 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2044 2045 /* Update shadow table and hw entry */ 2046 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2047 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2048 priv->prs_shadow[pe.index].finish = true; 2049 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP, 2050 MVPP2_PRS_RI_L3_PROTO_MASK); 2051 mvpp2_prs_hw_write(priv, &pe); 2052 2053 /* Ethertype: LBTD */ 2054 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2055 MVPP2_PE_LAST_FREE_TID); 2056 if (tid < 0) 2057 return tid; 2058 2059 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2060 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2061 pe.index = tid; 2062 2063 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE); 2064 2065 /* Generate flow in the next iteration*/ 2066 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2067 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2068 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2069 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2070 MVPP2_PRS_RI_CPU_CODE_MASK | 2071 MVPP2_PRS_RI_UDF3_MASK); 2072 /* Set L3 offset */ 2073 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2074 MVPP2_ETH_TYPE_LEN, 2075 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2076 2077 /* Update shadow table and hw entry */ 2078 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2079 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2080 priv->prs_shadow[pe.index].finish = true; 2081 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2082 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2083 MVPP2_PRS_RI_CPU_CODE_MASK | 2084 MVPP2_PRS_RI_UDF3_MASK); 2085 mvpp2_prs_hw_write(priv, &pe); 2086 2087 /* Ethertype: IPv4 without options */ 2088 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2089 MVPP2_PE_LAST_FREE_TID); 2090 if (tid < 0) 2091 return tid; 2092 2093 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2094 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2095 pe.index = tid; 2096 2097 mvpp2_prs_match_etype(&pe, 0, PROT_IP); 2098 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2099 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, 2100 MVPP2_PRS_IPV4_HEAD_MASK | 2101 MVPP2_PRS_IPV4_IHL_MASK); 2102 2103 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 2104 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, 2105 MVPP2_PRS_RI_L3_PROTO_MASK); 2106 /* Skip eth_type + 4 bytes of IP header */ 2107 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, 2108 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2109 /* Set L3 offset */ 2110 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2111 MVPP2_ETH_TYPE_LEN, 2112 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2113 2114 /* Update shadow table and hw entry */ 2115 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2116 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2117 priv->prs_shadow[pe.index].finish = false; 2118 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4, 2119 MVPP2_PRS_RI_L3_PROTO_MASK); 2120 mvpp2_prs_hw_write(priv, &pe); 2121 2122 /* Ethertype: IPv4 with options */ 2123 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2124 MVPP2_PE_LAST_FREE_TID); 2125 if (tid < 0) 2126 return tid; 2127 2128 pe.index = tid; 2129 2130 /* Clear tcam data before updating */ 2131 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0; 2132 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0; 2133 2134 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2135 MVPP2_PRS_IPV4_HEAD, 2136 MVPP2_PRS_IPV4_HEAD_MASK); 2137 2138 /* Clear ri before updating */ 2139 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; 2140 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; 2141 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, 2142 MVPP2_PRS_RI_L3_PROTO_MASK); 2143 2144 /* Update shadow table and hw entry */ 2145 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2146 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2147 priv->prs_shadow[pe.index].finish = false; 2148 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT, 2149 MVPP2_PRS_RI_L3_PROTO_MASK); 2150 mvpp2_prs_hw_write(priv, &pe); 2151 2152 /* Ethertype: IPv6 without options */ 2153 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2154 MVPP2_PE_LAST_FREE_TID); 2155 if (tid < 0) 2156 return tid; 2157 2158 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2159 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2160 pe.index = tid; 2161 2162 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6); 2163 2164 /* Skip DIP of IPV6 header */ 2165 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 + 2166 MVPP2_MAX_L3_ADDR_SIZE, 2167 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2168 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2169 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, 2170 MVPP2_PRS_RI_L3_PROTO_MASK); 2171 /* Set L3 offset */ 2172 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2173 MVPP2_ETH_TYPE_LEN, 2174 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2175 2176 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2177 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2178 priv->prs_shadow[pe.index].finish = false; 2179 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6, 2180 MVPP2_PRS_RI_L3_PROTO_MASK); 2181 mvpp2_prs_hw_write(priv, &pe); 2182 2183 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */ 2184 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2185 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2186 pe.index = MVPP2_PE_ETH_TYPE_UN; 2187 2188 /* Unmask all ports */ 2189 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2190 2191 /* Generate flow in the next iteration*/ 2192 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2193 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2194 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, 2195 MVPP2_PRS_RI_L3_PROTO_MASK); 2196 /* Set L3 offset even it's unknown L3 */ 2197 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2198 MVPP2_ETH_TYPE_LEN, 2199 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2200 2201 /* Update shadow table and hw entry */ 2202 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2203 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2204 priv->prs_shadow[pe.index].finish = true; 2205 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN, 2206 MVPP2_PRS_RI_L3_PROTO_MASK); 2207 mvpp2_prs_hw_write(priv, &pe); 2208 2209 return 0; 2210 } 2211 2212 /* Parser default initialization */ 2213 static int mvpp2_prs_default_init(struct udevice *dev, 2214 struct mvpp2 *priv) 2215 { 2216 int err, index, i; 2217 2218 /* Enable tcam table */ 2219 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK); 2220 2221 /* Clear all tcam and sram entries */ 2222 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) { 2223 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 2224 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 2225 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0); 2226 2227 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index); 2228 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 2229 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0); 2230 } 2231 2232 /* Invalidate all tcam entries */ 2233 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) 2234 mvpp2_prs_hw_inv(priv, index); 2235 2236 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE, 2237 sizeof(struct mvpp2_prs_shadow), 2238 GFP_KERNEL); 2239 if (!priv->prs_shadow) 2240 return -ENOMEM; 2241 2242 /* Always start from lookup = 0 */ 2243 for (index = 0; index < MVPP2_MAX_PORTS; index++) 2244 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH, 2245 MVPP2_PRS_PORT_LU_MAX, 0); 2246 2247 mvpp2_prs_def_flow_init(priv); 2248 2249 mvpp2_prs_mh_init(priv); 2250 2251 mvpp2_prs_mac_init(priv); 2252 2253 err = mvpp2_prs_etype_init(priv); 2254 if (err) 2255 return err; 2256 2257 return 0; 2258 } 2259 2260 /* Compare MAC DA with tcam entry data */ 2261 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe, 2262 const u8 *da, unsigned char *mask) 2263 { 2264 unsigned char tcam_byte, tcam_mask; 2265 int index; 2266 2267 for (index = 0; index < ETH_ALEN; index++) { 2268 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask); 2269 if (tcam_mask != mask[index]) 2270 return false; 2271 2272 if ((tcam_mask & tcam_byte) != (da[index] & mask[index])) 2273 return false; 2274 } 2275 2276 return true; 2277 } 2278 2279 /* Find tcam entry with matched pair <MAC DA, port> */ 2280 static struct mvpp2_prs_entry * 2281 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da, 2282 unsigned char *mask, int udf_type) 2283 { 2284 struct mvpp2_prs_entry *pe; 2285 int tid; 2286 2287 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2288 if (!pe) 2289 return NULL; 2290 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2291 2292 /* Go through the all entires with MVPP2_PRS_LU_MAC */ 2293 for (tid = MVPP2_PE_FIRST_FREE_TID; 2294 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 2295 unsigned int entry_pmap; 2296 2297 if (!priv->prs_shadow[tid].valid || 2298 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || 2299 (priv->prs_shadow[tid].udf != udf_type)) 2300 continue; 2301 2302 pe->index = tid; 2303 mvpp2_prs_hw_read(priv, pe); 2304 entry_pmap = mvpp2_prs_tcam_port_map_get(pe); 2305 2306 if (mvpp2_prs_mac_range_equals(pe, da, mask) && 2307 entry_pmap == pmap) 2308 return pe; 2309 } 2310 kfree(pe); 2311 2312 return NULL; 2313 } 2314 2315 /* Update parser's mac da entry */ 2316 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port, 2317 const u8 *da, bool add) 2318 { 2319 struct mvpp2_prs_entry *pe; 2320 unsigned int pmap, len, ri; 2321 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 2322 int tid; 2323 2324 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */ 2325 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask, 2326 MVPP2_PRS_UDF_MAC_DEF); 2327 2328 /* No such entry */ 2329 if (!pe) { 2330 if (!add) 2331 return 0; 2332 2333 /* Create new TCAM entry */ 2334 /* Find first range mac entry*/ 2335 for (tid = MVPP2_PE_FIRST_FREE_TID; 2336 tid <= MVPP2_PE_LAST_FREE_TID; tid++) 2337 if (priv->prs_shadow[tid].valid && 2338 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) && 2339 (priv->prs_shadow[tid].udf == 2340 MVPP2_PRS_UDF_MAC_RANGE)) 2341 break; 2342 2343 /* Go through the all entries from first to last */ 2344 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2345 tid - 1); 2346 if (tid < 0) 2347 return tid; 2348 2349 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2350 if (!pe) 2351 return -1; 2352 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2353 pe->index = tid; 2354 2355 /* Mask all ports */ 2356 mvpp2_prs_tcam_port_map_set(pe, 0); 2357 } 2358 2359 /* Update port mask */ 2360 mvpp2_prs_tcam_port_set(pe, port, add); 2361 2362 /* Invalidate the entry if no ports are left enabled */ 2363 pmap = mvpp2_prs_tcam_port_map_get(pe); 2364 if (pmap == 0) { 2365 if (add) { 2366 kfree(pe); 2367 return -1; 2368 } 2369 mvpp2_prs_hw_inv(priv, pe->index); 2370 priv->prs_shadow[pe->index].valid = false; 2371 kfree(pe); 2372 return 0; 2373 } 2374 2375 /* Continue - set next lookup */ 2376 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA); 2377 2378 /* Set match on DA */ 2379 len = ETH_ALEN; 2380 while (len--) 2381 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff); 2382 2383 /* Set result info bits */ 2384 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK; 2385 2386 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK | 2387 MVPP2_PRS_RI_MAC_ME_MASK); 2388 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK | 2389 MVPP2_PRS_RI_MAC_ME_MASK); 2390 2391 /* Shift to ethertype */ 2392 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN, 2393 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2394 2395 /* Update shadow table and hw entry */ 2396 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF; 2397 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC); 2398 mvpp2_prs_hw_write(priv, pe); 2399 2400 kfree(pe); 2401 2402 return 0; 2403 } 2404 2405 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da) 2406 { 2407 int err; 2408 2409 /* Remove old parser entry */ 2410 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr, 2411 false); 2412 if (err) 2413 return err; 2414 2415 /* Add new parser entry */ 2416 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true); 2417 if (err) 2418 return err; 2419 2420 /* Set addr in the device */ 2421 memcpy(port->dev_addr, da, ETH_ALEN); 2422 2423 return 0; 2424 } 2425 2426 /* Set prs flow for the port */ 2427 static int mvpp2_prs_def_flow(struct mvpp2_port *port) 2428 { 2429 struct mvpp2_prs_entry *pe; 2430 int tid; 2431 2432 pe = mvpp2_prs_flow_find(port->priv, port->id); 2433 2434 /* Such entry not exist */ 2435 if (!pe) { 2436 /* Go through the all entires from last to first */ 2437 tid = mvpp2_prs_tcam_first_free(port->priv, 2438 MVPP2_PE_LAST_FREE_TID, 2439 MVPP2_PE_FIRST_FREE_TID); 2440 if (tid < 0) 2441 return tid; 2442 2443 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2444 if (!pe) 2445 return -ENOMEM; 2446 2447 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 2448 pe->index = tid; 2449 2450 /* Set flow ID*/ 2451 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK); 2452 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 2453 2454 /* Update shadow table */ 2455 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS); 2456 } 2457 2458 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id)); 2459 mvpp2_prs_hw_write(port->priv, pe); 2460 kfree(pe); 2461 2462 return 0; 2463 } 2464 2465 /* Classifier configuration routines */ 2466 2467 /* Update classification flow table registers */ 2468 static void mvpp2_cls_flow_write(struct mvpp2 *priv, 2469 struct mvpp2_cls_flow_entry *fe) 2470 { 2471 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); 2472 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); 2473 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); 2474 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); 2475 } 2476 2477 /* Update classification lookup table register */ 2478 static void mvpp2_cls_lookup_write(struct mvpp2 *priv, 2479 struct mvpp2_cls_lookup_entry *le) 2480 { 2481 u32 val; 2482 2483 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; 2484 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); 2485 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); 2486 } 2487 2488 /* Classifier default initialization */ 2489 static void mvpp2_cls_init(struct mvpp2 *priv) 2490 { 2491 struct mvpp2_cls_lookup_entry le; 2492 struct mvpp2_cls_flow_entry fe; 2493 int index; 2494 2495 /* Enable classifier */ 2496 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); 2497 2498 /* Clear classifier flow table */ 2499 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS); 2500 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { 2501 fe.index = index; 2502 mvpp2_cls_flow_write(priv, &fe); 2503 } 2504 2505 /* Clear classifier lookup table */ 2506 le.data = 0; 2507 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { 2508 le.lkpid = index; 2509 le.way = 0; 2510 mvpp2_cls_lookup_write(priv, &le); 2511 2512 le.way = 1; 2513 mvpp2_cls_lookup_write(priv, &le); 2514 } 2515 } 2516 2517 static void mvpp2_cls_port_config(struct mvpp2_port *port) 2518 { 2519 struct mvpp2_cls_lookup_entry le; 2520 u32 val; 2521 2522 /* Set way for the port */ 2523 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); 2524 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); 2525 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); 2526 2527 /* Pick the entry to be accessed in lookup ID decoding table 2528 * according to the way and lkpid. 2529 */ 2530 le.lkpid = port->id; 2531 le.way = 0; 2532 le.data = 0; 2533 2534 /* Set initial CPU queue for receiving packets */ 2535 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; 2536 le.data |= port->first_rxq; 2537 2538 /* Disable classification engines */ 2539 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; 2540 2541 /* Update lookup ID table entry */ 2542 mvpp2_cls_lookup_write(port->priv, &le); 2543 } 2544 2545 /* Set CPU queue number for oversize packets */ 2546 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) 2547 { 2548 u32 val; 2549 2550 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), 2551 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); 2552 2553 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), 2554 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); 2555 2556 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); 2557 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); 2558 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); 2559 } 2560 2561 /* Buffer Manager configuration routines */ 2562 2563 /* Create pool */ 2564 static int mvpp2_bm_pool_create(struct udevice *dev, 2565 struct mvpp2 *priv, 2566 struct mvpp2_bm_pool *bm_pool, int size) 2567 { 2568 u32 val; 2569 2570 /* Number of buffer pointers must be a multiple of 16, as per 2571 * hardware constraints 2572 */ 2573 if (!IS_ALIGNED(size, 16)) 2574 return -EINVAL; 2575 2576 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id]; 2577 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id]; 2578 if (!bm_pool->virt_addr) 2579 return -ENOMEM; 2580 2581 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr, 2582 MVPP2_BM_POOL_PTR_ALIGN)) { 2583 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n", 2584 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); 2585 return -ENOMEM; 2586 } 2587 2588 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), 2589 lower_32_bits(bm_pool->dma_addr)); 2590 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); 2591 2592 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 2593 val |= MVPP2_BM_START_MASK; 2594 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 2595 2596 bm_pool->type = MVPP2_BM_FREE; 2597 bm_pool->size = size; 2598 bm_pool->pkt_size = 0; 2599 bm_pool->buf_num = 0; 2600 2601 return 0; 2602 } 2603 2604 /* Set pool buffer size */ 2605 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, 2606 struct mvpp2_bm_pool *bm_pool, 2607 int buf_size) 2608 { 2609 u32 val; 2610 2611 bm_pool->buf_size = buf_size; 2612 2613 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); 2614 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); 2615 } 2616 2617 /* Free all buffers from the pool */ 2618 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv, 2619 struct mvpp2_bm_pool *bm_pool) 2620 { 2621 bm_pool->buf_num = 0; 2622 } 2623 2624 /* Cleanup pool */ 2625 static int mvpp2_bm_pool_destroy(struct udevice *dev, 2626 struct mvpp2 *priv, 2627 struct mvpp2_bm_pool *bm_pool) 2628 { 2629 u32 val; 2630 2631 mvpp2_bm_bufs_free(dev, priv, bm_pool); 2632 if (bm_pool->buf_num) { 2633 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id); 2634 return 0; 2635 } 2636 2637 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 2638 val |= MVPP2_BM_STOP_MASK; 2639 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 2640 2641 return 0; 2642 } 2643 2644 static int mvpp2_bm_pools_init(struct udevice *dev, 2645 struct mvpp2 *priv) 2646 { 2647 int i, err, size; 2648 struct mvpp2_bm_pool *bm_pool; 2649 2650 /* Create all pools with maximum size */ 2651 size = MVPP2_BM_POOL_SIZE_MAX; 2652 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 2653 bm_pool = &priv->bm_pools[i]; 2654 bm_pool->id = i; 2655 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size); 2656 if (err) 2657 goto err_unroll_pools; 2658 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0); 2659 } 2660 return 0; 2661 2662 err_unroll_pools: 2663 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size); 2664 for (i = i - 1; i >= 0; i--) 2665 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); 2666 return err; 2667 } 2668 2669 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv) 2670 { 2671 int i, err; 2672 2673 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 2674 /* Mask BM all interrupts */ 2675 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); 2676 /* Clear BM cause register */ 2677 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); 2678 } 2679 2680 /* Allocate and initialize BM pools */ 2681 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM, 2682 sizeof(struct mvpp2_bm_pool), GFP_KERNEL); 2683 if (!priv->bm_pools) 2684 return -ENOMEM; 2685 2686 err = mvpp2_bm_pools_init(dev, priv); 2687 if (err < 0) 2688 return err; 2689 return 0; 2690 } 2691 2692 /* Attach long pool to rxq */ 2693 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, 2694 int lrxq, int long_pool) 2695 { 2696 u32 val, mask; 2697 int prxq; 2698 2699 /* Get queue physical ID */ 2700 prxq = port->rxqs[lrxq]->id; 2701 2702 if (port->priv->hw_version == MVPP21) 2703 mask = MVPP21_RXQ_POOL_LONG_MASK; 2704 else 2705 mask = MVPP22_RXQ_POOL_LONG_MASK; 2706 2707 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 2708 val &= ~mask; 2709 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask; 2710 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 2711 } 2712 2713 /* Set pool number in a BM cookie */ 2714 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool) 2715 { 2716 u32 bm; 2717 2718 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS); 2719 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS); 2720 2721 return bm; 2722 } 2723 2724 /* Get pool number from a BM cookie */ 2725 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie) 2726 { 2727 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF; 2728 } 2729 2730 /* Release buffer to BM */ 2731 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, 2732 dma_addr_t buf_dma_addr, 2733 unsigned long buf_phys_addr) 2734 { 2735 if (port->priv->hw_version == MVPP22) { 2736 u32 val = 0; 2737 2738 if (sizeof(dma_addr_t) == 8) 2739 val |= upper_32_bits(buf_dma_addr) & 2740 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK; 2741 2742 if (sizeof(phys_addr_t) == 8) 2743 val |= (upper_32_bits(buf_phys_addr) 2744 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) & 2745 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK; 2746 2747 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val); 2748 } 2749 2750 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply 2751 * returned in the "cookie" field of the RX 2752 * descriptor. Instead of storing the virtual address, we 2753 * store the physical address 2754 */ 2755 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr); 2756 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr); 2757 } 2758 2759 /* Refill BM pool */ 2760 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm, 2761 dma_addr_t dma_addr, 2762 phys_addr_t phys_addr) 2763 { 2764 int pool = mvpp2_bm_cookie_pool_get(bm); 2765 2766 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); 2767 } 2768 2769 /* Allocate buffers for the pool */ 2770 static int mvpp2_bm_bufs_add(struct mvpp2_port *port, 2771 struct mvpp2_bm_pool *bm_pool, int buf_num) 2772 { 2773 int i; 2774 2775 if (buf_num < 0 || 2776 (buf_num + bm_pool->buf_num > bm_pool->size)) { 2777 netdev_err(port->dev, 2778 "cannot allocate %d buffers for pool %d\n", 2779 buf_num, bm_pool->id); 2780 return 0; 2781 } 2782 2783 for (i = 0; i < buf_num; i++) { 2784 mvpp2_bm_pool_put(port, bm_pool->id, 2785 (dma_addr_t)buffer_loc.rx_buffer[i], 2786 (unsigned long)buffer_loc.rx_buffer[i]); 2787 2788 } 2789 2790 /* Update BM driver with number of buffers added to pool */ 2791 bm_pool->buf_num += i; 2792 2793 return i; 2794 } 2795 2796 /* Notify the driver that BM pool is being used as specific type and return the 2797 * pool pointer on success 2798 */ 2799 static struct mvpp2_bm_pool * 2800 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type, 2801 int pkt_size) 2802 { 2803 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; 2804 int num; 2805 2806 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) { 2807 netdev_err(port->dev, "mixing pool types is forbidden\n"); 2808 return NULL; 2809 } 2810 2811 if (new_pool->type == MVPP2_BM_FREE) 2812 new_pool->type = type; 2813 2814 /* Allocate buffers in case BM pool is used as long pool, but packet 2815 * size doesn't match MTU or BM pool hasn't being used yet 2816 */ 2817 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) || 2818 (new_pool->pkt_size == 0)) { 2819 int pkts_num; 2820 2821 /* Set default buffer number or free all the buffers in case 2822 * the pool is not empty 2823 */ 2824 pkts_num = new_pool->buf_num; 2825 if (pkts_num == 0) 2826 pkts_num = type == MVPP2_BM_SWF_LONG ? 2827 MVPP2_BM_LONG_BUF_NUM : 2828 MVPP2_BM_SHORT_BUF_NUM; 2829 else 2830 mvpp2_bm_bufs_free(NULL, 2831 port->priv, new_pool); 2832 2833 new_pool->pkt_size = pkt_size; 2834 2835 /* Allocate buffers for this pool */ 2836 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); 2837 if (num != pkts_num) { 2838 dev_err(dev, "pool %d: %d of %d allocated\n", 2839 new_pool->id, num, pkts_num); 2840 return NULL; 2841 } 2842 } 2843 2844 mvpp2_bm_pool_bufsize_set(port->priv, new_pool, 2845 MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); 2846 2847 return new_pool; 2848 } 2849 2850 /* Initialize pools for swf */ 2851 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) 2852 { 2853 int rxq; 2854 2855 if (!port->pool_long) { 2856 port->pool_long = 2857 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id), 2858 MVPP2_BM_SWF_LONG, 2859 port->pkt_size); 2860 if (!port->pool_long) 2861 return -ENOMEM; 2862 2863 port->pool_long->port_map |= (1 << port->id); 2864 2865 for (rxq = 0; rxq < rxq_number; rxq++) 2866 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); 2867 } 2868 2869 return 0; 2870 } 2871 2872 /* Port configuration routines */ 2873 2874 static void mvpp2_port_mii_set(struct mvpp2_port *port) 2875 { 2876 u32 val; 2877 2878 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 2879 2880 switch (port->phy_interface) { 2881 case PHY_INTERFACE_MODE_SGMII: 2882 val |= MVPP2_GMAC_INBAND_AN_MASK; 2883 break; 2884 case PHY_INTERFACE_MODE_RGMII: 2885 case PHY_INTERFACE_MODE_RGMII_ID: 2886 val |= MVPP2_GMAC_PORT_RGMII_MASK; 2887 default: 2888 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 2889 } 2890 2891 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2892 } 2893 2894 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port) 2895 { 2896 u32 val; 2897 2898 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 2899 val |= MVPP2_GMAC_FC_ADV_EN; 2900 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 2901 } 2902 2903 static void mvpp2_port_enable(struct mvpp2_port *port) 2904 { 2905 u32 val; 2906 2907 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2908 val |= MVPP2_GMAC_PORT_EN_MASK; 2909 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; 2910 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2911 } 2912 2913 static void mvpp2_port_disable(struct mvpp2_port *port) 2914 { 2915 u32 val; 2916 2917 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2918 val &= ~(MVPP2_GMAC_PORT_EN_MASK); 2919 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2920 } 2921 2922 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ 2923 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) 2924 { 2925 u32 val; 2926 2927 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & 2928 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 2929 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 2930 } 2931 2932 /* Configure loopback port */ 2933 static void mvpp2_port_loopback_set(struct mvpp2_port *port) 2934 { 2935 u32 val; 2936 2937 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 2938 2939 if (port->speed == 1000) 2940 val |= MVPP2_GMAC_GMII_LB_EN_MASK; 2941 else 2942 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; 2943 2944 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) 2945 val |= MVPP2_GMAC_PCS_LB_EN_MASK; 2946 else 2947 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; 2948 2949 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 2950 } 2951 2952 static void mvpp2_port_reset(struct mvpp2_port *port) 2953 { 2954 u32 val; 2955 2956 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 2957 ~MVPP2_GMAC_PORT_RESET_MASK; 2958 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2959 2960 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 2961 MVPP2_GMAC_PORT_RESET_MASK) 2962 continue; 2963 } 2964 2965 /* Change maximum receive size of the port */ 2966 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) 2967 { 2968 u32 val; 2969 2970 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2971 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 2972 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << 2973 MVPP2_GMAC_MAX_RX_SIZE_OFFS); 2974 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2975 } 2976 2977 /* PPv2.2 GoP/GMAC config */ 2978 2979 /* Set the MAC to reset or exit from reset */ 2980 static int gop_gmac_reset(struct mvpp2_port *port, int reset) 2981 { 2982 u32 val; 2983 2984 /* read - modify - write */ 2985 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 2986 if (reset) 2987 val |= MVPP2_GMAC_PORT_RESET_MASK; 2988 else 2989 val &= ~MVPP2_GMAC_PORT_RESET_MASK; 2990 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2991 2992 return 0; 2993 } 2994 2995 /* 2996 * gop_gpcs_mode_cfg 2997 * 2998 * Configure port to working with Gig PCS or don't. 2999 */ 3000 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en) 3001 { 3002 u32 val; 3003 3004 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3005 if (en) 3006 val |= MVPP2_GMAC_PCS_ENABLE_MASK; 3007 else 3008 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 3009 /* enable / disable PCS on this port */ 3010 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3011 3012 return 0; 3013 } 3014 3015 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en) 3016 { 3017 u32 val; 3018 3019 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3020 if (en) 3021 val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK; 3022 else 3023 val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK; 3024 /* enable / disable PCS on this port */ 3025 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3026 3027 return 0; 3028 } 3029 3030 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port) 3031 { 3032 u32 val, thresh; 3033 3034 /* 3035 * Configure minimal level of the Tx FIFO before the lower part 3036 * starts to read a packet 3037 */ 3038 thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH; 3039 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3040 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3041 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3042 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3043 3044 /* Disable bypass of sync module */ 3045 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3046 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3047 /* configure DP clock select according to mode */ 3048 val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3049 /* configure QSGMII bypass according to mode */ 3050 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3051 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3052 3053 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3054 val |= MVPP2_GMAC_PORT_DIS_PADING_MASK; 3055 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3056 3057 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3058 /* 3059 * Configure GIG MAC to 1000Base-X mode connected to a fiber 3060 * transceiver 3061 */ 3062 val |= MVPP2_GMAC_PORT_TYPE_MASK; 3063 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3064 3065 /* configure AN 0x9268 */ 3066 val = MVPP2_GMAC_EN_PCS_AN | 3067 MVPP2_GMAC_AN_BYPASS_EN | 3068 MVPP2_GMAC_CONFIG_MII_SPEED | 3069 MVPP2_GMAC_CONFIG_GMII_SPEED | 3070 MVPP2_GMAC_FC_ADV_EN | 3071 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 3072 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3073 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3074 } 3075 3076 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port) 3077 { 3078 u32 val, thresh; 3079 3080 /* 3081 * Configure minimal level of the Tx FIFO before the lower part 3082 * starts to read a packet 3083 */ 3084 thresh = MVPP2_SGMII_TX_FIFO_MIN_TH; 3085 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3086 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3087 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3088 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3089 3090 /* Disable bypass of sync module */ 3091 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3092 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3093 /* configure DP clock select according to mode */ 3094 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3095 /* configure QSGMII bypass according to mode */ 3096 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3097 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3098 3099 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3100 val |= MVPP2_GMAC_PORT_DIS_PADING_MASK; 3101 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3102 3103 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3104 /* configure GIG MAC to SGMII mode */ 3105 val &= ~MVPP2_GMAC_PORT_TYPE_MASK; 3106 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3107 3108 /* configure AN */ 3109 val = MVPP2_GMAC_EN_PCS_AN | 3110 MVPP2_GMAC_AN_BYPASS_EN | 3111 MVPP2_GMAC_AN_SPEED_EN | 3112 MVPP2_GMAC_EN_FC_AN | 3113 MVPP2_GMAC_AN_DUPLEX_EN | 3114 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3115 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3116 } 3117 3118 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port) 3119 { 3120 u32 val, thresh; 3121 3122 /* 3123 * Configure minimal level of the Tx FIFO before the lower part 3124 * starts to read a packet 3125 */ 3126 thresh = MVPP2_RGMII_TX_FIFO_MIN_TH; 3127 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3128 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3129 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3130 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3131 3132 /* Disable bypass of sync module */ 3133 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3134 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3135 /* configure DP clock select according to mode */ 3136 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3137 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3138 val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK; 3139 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3140 3141 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3142 val &= ~MVPP2_GMAC_PORT_DIS_PADING_MASK; 3143 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3144 3145 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3146 /* configure GIG MAC to SGMII mode */ 3147 val &= ~MVPP2_GMAC_PORT_TYPE_MASK; 3148 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3149 3150 /* configure AN 0xb8e8 */ 3151 val = MVPP2_GMAC_AN_BYPASS_EN | 3152 MVPP2_GMAC_AN_SPEED_EN | 3153 MVPP2_GMAC_EN_FC_AN | 3154 MVPP2_GMAC_AN_DUPLEX_EN | 3155 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3156 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3157 } 3158 3159 /* Set the internal mux's to the required MAC in the GOP */ 3160 static int gop_gmac_mode_cfg(struct mvpp2_port *port) 3161 { 3162 u32 val; 3163 3164 /* Set TX FIFO thresholds */ 3165 switch (port->phy_interface) { 3166 case PHY_INTERFACE_MODE_SGMII: 3167 if (port->phy_speed == 2500) 3168 gop_gmac_sgmii2_5_cfg(port); 3169 else 3170 gop_gmac_sgmii_cfg(port); 3171 break; 3172 3173 case PHY_INTERFACE_MODE_RGMII: 3174 case PHY_INTERFACE_MODE_RGMII_ID: 3175 gop_gmac_rgmii_cfg(port); 3176 break; 3177 3178 default: 3179 return -1; 3180 } 3181 3182 /* Jumbo frame support - 0x1400*2= 0x2800 bytes */ 3183 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3184 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 3185 val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS; 3186 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3187 3188 /* PeriodicXonEn disable */ 3189 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 3190 val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 3191 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 3192 3193 return 0; 3194 } 3195 3196 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port) 3197 { 3198 u32 val; 3199 3200 /* relevant only for MAC0 (XLG0 and GMAC0) */ 3201 if (port->gop_id > 0) 3202 return; 3203 3204 /* configure 1Gig MAC mode */ 3205 val = readl(port->base + MVPP22_XLG_CTRL3_REG); 3206 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; 3207 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC; 3208 writel(val, port->base + MVPP22_XLG_CTRL3_REG); 3209 } 3210 3211 static int gop_gpcs_reset(struct mvpp2_port *port, int reset) 3212 { 3213 u32 val; 3214 3215 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3216 if (reset) 3217 val &= ~MVPP2_GMAC_SGMII_MODE_MASK; 3218 else 3219 val |= MVPP2_GMAC_SGMII_MODE_MASK; 3220 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3221 3222 return 0; 3223 } 3224 3225 /* Set the internal mux's to the required PCS in the PI */ 3226 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes) 3227 { 3228 u32 val; 3229 int lane; 3230 3231 switch (num_of_lanes) { 3232 case 1: 3233 lane = 0; 3234 break; 3235 case 2: 3236 lane = 1; 3237 break; 3238 case 4: 3239 lane = 2; 3240 break; 3241 default: 3242 return -1; 3243 } 3244 3245 /* configure XG MAC mode */ 3246 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3247 val &= ~MVPP22_XPCS_PCSMODE_OFFS; 3248 val &= ~MVPP22_XPCS_LANEACTIVE_MASK; 3249 val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS; 3250 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3251 3252 return 0; 3253 } 3254 3255 static int gop_mpcs_mode(struct mvpp2_port *port) 3256 { 3257 u32 val; 3258 3259 /* configure PCS40G COMMON CONTROL */ 3260 val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL); 3261 val &= ~FORWARD_ERROR_CORRECTION_MASK; 3262 writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL); 3263 3264 /* configure PCS CLOCK RESET */ 3265 val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET); 3266 val &= ~CLK_DIVISION_RATIO_MASK; 3267 val |= 1 << CLK_DIVISION_RATIO_OFFS; 3268 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); 3269 3270 val &= ~CLK_DIV_PHASE_SET_MASK; 3271 val |= MAC_CLK_RESET_MASK; 3272 val |= RX_SD_CLK_RESET_MASK; 3273 val |= TX_SD_CLK_RESET_MASK; 3274 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); 3275 3276 return 0; 3277 } 3278 3279 /* Set the internal mux's to the required MAC in the GOP */ 3280 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes) 3281 { 3282 u32 val; 3283 3284 /* configure 10G MAC mode */ 3285 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3286 val |= MVPP22_XLG_RX_FC_EN; 3287 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3288 3289 val = readl(port->base + MVPP22_XLG_CTRL3_REG); 3290 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; 3291 val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC; 3292 writel(val, port->base + MVPP22_XLG_CTRL3_REG); 3293 3294 /* read - modify - write */ 3295 val = readl(port->base + MVPP22_XLG_CTRL4_REG); 3296 val &= ~MVPP22_XLG_MODE_DMA_1G; 3297 val |= MVPP22_XLG_FORWARD_PFC_EN; 3298 val |= MVPP22_XLG_FORWARD_802_3X_FC_EN; 3299 val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK; 3300 writel(val, port->base + MVPP22_XLG_CTRL4_REG); 3301 3302 /* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */ 3303 val = readl(port->base + MVPP22_XLG_CTRL1_REG); 3304 val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK; 3305 val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS; 3306 writel(val, port->base + MVPP22_XLG_CTRL1_REG); 3307 3308 /* unmask link change interrupt */ 3309 val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG); 3310 val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE; 3311 val |= 1; /* unmask summary bit */ 3312 writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG); 3313 3314 return 0; 3315 } 3316 3317 /* Set PCS to reset or exit from reset */ 3318 static int gop_xpcs_reset(struct mvpp2_port *port, int reset) 3319 { 3320 u32 val; 3321 3322 /* read - modify - write */ 3323 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3324 if (reset) 3325 val &= ~MVPP22_XPCS_PCSRESET; 3326 else 3327 val |= MVPP22_XPCS_PCSRESET; 3328 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3329 3330 return 0; 3331 } 3332 3333 /* Set the MAC to reset or exit from reset */ 3334 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset) 3335 { 3336 u32 val; 3337 3338 /* read - modify - write */ 3339 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3340 if (reset) 3341 val &= ~MVPP22_XLG_MAC_RESETN; 3342 else 3343 val |= MVPP22_XLG_MAC_RESETN; 3344 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3345 3346 return 0; 3347 } 3348 3349 /* 3350 * gop_port_init 3351 * 3352 * Init physical port. Configures the port mode and all it's elements 3353 * accordingly. 3354 * Does not verify that the selected mode/port number is valid at the 3355 * core level. 3356 */ 3357 static int gop_port_init(struct mvpp2_port *port) 3358 { 3359 int mac_num = port->gop_id; 3360 int num_of_act_lanes; 3361 3362 if (mac_num >= MVPP22_GOP_MAC_NUM) { 3363 netdev_err(NULL, "%s: illegal port number %d", __func__, 3364 mac_num); 3365 return -1; 3366 } 3367 3368 switch (port->phy_interface) { 3369 case PHY_INTERFACE_MODE_RGMII: 3370 case PHY_INTERFACE_MODE_RGMII_ID: 3371 gop_gmac_reset(port, 1); 3372 3373 /* configure PCS */ 3374 gop_gpcs_mode_cfg(port, 0); 3375 gop_bypass_clk_cfg(port, 1); 3376 3377 /* configure MAC */ 3378 gop_gmac_mode_cfg(port); 3379 /* pcs unreset */ 3380 gop_gpcs_reset(port, 0); 3381 3382 /* mac unreset */ 3383 gop_gmac_reset(port, 0); 3384 break; 3385 3386 case PHY_INTERFACE_MODE_SGMII: 3387 /* configure PCS */ 3388 gop_gpcs_mode_cfg(port, 1); 3389 3390 /* configure MAC */ 3391 gop_gmac_mode_cfg(port); 3392 /* select proper Mac mode */ 3393 gop_xlg_2_gig_mac_cfg(port); 3394 3395 /* pcs unreset */ 3396 gop_gpcs_reset(port, 0); 3397 /* mac unreset */ 3398 gop_gmac_reset(port, 0); 3399 break; 3400 3401 case PHY_INTERFACE_MODE_SFI: 3402 num_of_act_lanes = 2; 3403 mac_num = 0; 3404 /* configure PCS */ 3405 gop_xpcs_mode(port, num_of_act_lanes); 3406 gop_mpcs_mode(port); 3407 /* configure MAC */ 3408 gop_xlg_mac_mode_cfg(port, num_of_act_lanes); 3409 3410 /* pcs unreset */ 3411 gop_xpcs_reset(port, 0); 3412 3413 /* mac unreset */ 3414 gop_xlg_mac_reset(port, 0); 3415 break; 3416 3417 default: 3418 netdev_err(NULL, "%s: Requested port mode (%d) not supported\n", 3419 __func__, port->phy_interface); 3420 return -1; 3421 } 3422 3423 return 0; 3424 } 3425 3426 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable) 3427 { 3428 u32 val; 3429 3430 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3431 if (enable) { 3432 /* Enable port and MIB counters update */ 3433 val |= MVPP22_XLG_PORT_EN; 3434 val &= ~MVPP22_XLG_MIBCNT_DIS; 3435 } else { 3436 /* Disable port */ 3437 val &= ~MVPP22_XLG_PORT_EN; 3438 } 3439 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3440 } 3441 3442 static void gop_port_enable(struct mvpp2_port *port, int enable) 3443 { 3444 switch (port->phy_interface) { 3445 case PHY_INTERFACE_MODE_RGMII: 3446 case PHY_INTERFACE_MODE_RGMII_ID: 3447 case PHY_INTERFACE_MODE_SGMII: 3448 if (enable) 3449 mvpp2_port_enable(port); 3450 else 3451 mvpp2_port_disable(port); 3452 break; 3453 3454 case PHY_INTERFACE_MODE_SFI: 3455 gop_xlg_mac_port_enable(port, enable); 3456 3457 break; 3458 default: 3459 netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__, 3460 port->phy_interface); 3461 return; 3462 } 3463 } 3464 3465 /* RFU1 functions */ 3466 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset) 3467 { 3468 return readl(priv->rfu1_base + offset); 3469 } 3470 3471 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data) 3472 { 3473 writel(data, priv->rfu1_base + offset); 3474 } 3475 3476 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type) 3477 { 3478 u32 val = 0; 3479 3480 if (gop_id == 2) { 3481 if (phy_type == PHY_INTERFACE_MODE_SGMII) 3482 val |= MV_NETC_GE_MAC2_SGMII; 3483 } 3484 3485 if (gop_id == 3) { 3486 if (phy_type == PHY_INTERFACE_MODE_SGMII) 3487 val |= MV_NETC_GE_MAC3_SGMII; 3488 else if (phy_type == PHY_INTERFACE_MODE_RGMII || 3489 phy_type == PHY_INTERFACE_MODE_RGMII_ID) 3490 val |= MV_NETC_GE_MAC3_RGMII; 3491 } 3492 3493 return val; 3494 } 3495 3496 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val) 3497 { 3498 u32 reg; 3499 3500 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); 3501 reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id)); 3502 3503 val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id); 3504 val &= NETC_PORTS_ACTIVE_MASK(gop_id); 3505 3506 reg |= val; 3507 3508 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); 3509 } 3510 3511 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val) 3512 { 3513 u32 reg; 3514 3515 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); 3516 reg &= ~NETC_GBE_PORT1_MII_MODE_MASK; 3517 3518 val <<= NETC_GBE_PORT1_MII_MODE_OFFS; 3519 val &= NETC_GBE_PORT1_MII_MODE_MASK; 3520 3521 reg |= val; 3522 3523 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); 3524 } 3525 3526 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val) 3527 { 3528 u32 reg; 3529 3530 reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG); 3531 reg &= ~NETC_GOP_SOFT_RESET_MASK; 3532 3533 val <<= NETC_GOP_SOFT_RESET_OFFS; 3534 val &= NETC_GOP_SOFT_RESET_MASK; 3535 3536 reg |= val; 3537 3538 gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg); 3539 } 3540 3541 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val) 3542 { 3543 u32 reg; 3544 3545 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3546 reg &= ~NETC_CLK_DIV_PHASE_MASK; 3547 3548 val <<= NETC_CLK_DIV_PHASE_OFFS; 3549 val &= NETC_CLK_DIV_PHASE_MASK; 3550 3551 reg |= val; 3552 3553 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3554 } 3555 3556 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val) 3557 { 3558 u32 reg; 3559 3560 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); 3561 reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id)); 3562 3563 val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id); 3564 val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id); 3565 3566 reg |= val; 3567 3568 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); 3569 } 3570 3571 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id, 3572 u32 val) 3573 { 3574 u32 reg, mask, offset; 3575 3576 if (gop_id == 2) { 3577 mask = NETC_GBE_PORT0_SGMII_MODE_MASK; 3578 offset = NETC_GBE_PORT0_SGMII_MODE_OFFS; 3579 } else { 3580 mask = NETC_GBE_PORT1_SGMII_MODE_MASK; 3581 offset = NETC_GBE_PORT1_SGMII_MODE_OFFS; 3582 } 3583 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); 3584 reg &= ~mask; 3585 3586 val <<= offset; 3587 val &= mask; 3588 3589 reg |= val; 3590 3591 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); 3592 } 3593 3594 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val) 3595 { 3596 u32 reg; 3597 3598 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3599 reg &= ~NETC_BUS_WIDTH_SELECT_MASK; 3600 3601 val <<= NETC_BUS_WIDTH_SELECT_OFFS; 3602 val &= NETC_BUS_WIDTH_SELECT_MASK; 3603 3604 reg |= val; 3605 3606 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3607 } 3608 3609 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val) 3610 { 3611 u32 reg; 3612 3613 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3614 reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK; 3615 3616 val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS; 3617 val &= NETC_GIG_RX_DATA_SAMPLE_MASK; 3618 3619 reg |= val; 3620 3621 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3622 } 3623 3624 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id, 3625 enum mv_netc_phase phase) 3626 { 3627 switch (phase) { 3628 case MV_NETC_FIRST_PHASE: 3629 /* Set Bus Width to HB mode = 1 */ 3630 gop_netc_bus_width_select(priv, 1); 3631 /* Select RGMII mode */ 3632 gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII); 3633 break; 3634 3635 case MV_NETC_SECOND_PHASE: 3636 /* De-assert the relevant port HB reset */ 3637 gop_netc_port_rf_reset(priv, gop_id, 1); 3638 break; 3639 } 3640 } 3641 3642 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id, 3643 enum mv_netc_phase phase) 3644 { 3645 switch (phase) { 3646 case MV_NETC_FIRST_PHASE: 3647 /* Set Bus Width to HB mode = 1 */ 3648 gop_netc_bus_width_select(priv, 1); 3649 /* Select SGMII mode */ 3650 if (gop_id >= 1) { 3651 gop_netc_gbe_sgmii_mode_select(priv, gop_id, 3652 MV_NETC_GBE_SGMII); 3653 } 3654 3655 /* Configure the sample stages */ 3656 gop_netc_sample_stages_timing(priv, 0); 3657 /* Configure the ComPhy Selector */ 3658 /* gop_netc_com_phy_selector_config(netComplex); */ 3659 break; 3660 3661 case MV_NETC_SECOND_PHASE: 3662 /* De-assert the relevant port HB reset */ 3663 gop_netc_port_rf_reset(priv, gop_id, 1); 3664 break; 3665 } 3666 } 3667 3668 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase) 3669 { 3670 u32 c = priv->netc_config; 3671 3672 if (c & MV_NETC_GE_MAC2_SGMII) 3673 gop_netc_mac_to_sgmii(priv, 2, phase); 3674 else 3675 gop_netc_mac_to_xgmii(priv, 2, phase); 3676 3677 if (c & MV_NETC_GE_MAC3_SGMII) { 3678 gop_netc_mac_to_sgmii(priv, 3, phase); 3679 } else { 3680 gop_netc_mac_to_xgmii(priv, 3, phase); 3681 if (c & MV_NETC_GE_MAC3_RGMII) 3682 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII); 3683 else 3684 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII); 3685 } 3686 3687 /* Activate gop ports 0, 2, 3 */ 3688 gop_netc_active_port(priv, 0, 1); 3689 gop_netc_active_port(priv, 2, 1); 3690 gop_netc_active_port(priv, 3, 1); 3691 3692 if (phase == MV_NETC_SECOND_PHASE) { 3693 /* Enable the GOP internal clock logic */ 3694 gop_netc_gop_clock_logic_set(priv, 1); 3695 /* De-assert GOP unit reset */ 3696 gop_netc_gop_reset(priv, 1); 3697 } 3698 3699 return 0; 3700 } 3701 3702 /* Set defaults to the MVPP2 port */ 3703 static void mvpp2_defaults_set(struct mvpp2_port *port) 3704 { 3705 int tx_port_num, val, queue, ptxq, lrxq; 3706 3707 if (port->priv->hw_version == MVPP21) { 3708 /* Configure port to loopback if needed */ 3709 if (port->flags & MVPP2_F_LOOPBACK) 3710 mvpp2_port_loopback_set(port); 3711 3712 /* Update TX FIFO MIN Threshold */ 3713 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3714 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3715 /* Min. TX threshold must be less than minimal packet length */ 3716 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); 3717 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3718 } 3719 3720 /* Disable Legacy WRR, Disable EJP, Release from reset */ 3721 tx_port_num = mvpp2_egress_port(port); 3722 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, 3723 tx_port_num); 3724 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); 3725 3726 /* Close bandwidth for all queues */ 3727 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) { 3728 ptxq = mvpp2_txq_phys(port->id, queue); 3729 mvpp2_write(port->priv, 3730 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0); 3731 } 3732 3733 /* Set refill period to 1 usec, refill tokens 3734 * and bucket size to maximum 3735 */ 3736 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8); 3737 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); 3738 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; 3739 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); 3740 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; 3741 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); 3742 val = MVPP2_TXP_TOKEN_SIZE_MAX; 3743 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 3744 3745 /* Set MaximumLowLatencyPacketSize value to 256 */ 3746 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), 3747 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | 3748 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); 3749 3750 /* Enable Rx cache snoop */ 3751 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3752 queue = port->rxqs[lrxq]->id; 3753 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3754 val |= MVPP2_SNOOP_PKT_SIZE_MASK | 3755 MVPP2_SNOOP_BUF_HDR_MASK; 3756 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3757 } 3758 } 3759 3760 /* Enable/disable receiving packets */ 3761 static void mvpp2_ingress_enable(struct mvpp2_port *port) 3762 { 3763 u32 val; 3764 int lrxq, queue; 3765 3766 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3767 queue = port->rxqs[lrxq]->id; 3768 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3769 val &= ~MVPP2_RXQ_DISABLE_MASK; 3770 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3771 } 3772 } 3773 3774 static void mvpp2_ingress_disable(struct mvpp2_port *port) 3775 { 3776 u32 val; 3777 int lrxq, queue; 3778 3779 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3780 queue = port->rxqs[lrxq]->id; 3781 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3782 val |= MVPP2_RXQ_DISABLE_MASK; 3783 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3784 } 3785 } 3786 3787 /* Enable transmit via physical egress queue 3788 * - HW starts take descriptors from DRAM 3789 */ 3790 static void mvpp2_egress_enable(struct mvpp2_port *port) 3791 { 3792 u32 qmap; 3793 int queue; 3794 int tx_port_num = mvpp2_egress_port(port); 3795 3796 /* Enable all initialized TXs. */ 3797 qmap = 0; 3798 for (queue = 0; queue < txq_number; queue++) { 3799 struct mvpp2_tx_queue *txq = port->txqs[queue]; 3800 3801 if (txq->descs != NULL) 3802 qmap |= (1 << queue); 3803 } 3804 3805 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3806 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); 3807 } 3808 3809 /* Disable transmit via physical egress queue 3810 * - HW doesn't take descriptors from DRAM 3811 */ 3812 static void mvpp2_egress_disable(struct mvpp2_port *port) 3813 { 3814 u32 reg_data; 3815 int delay; 3816 int tx_port_num = mvpp2_egress_port(port); 3817 3818 /* Issue stop command for active channels only */ 3819 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3820 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & 3821 MVPP2_TXP_SCHED_ENQ_MASK; 3822 if (reg_data != 0) 3823 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, 3824 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); 3825 3826 /* Wait for all Tx activity to terminate. */ 3827 delay = 0; 3828 do { 3829 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { 3830 netdev_warn(port->dev, 3831 "Tx stop timed out, status=0x%08x\n", 3832 reg_data); 3833 break; 3834 } 3835 mdelay(1); 3836 delay++; 3837 3838 /* Check port TX Command register that all 3839 * Tx queues are stopped 3840 */ 3841 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); 3842 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); 3843 } 3844 3845 /* Rx descriptors helper methods */ 3846 3847 /* Get number of Rx descriptors occupied by received packets */ 3848 static inline int 3849 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) 3850 { 3851 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); 3852 3853 return val & MVPP2_RXQ_OCCUPIED_MASK; 3854 } 3855 3856 /* Update Rx queue status with the number of occupied and available 3857 * Rx descriptor slots. 3858 */ 3859 static inline void 3860 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, 3861 int used_count, int free_count) 3862 { 3863 /* Decrement the number of used descriptors and increment count 3864 * increment the number of free descriptors. 3865 */ 3866 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); 3867 3868 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); 3869 } 3870 3871 /* Get pointer to next RX descriptor to be processed by SW */ 3872 static inline struct mvpp2_rx_desc * 3873 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) 3874 { 3875 int rx_desc = rxq->next_desc_to_proc; 3876 3877 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); 3878 prefetch(rxq->descs + rxq->next_desc_to_proc); 3879 return rxq->descs + rx_desc; 3880 } 3881 3882 /* Set rx queue offset */ 3883 static void mvpp2_rxq_offset_set(struct mvpp2_port *port, 3884 int prxq, int offset) 3885 { 3886 u32 val; 3887 3888 /* Convert offset from bytes to units of 32 bytes */ 3889 offset = offset >> 5; 3890 3891 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 3892 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; 3893 3894 /* Offset is in */ 3895 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & 3896 MVPP2_RXQ_PACKET_OFFSET_MASK); 3897 3898 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 3899 } 3900 3901 /* Obtain BM cookie information from descriptor */ 3902 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port, 3903 struct mvpp2_rx_desc *rx_desc) 3904 { 3905 int cpu = smp_processor_id(); 3906 int pool; 3907 3908 pool = (mvpp2_rxdesc_status_get(port, rx_desc) & 3909 MVPP2_RXD_BM_POOL_ID_MASK) >> 3910 MVPP2_RXD_BM_POOL_ID_OFFS; 3911 3912 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) | 3913 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS); 3914 } 3915 3916 /* Tx descriptors helper methods */ 3917 3918 /* Get number of Tx descriptors waiting to be transmitted by HW */ 3919 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port, 3920 struct mvpp2_tx_queue *txq) 3921 { 3922 u32 val; 3923 3924 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 3925 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 3926 3927 return val & MVPP2_TXQ_PENDING_MASK; 3928 } 3929 3930 /* Get pointer to next Tx descriptor to be processed (send) by HW */ 3931 static struct mvpp2_tx_desc * 3932 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) 3933 { 3934 int tx_desc = txq->next_desc_to_proc; 3935 3936 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); 3937 return txq->descs + tx_desc; 3938 } 3939 3940 /* Update HW with number of aggregated Tx descriptors to be sent */ 3941 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) 3942 { 3943 /* aggregated access - relevant TXQ number is written in TX desc */ 3944 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending); 3945 } 3946 3947 /* Get number of sent descriptors and decrement counter. 3948 * The number of sent descriptors is returned. 3949 * Per-CPU access 3950 */ 3951 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, 3952 struct mvpp2_tx_queue *txq) 3953 { 3954 u32 val; 3955 3956 /* Reading status reg resets transmitted descriptor counter */ 3957 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id)); 3958 3959 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> 3960 MVPP2_TRANSMITTED_COUNT_OFFSET; 3961 } 3962 3963 static void mvpp2_txq_sent_counter_clear(void *arg) 3964 { 3965 struct mvpp2_port *port = arg; 3966 int queue; 3967 3968 for (queue = 0; queue < txq_number; queue++) { 3969 int id = port->txqs[queue]->id; 3970 3971 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id)); 3972 } 3973 } 3974 3975 /* Set max sizes for Tx queues */ 3976 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) 3977 { 3978 u32 val, size, mtu; 3979 int txq, tx_port_num; 3980 3981 mtu = port->pkt_size * 8; 3982 if (mtu > MVPP2_TXP_MTU_MAX) 3983 mtu = MVPP2_TXP_MTU_MAX; 3984 3985 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ 3986 mtu = 3 * mtu; 3987 3988 /* Indirect access to registers */ 3989 tx_port_num = mvpp2_egress_port(port); 3990 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3991 3992 /* Set MTU */ 3993 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); 3994 val &= ~MVPP2_TXP_MTU_MAX; 3995 val |= mtu; 3996 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); 3997 3998 /* TXP token size and all TXQs token size must be larger that MTU */ 3999 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); 4000 size = val & MVPP2_TXP_TOKEN_SIZE_MAX; 4001 if (size < mtu) { 4002 size = mtu; 4003 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; 4004 val |= size; 4005 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 4006 } 4007 4008 for (txq = 0; txq < txq_number; txq++) { 4009 val = mvpp2_read(port->priv, 4010 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); 4011 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; 4012 4013 if (size < mtu) { 4014 size = mtu; 4015 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; 4016 val |= size; 4017 mvpp2_write(port->priv, 4018 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), 4019 val); 4020 } 4021 } 4022 } 4023 4024 /* Free Tx queue skbuffs */ 4025 static void mvpp2_txq_bufs_free(struct mvpp2_port *port, 4026 struct mvpp2_tx_queue *txq, 4027 struct mvpp2_txq_pcpu *txq_pcpu, int num) 4028 { 4029 int i; 4030 4031 for (i = 0; i < num; i++) 4032 mvpp2_txq_inc_get(txq_pcpu); 4033 } 4034 4035 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, 4036 u32 cause) 4037 { 4038 int queue = fls(cause) - 1; 4039 4040 return port->rxqs[queue]; 4041 } 4042 4043 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, 4044 u32 cause) 4045 { 4046 int queue = fls(cause) - 1; 4047 4048 return port->txqs[queue]; 4049 } 4050 4051 /* Rx/Tx queue initialization/cleanup methods */ 4052 4053 /* Allocate and initialize descriptors for aggr TXQ */ 4054 static int mvpp2_aggr_txq_init(struct udevice *dev, 4055 struct mvpp2_tx_queue *aggr_txq, 4056 int desc_num, int cpu, 4057 struct mvpp2 *priv) 4058 { 4059 u32 txq_dma; 4060 4061 /* Allocate memory for TX descriptors */ 4062 aggr_txq->descs = buffer_loc.aggr_tx_descs; 4063 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs; 4064 if (!aggr_txq->descs) 4065 return -ENOMEM; 4066 4067 /* Make sure descriptor address is cache line size aligned */ 4068 BUG_ON(aggr_txq->descs != 4069 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4070 4071 aggr_txq->last_desc = aggr_txq->size - 1; 4072 4073 /* Aggr TXQ no reset WA */ 4074 aggr_txq->next_desc_to_proc = mvpp2_read(priv, 4075 MVPP2_AGGR_TXQ_INDEX_REG(cpu)); 4076 4077 /* Set Tx descriptors queue starting address indirect 4078 * access 4079 */ 4080 if (priv->hw_version == MVPP21) 4081 txq_dma = aggr_txq->descs_dma; 4082 else 4083 txq_dma = aggr_txq->descs_dma >> 4084 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS; 4085 4086 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma); 4087 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num); 4088 4089 return 0; 4090 } 4091 4092 /* Create a specified Rx queue */ 4093 static int mvpp2_rxq_init(struct mvpp2_port *port, 4094 struct mvpp2_rx_queue *rxq) 4095 4096 { 4097 u32 rxq_dma; 4098 4099 rxq->size = port->rx_ring_size; 4100 4101 /* Allocate memory for RX descriptors */ 4102 rxq->descs = buffer_loc.rx_descs; 4103 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs; 4104 if (!rxq->descs) 4105 return -ENOMEM; 4106 4107 BUG_ON(rxq->descs != 4108 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4109 4110 rxq->last_desc = rxq->size - 1; 4111 4112 /* Zero occupied and non-occupied counters - direct access */ 4113 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4114 4115 /* Set Rx descriptors queue starting address - indirect access */ 4116 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4117 if (port->priv->hw_version == MVPP21) 4118 rxq_dma = rxq->descs_dma; 4119 else 4120 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS; 4121 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma); 4122 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); 4123 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0); 4124 4125 /* Set Offset */ 4126 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD); 4127 4128 /* Add number of descriptors ready for receiving packets */ 4129 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); 4130 4131 return 0; 4132 } 4133 4134 /* Push packets received by the RXQ to BM pool */ 4135 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, 4136 struct mvpp2_rx_queue *rxq) 4137 { 4138 int rx_received, i; 4139 4140 rx_received = mvpp2_rxq_received(port, rxq->id); 4141 if (!rx_received) 4142 return; 4143 4144 for (i = 0; i < rx_received; i++) { 4145 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); 4146 u32 bm = mvpp2_bm_cookie_build(port, rx_desc); 4147 4148 mvpp2_pool_refill(port, bm, 4149 mvpp2_rxdesc_dma_addr_get(port, rx_desc), 4150 mvpp2_rxdesc_cookie_get(port, rx_desc)); 4151 } 4152 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); 4153 } 4154 4155 /* Cleanup Rx queue */ 4156 static void mvpp2_rxq_deinit(struct mvpp2_port *port, 4157 struct mvpp2_rx_queue *rxq) 4158 { 4159 mvpp2_rxq_drop_pkts(port, rxq); 4160 4161 rxq->descs = NULL; 4162 rxq->last_desc = 0; 4163 rxq->next_desc_to_proc = 0; 4164 rxq->descs_dma = 0; 4165 4166 /* Clear Rx descriptors queue starting address and size; 4167 * free descriptor number 4168 */ 4169 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4170 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4171 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0); 4172 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0); 4173 } 4174 4175 /* Create and initialize a Tx queue */ 4176 static int mvpp2_txq_init(struct mvpp2_port *port, 4177 struct mvpp2_tx_queue *txq) 4178 { 4179 u32 val; 4180 int cpu, desc, desc_per_txq, tx_port_num; 4181 struct mvpp2_txq_pcpu *txq_pcpu; 4182 4183 txq->size = port->tx_ring_size; 4184 4185 /* Allocate memory for Tx descriptors */ 4186 txq->descs = buffer_loc.tx_descs; 4187 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs; 4188 if (!txq->descs) 4189 return -ENOMEM; 4190 4191 /* Make sure descriptor address is cache line size aligned */ 4192 BUG_ON(txq->descs != 4193 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4194 4195 txq->last_desc = txq->size - 1; 4196 4197 /* Set Tx descriptors queue starting address - indirect access */ 4198 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4199 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma); 4200 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size & 4201 MVPP2_TXQ_DESC_SIZE_MASK); 4202 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0); 4203 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG, 4204 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); 4205 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 4206 val &= ~MVPP2_TXQ_PENDING_MASK; 4207 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val); 4208 4209 /* Calculate base address in prefetch buffer. We reserve 16 descriptors 4210 * for each existing TXQ. 4211 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT 4212 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS 4213 */ 4214 desc_per_txq = 16; 4215 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + 4216 (txq->log_id * desc_per_txq); 4217 4218 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, 4219 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | 4220 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2)); 4221 4222 /* WRR / EJP configuration - indirect access */ 4223 tx_port_num = mvpp2_egress_port(port); 4224 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4225 4226 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); 4227 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; 4228 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); 4229 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; 4230 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); 4231 4232 val = MVPP2_TXQ_TOKEN_SIZE_MAX; 4233 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), 4234 val); 4235 4236 for_each_present_cpu(cpu) { 4237 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4238 txq_pcpu->size = txq->size; 4239 } 4240 4241 return 0; 4242 } 4243 4244 /* Free allocated TXQ resources */ 4245 static void mvpp2_txq_deinit(struct mvpp2_port *port, 4246 struct mvpp2_tx_queue *txq) 4247 { 4248 txq->descs = NULL; 4249 txq->last_desc = 0; 4250 txq->next_desc_to_proc = 0; 4251 txq->descs_dma = 0; 4252 4253 /* Set minimum bandwidth for disabled TXQs */ 4254 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0); 4255 4256 /* Set Tx descriptors queue starting address and size */ 4257 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4258 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0); 4259 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0); 4260 } 4261 4262 /* Cleanup Tx ports */ 4263 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) 4264 { 4265 struct mvpp2_txq_pcpu *txq_pcpu; 4266 int delay, pending, cpu; 4267 u32 val; 4268 4269 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4270 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 4271 val |= MVPP2_TXQ_DRAIN_EN_MASK; 4272 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4273 4274 /* The napi queue has been stopped so wait for all packets 4275 * to be transmitted. 4276 */ 4277 delay = 0; 4278 do { 4279 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { 4280 netdev_warn(port->dev, 4281 "port %d: cleaning queue %d timed out\n", 4282 port->id, txq->log_id); 4283 break; 4284 } 4285 mdelay(1); 4286 delay++; 4287 4288 pending = mvpp2_txq_pend_desc_num_get(port, txq); 4289 } while (pending); 4290 4291 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 4292 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4293 4294 for_each_present_cpu(cpu) { 4295 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4296 4297 /* Release all packets */ 4298 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); 4299 4300 /* Reset queue */ 4301 txq_pcpu->count = 0; 4302 txq_pcpu->txq_put_index = 0; 4303 txq_pcpu->txq_get_index = 0; 4304 } 4305 } 4306 4307 /* Cleanup all Tx queues */ 4308 static void mvpp2_cleanup_txqs(struct mvpp2_port *port) 4309 { 4310 struct mvpp2_tx_queue *txq; 4311 int queue; 4312 u32 val; 4313 4314 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); 4315 4316 /* Reset Tx ports and delete Tx queues */ 4317 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); 4318 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4319 4320 for (queue = 0; queue < txq_number; queue++) { 4321 txq = port->txqs[queue]; 4322 mvpp2_txq_clean(port, txq); 4323 mvpp2_txq_deinit(port, txq); 4324 } 4325 4326 mvpp2_txq_sent_counter_clear(port); 4327 4328 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); 4329 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4330 } 4331 4332 /* Cleanup all Rx queues */ 4333 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) 4334 { 4335 int queue; 4336 4337 for (queue = 0; queue < rxq_number; queue++) 4338 mvpp2_rxq_deinit(port, port->rxqs[queue]); 4339 } 4340 4341 /* Init all Rx queues for port */ 4342 static int mvpp2_setup_rxqs(struct mvpp2_port *port) 4343 { 4344 int queue, err; 4345 4346 for (queue = 0; queue < rxq_number; queue++) { 4347 err = mvpp2_rxq_init(port, port->rxqs[queue]); 4348 if (err) 4349 goto err_cleanup; 4350 } 4351 return 0; 4352 4353 err_cleanup: 4354 mvpp2_cleanup_rxqs(port); 4355 return err; 4356 } 4357 4358 /* Init all tx queues for port */ 4359 static int mvpp2_setup_txqs(struct mvpp2_port *port) 4360 { 4361 struct mvpp2_tx_queue *txq; 4362 int queue, err; 4363 4364 for (queue = 0; queue < txq_number; queue++) { 4365 txq = port->txqs[queue]; 4366 err = mvpp2_txq_init(port, txq); 4367 if (err) 4368 goto err_cleanup; 4369 } 4370 4371 mvpp2_txq_sent_counter_clear(port); 4372 return 0; 4373 4374 err_cleanup: 4375 mvpp2_cleanup_txqs(port); 4376 return err; 4377 } 4378 4379 /* Adjust link */ 4380 static void mvpp2_link_event(struct mvpp2_port *port) 4381 { 4382 struct phy_device *phydev = port->phy_dev; 4383 int status_change = 0; 4384 u32 val; 4385 4386 if (phydev->link) { 4387 if ((port->speed != phydev->speed) || 4388 (port->duplex != phydev->duplex)) { 4389 u32 val; 4390 4391 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4392 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | 4393 MVPP2_GMAC_CONFIG_GMII_SPEED | 4394 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 4395 MVPP2_GMAC_AN_SPEED_EN | 4396 MVPP2_GMAC_AN_DUPLEX_EN); 4397 4398 if (phydev->duplex) 4399 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; 4400 4401 if (phydev->speed == SPEED_1000) 4402 val |= MVPP2_GMAC_CONFIG_GMII_SPEED; 4403 else if (phydev->speed == SPEED_100) 4404 val |= MVPP2_GMAC_CONFIG_MII_SPEED; 4405 4406 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4407 4408 port->duplex = phydev->duplex; 4409 port->speed = phydev->speed; 4410 } 4411 } 4412 4413 if (phydev->link != port->link) { 4414 if (!phydev->link) { 4415 port->duplex = -1; 4416 port->speed = 0; 4417 } 4418 4419 port->link = phydev->link; 4420 status_change = 1; 4421 } 4422 4423 if (status_change) { 4424 if (phydev->link) { 4425 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4426 val |= (MVPP2_GMAC_FORCE_LINK_PASS | 4427 MVPP2_GMAC_FORCE_LINK_DOWN); 4428 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4429 mvpp2_egress_enable(port); 4430 mvpp2_ingress_enable(port); 4431 } else { 4432 mvpp2_ingress_disable(port); 4433 mvpp2_egress_disable(port); 4434 } 4435 } 4436 } 4437 4438 /* Main RX/TX processing routines */ 4439 4440 /* Display more error info */ 4441 static void mvpp2_rx_error(struct mvpp2_port *port, 4442 struct mvpp2_rx_desc *rx_desc) 4443 { 4444 u32 status = mvpp2_rxdesc_status_get(port, rx_desc); 4445 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc); 4446 4447 switch (status & MVPP2_RXD_ERR_CODE_MASK) { 4448 case MVPP2_RXD_ERR_CRC: 4449 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n", 4450 status, sz); 4451 break; 4452 case MVPP2_RXD_ERR_OVERRUN: 4453 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n", 4454 status, sz); 4455 break; 4456 case MVPP2_RXD_ERR_RESOURCE: 4457 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n", 4458 status, sz); 4459 break; 4460 } 4461 } 4462 4463 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */ 4464 static int mvpp2_rx_refill(struct mvpp2_port *port, 4465 struct mvpp2_bm_pool *bm_pool, 4466 u32 bm, dma_addr_t dma_addr) 4467 { 4468 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr); 4469 return 0; 4470 } 4471 4472 /* Set hw internals when starting port */ 4473 static void mvpp2_start_dev(struct mvpp2_port *port) 4474 { 4475 mvpp2_gmac_max_rx_size_set(port); 4476 mvpp2_txp_max_tx_size_set(port); 4477 4478 if (port->priv->hw_version == MVPP21) 4479 mvpp2_port_enable(port); 4480 else 4481 gop_port_enable(port, 1); 4482 } 4483 4484 /* Set hw internals when stopping port */ 4485 static void mvpp2_stop_dev(struct mvpp2_port *port) 4486 { 4487 /* Stop new packets from arriving to RXQs */ 4488 mvpp2_ingress_disable(port); 4489 4490 mvpp2_egress_disable(port); 4491 4492 if (port->priv->hw_version == MVPP21) 4493 mvpp2_port_disable(port); 4494 else 4495 gop_port_enable(port, 0); 4496 } 4497 4498 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port) 4499 { 4500 struct phy_device *phy_dev; 4501 4502 if (!port->init || port->link == 0) { 4503 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev, 4504 port->phy_interface); 4505 port->phy_dev = phy_dev; 4506 if (!phy_dev) { 4507 netdev_err(port->dev, "cannot connect to phy\n"); 4508 return -ENODEV; 4509 } 4510 phy_dev->supported &= PHY_GBIT_FEATURES; 4511 phy_dev->advertising = phy_dev->supported; 4512 4513 port->phy_dev = phy_dev; 4514 port->link = 0; 4515 port->duplex = 0; 4516 port->speed = 0; 4517 4518 phy_config(phy_dev); 4519 phy_startup(phy_dev); 4520 if (!phy_dev->link) { 4521 printf("%s: No link\n", phy_dev->dev->name); 4522 return -1; 4523 } 4524 4525 port->init = 1; 4526 } else { 4527 mvpp2_egress_enable(port); 4528 mvpp2_ingress_enable(port); 4529 } 4530 4531 return 0; 4532 } 4533 4534 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port) 4535 { 4536 unsigned char mac_bcast[ETH_ALEN] = { 4537 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 4538 int err; 4539 4540 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true); 4541 if (err) { 4542 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); 4543 return err; 4544 } 4545 err = mvpp2_prs_mac_da_accept(port->priv, port->id, 4546 port->dev_addr, true); 4547 if (err) { 4548 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n"); 4549 return err; 4550 } 4551 err = mvpp2_prs_def_flow(port); 4552 if (err) { 4553 netdev_err(dev, "mvpp2_prs_def_flow failed\n"); 4554 return err; 4555 } 4556 4557 /* Allocate the Rx/Tx queues */ 4558 err = mvpp2_setup_rxqs(port); 4559 if (err) { 4560 netdev_err(port->dev, "cannot allocate Rx queues\n"); 4561 return err; 4562 } 4563 4564 err = mvpp2_setup_txqs(port); 4565 if (err) { 4566 netdev_err(port->dev, "cannot allocate Tx queues\n"); 4567 return err; 4568 } 4569 4570 err = mvpp2_phy_connect(dev, port); 4571 if (err < 0) 4572 return err; 4573 4574 mvpp2_link_event(port); 4575 4576 mvpp2_start_dev(port); 4577 4578 return 0; 4579 } 4580 4581 /* No Device ops here in U-Boot */ 4582 4583 /* Driver initialization */ 4584 4585 static void mvpp2_port_power_up(struct mvpp2_port *port) 4586 { 4587 struct mvpp2 *priv = port->priv; 4588 4589 /* On PPv2.2 the GoP / interface configuration has already been done */ 4590 if (priv->hw_version == MVPP21) 4591 mvpp2_port_mii_set(port); 4592 mvpp2_port_periodic_xon_disable(port); 4593 if (priv->hw_version == MVPP21) 4594 mvpp2_port_fc_adv_enable(port); 4595 mvpp2_port_reset(port); 4596 } 4597 4598 /* Initialize port HW */ 4599 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port) 4600 { 4601 struct mvpp2 *priv = port->priv; 4602 struct mvpp2_txq_pcpu *txq_pcpu; 4603 int queue, cpu, err; 4604 4605 if (port->first_rxq + rxq_number > 4606 MVPP2_MAX_PORTS * priv->max_port_rxqs) 4607 return -EINVAL; 4608 4609 /* Disable port */ 4610 mvpp2_egress_disable(port); 4611 if (priv->hw_version == MVPP21) 4612 mvpp2_port_disable(port); 4613 else 4614 gop_port_enable(port, 0); 4615 4616 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs), 4617 GFP_KERNEL); 4618 if (!port->txqs) 4619 return -ENOMEM; 4620 4621 /* Associate physical Tx queues to this port and initialize. 4622 * The mapping is predefined. 4623 */ 4624 for (queue = 0; queue < txq_number; queue++) { 4625 int queue_phy_id = mvpp2_txq_phys(port->id, queue); 4626 struct mvpp2_tx_queue *txq; 4627 4628 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); 4629 if (!txq) 4630 return -ENOMEM; 4631 4632 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu), 4633 GFP_KERNEL); 4634 if (!txq->pcpu) 4635 return -ENOMEM; 4636 4637 txq->id = queue_phy_id; 4638 txq->log_id = queue; 4639 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; 4640 for_each_present_cpu(cpu) { 4641 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4642 txq_pcpu->cpu = cpu; 4643 } 4644 4645 port->txqs[queue] = txq; 4646 } 4647 4648 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs), 4649 GFP_KERNEL); 4650 if (!port->rxqs) 4651 return -ENOMEM; 4652 4653 /* Allocate and initialize Rx queue for this port */ 4654 for (queue = 0; queue < rxq_number; queue++) { 4655 struct mvpp2_rx_queue *rxq; 4656 4657 /* Map physical Rx queue to port's logical Rx queue */ 4658 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); 4659 if (!rxq) 4660 return -ENOMEM; 4661 /* Map this Rx queue to a physical queue */ 4662 rxq->id = port->first_rxq + queue; 4663 rxq->port = port->id; 4664 rxq->logic_rxq = queue; 4665 4666 port->rxqs[queue] = rxq; 4667 } 4668 4669 /* Configure Rx queue group interrupt for this port */ 4670 if (priv->hw_version == MVPP21) { 4671 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id), 4672 CONFIG_MV_ETH_RXQ); 4673 } else { 4674 u32 val; 4675 4676 val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); 4677 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); 4678 4679 val = (CONFIG_MV_ETH_RXQ << 4680 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); 4681 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); 4682 } 4683 4684 /* Create Rx descriptor rings */ 4685 for (queue = 0; queue < rxq_number; queue++) { 4686 struct mvpp2_rx_queue *rxq = port->rxqs[queue]; 4687 4688 rxq->size = port->rx_ring_size; 4689 rxq->pkts_coal = MVPP2_RX_COAL_PKTS; 4690 rxq->time_coal = MVPP2_RX_COAL_USEC; 4691 } 4692 4693 mvpp2_ingress_disable(port); 4694 4695 /* Port default configuration */ 4696 mvpp2_defaults_set(port); 4697 4698 /* Port's classifier configuration */ 4699 mvpp2_cls_oversize_rxq_set(port); 4700 mvpp2_cls_port_config(port); 4701 4702 /* Provide an initial Rx packet size */ 4703 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN); 4704 4705 /* Initialize pools for swf */ 4706 err = mvpp2_swf_bm_pool_init(port); 4707 if (err) 4708 return err; 4709 4710 return 0; 4711 } 4712 4713 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port) 4714 { 4715 int port_node = dev_of_offset(dev); 4716 const char *phy_mode_str; 4717 int phy_node; 4718 u32 id; 4719 u32 phyaddr; 4720 int phy_mode = -1; 4721 4722 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy"); 4723 if (phy_node < 0) { 4724 dev_err(&pdev->dev, "missing phy\n"); 4725 return -ENODEV; 4726 } 4727 4728 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL); 4729 if (phy_mode_str) 4730 phy_mode = phy_get_interface_by_name(phy_mode_str); 4731 if (phy_mode == -1) { 4732 dev_err(&pdev->dev, "incorrect phy mode\n"); 4733 return -EINVAL; 4734 } 4735 4736 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1); 4737 if (id == -1) { 4738 dev_err(&pdev->dev, "missing port-id value\n"); 4739 return -EINVAL; 4740 } 4741 4742 /* 4743 * ToDo: 4744 * Not sure if this DT property "phy-speed" will get accepted, so 4745 * this might change later 4746 */ 4747 /* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */ 4748 port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node, 4749 "phy-speed", 1000); 4750 4751 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0); 4752 4753 port->id = id; 4754 if (port->priv->hw_version == MVPP21) 4755 port->first_rxq = port->id * rxq_number; 4756 else 4757 port->first_rxq = port->id * port->priv->max_port_rxqs; 4758 port->phy_node = phy_node; 4759 port->phy_interface = phy_mode; 4760 port->phyaddr = phyaddr; 4761 4762 return 0; 4763 } 4764 4765 /* Ports initialization */ 4766 static int mvpp2_port_probe(struct udevice *dev, 4767 struct mvpp2_port *port, 4768 int port_node, 4769 struct mvpp2 *priv) 4770 { 4771 int err; 4772 4773 port->tx_ring_size = MVPP2_MAX_TXD; 4774 port->rx_ring_size = MVPP2_MAX_RXD; 4775 4776 err = mvpp2_port_init(dev, port); 4777 if (err < 0) { 4778 dev_err(&pdev->dev, "failed to init port %d\n", port->id); 4779 return err; 4780 } 4781 mvpp2_port_power_up(port); 4782 4783 priv->port_list[port->id] = port; 4784 return 0; 4785 } 4786 4787 /* Initialize decoding windows */ 4788 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, 4789 struct mvpp2 *priv) 4790 { 4791 u32 win_enable; 4792 int i; 4793 4794 for (i = 0; i < 6; i++) { 4795 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); 4796 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); 4797 4798 if (i < 4) 4799 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); 4800 } 4801 4802 win_enable = 0; 4803 4804 for (i = 0; i < dram->num_cs; i++) { 4805 const struct mbus_dram_window *cs = dram->cs + i; 4806 4807 mvpp2_write(priv, MVPP2_WIN_BASE(i), 4808 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | 4809 dram->mbus_dram_target_id); 4810 4811 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 4812 (cs->size - 1) & 0xffff0000); 4813 4814 win_enable |= (1 << i); 4815 } 4816 4817 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); 4818 } 4819 4820 /* Initialize Rx FIFO's */ 4821 static void mvpp2_rx_fifo_init(struct mvpp2 *priv) 4822 { 4823 int port; 4824 4825 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 4826 if (priv->hw_version == MVPP22) { 4827 if (port == 0) { 4828 mvpp2_write(priv, 4829 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4830 MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE); 4831 mvpp2_write(priv, 4832 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4833 MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE); 4834 } else if (port == 1) { 4835 mvpp2_write(priv, 4836 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4837 MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE); 4838 mvpp2_write(priv, 4839 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4840 MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE); 4841 } else { 4842 mvpp2_write(priv, 4843 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4844 MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE); 4845 mvpp2_write(priv, 4846 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4847 MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE); 4848 } 4849 } else { 4850 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4851 MVPP21_RX_FIFO_PORT_DATA_SIZE); 4852 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4853 MVPP21_RX_FIFO_PORT_ATTR_SIZE); 4854 } 4855 } 4856 4857 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, 4858 MVPP2_RX_FIFO_PORT_MIN_PKT); 4859 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); 4860 } 4861 4862 /* Initialize Tx FIFO's */ 4863 static void mvpp2_tx_fifo_init(struct mvpp2 *priv) 4864 { 4865 int port, val; 4866 4867 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 4868 /* Port 0 supports 10KB TX FIFO */ 4869 if (port == 0) { 4870 val = MVPP2_TX_FIFO_DATA_SIZE_10KB & 4871 MVPP22_TX_FIFO_SIZE_MASK; 4872 } else { 4873 val = MVPP2_TX_FIFO_DATA_SIZE_3KB & 4874 MVPP22_TX_FIFO_SIZE_MASK; 4875 } 4876 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val); 4877 } 4878 } 4879 4880 static void mvpp2_axi_init(struct mvpp2 *priv) 4881 { 4882 u32 val, rdval, wrval; 4883 4884 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0); 4885 4886 /* AXI Bridge Configuration */ 4887 4888 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE 4889 << MVPP22_AXI_ATTR_CACHE_OFFS; 4890 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4891 << MVPP22_AXI_ATTR_DOMAIN_OFFS; 4892 4893 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE 4894 << MVPP22_AXI_ATTR_CACHE_OFFS; 4895 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4896 << MVPP22_AXI_ATTR_DOMAIN_OFFS; 4897 4898 /* BM */ 4899 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval); 4900 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval); 4901 4902 /* Descriptors */ 4903 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval); 4904 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval); 4905 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval); 4906 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval); 4907 4908 /* Buffer Data */ 4909 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval); 4910 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval); 4911 4912 val = MVPP22_AXI_CODE_CACHE_NON_CACHE 4913 << MVPP22_AXI_CODE_CACHE_OFFS; 4914 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM 4915 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4916 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val); 4917 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val); 4918 4919 val = MVPP22_AXI_CODE_CACHE_RD_CACHE 4920 << MVPP22_AXI_CODE_CACHE_OFFS; 4921 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4922 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4923 4924 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val); 4925 4926 val = MVPP22_AXI_CODE_CACHE_WR_CACHE 4927 << MVPP22_AXI_CODE_CACHE_OFFS; 4928 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4929 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4930 4931 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val); 4932 } 4933 4934 /* Initialize network controller common part HW */ 4935 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv) 4936 { 4937 const struct mbus_dram_target_info *dram_target_info; 4938 int err, i; 4939 u32 val; 4940 4941 /* Checks for hardware constraints (U-Boot uses only one rxq) */ 4942 if ((rxq_number > priv->max_port_rxqs) || 4943 (txq_number > MVPP2_MAX_TXQ)) { 4944 dev_err(&pdev->dev, "invalid queue size parameter\n"); 4945 return -EINVAL; 4946 } 4947 4948 /* MBUS windows configuration */ 4949 dram_target_info = mvebu_mbus_dram_info(); 4950 if (dram_target_info) 4951 mvpp2_conf_mbus_windows(dram_target_info, priv); 4952 4953 if (priv->hw_version == MVPP22) 4954 mvpp2_axi_init(priv); 4955 4956 if (priv->hw_version == MVPP21) { 4957 /* Disable HW PHY polling */ 4958 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 4959 val |= MVPP2_PHY_AN_STOP_SMI0_MASK; 4960 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 4961 } else { 4962 /* Enable HW PHY polling */ 4963 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG); 4964 val |= MVPP22_SMI_POLLING_EN; 4965 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG); 4966 } 4967 4968 /* Allocate and initialize aggregated TXQs */ 4969 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(), 4970 sizeof(struct mvpp2_tx_queue), 4971 GFP_KERNEL); 4972 if (!priv->aggr_txqs) 4973 return -ENOMEM; 4974 4975 for_each_present_cpu(i) { 4976 priv->aggr_txqs[i].id = i; 4977 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; 4978 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i], 4979 MVPP2_AGGR_TXQ_SIZE, i, priv); 4980 if (err < 0) 4981 return err; 4982 } 4983 4984 /* Rx Fifo Init */ 4985 mvpp2_rx_fifo_init(priv); 4986 4987 /* Tx Fifo Init */ 4988 if (priv->hw_version == MVPP22) 4989 mvpp2_tx_fifo_init(priv); 4990 4991 /* Reset Rx queue group interrupt configuration */ 4992 for (i = 0; i < MVPP2_MAX_PORTS; i++) { 4993 if (priv->hw_version == MVPP21) { 4994 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i), 4995 CONFIG_MV_ETH_RXQ); 4996 continue; 4997 } else { 4998 u32 val; 4999 5000 val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); 5001 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); 5002 5003 val = (CONFIG_MV_ETH_RXQ << 5004 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); 5005 mvpp2_write(priv, 5006 MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); 5007 } 5008 } 5009 5010 if (priv->hw_version == MVPP21) 5011 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, 5012 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); 5013 5014 /* Allow cache snoop when transmiting packets */ 5015 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); 5016 5017 /* Buffer Manager initialization */ 5018 err = mvpp2_bm_init(dev, priv); 5019 if (err < 0) 5020 return err; 5021 5022 /* Parser default initialization */ 5023 err = mvpp2_prs_default_init(dev, priv); 5024 if (err < 0) 5025 return err; 5026 5027 /* Classifier default initialization */ 5028 mvpp2_cls_init(priv); 5029 5030 return 0; 5031 } 5032 5033 /* SMI / MDIO functions */ 5034 5035 static int smi_wait_ready(struct mvpp2 *priv) 5036 { 5037 u32 timeout = MVPP2_SMI_TIMEOUT; 5038 u32 smi_reg; 5039 5040 /* wait till the SMI is not busy */ 5041 do { 5042 /* read smi register */ 5043 smi_reg = readl(priv->mdio_base); 5044 if (timeout-- == 0) { 5045 printf("Error: SMI busy timeout\n"); 5046 return -EFAULT; 5047 } 5048 } while (smi_reg & MVPP2_SMI_BUSY); 5049 5050 return 0; 5051 } 5052 5053 /* 5054 * mpp2_mdio_read - miiphy_read callback function. 5055 * 5056 * Returns 16bit phy register value, or 0xffff on error 5057 */ 5058 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) 5059 { 5060 struct mvpp2 *priv = bus->priv; 5061 u32 smi_reg; 5062 u32 timeout; 5063 5064 /* check parameters */ 5065 if (addr > MVPP2_PHY_ADDR_MASK) { 5066 printf("Error: Invalid PHY address %d\n", addr); 5067 return -EFAULT; 5068 } 5069 5070 if (reg > MVPP2_PHY_REG_MASK) { 5071 printf("Err: Invalid register offset %d\n", reg); 5072 return -EFAULT; 5073 } 5074 5075 /* wait till the SMI is not busy */ 5076 if (smi_wait_ready(priv) < 0) 5077 return -EFAULT; 5078 5079 /* fill the phy address and regiser offset and read opcode */ 5080 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS) 5081 | (reg << MVPP2_SMI_REG_ADDR_OFFS) 5082 | MVPP2_SMI_OPCODE_READ; 5083 5084 /* write the smi register */ 5085 writel(smi_reg, priv->mdio_base); 5086 5087 /* wait till read value is ready */ 5088 timeout = MVPP2_SMI_TIMEOUT; 5089 5090 do { 5091 /* read smi register */ 5092 smi_reg = readl(priv->mdio_base); 5093 if (timeout-- == 0) { 5094 printf("Err: SMI read ready timeout\n"); 5095 return -EFAULT; 5096 } 5097 } while (!(smi_reg & MVPP2_SMI_READ_VALID)); 5098 5099 /* Wait for the data to update in the SMI register */ 5100 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++) 5101 ; 5102 5103 return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK; 5104 } 5105 5106 /* 5107 * mpp2_mdio_write - miiphy_write callback function. 5108 * 5109 * Returns 0 if write succeed, -EINVAL on bad parameters 5110 * -ETIME on timeout 5111 */ 5112 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, 5113 u16 value) 5114 { 5115 struct mvpp2 *priv = bus->priv; 5116 u32 smi_reg; 5117 5118 /* check parameters */ 5119 if (addr > MVPP2_PHY_ADDR_MASK) { 5120 printf("Error: Invalid PHY address %d\n", addr); 5121 return -EFAULT; 5122 } 5123 5124 if (reg > MVPP2_PHY_REG_MASK) { 5125 printf("Err: Invalid register offset %d\n", reg); 5126 return -EFAULT; 5127 } 5128 5129 /* wait till the SMI is not busy */ 5130 if (smi_wait_ready(priv) < 0) 5131 return -EFAULT; 5132 5133 /* fill the phy addr and reg offset and write opcode and data */ 5134 smi_reg = value << MVPP2_SMI_DATA_OFFS; 5135 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS) 5136 | (reg << MVPP2_SMI_REG_ADDR_OFFS); 5137 smi_reg &= ~MVPP2_SMI_OPCODE_READ; 5138 5139 /* write the smi register */ 5140 writel(smi_reg, priv->mdio_base); 5141 5142 return 0; 5143 } 5144 5145 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp) 5146 { 5147 struct mvpp2_port *port = dev_get_priv(dev); 5148 struct mvpp2_rx_desc *rx_desc; 5149 struct mvpp2_bm_pool *bm_pool; 5150 dma_addr_t dma_addr; 5151 u32 bm, rx_status; 5152 int pool, rx_bytes, err; 5153 int rx_received; 5154 struct mvpp2_rx_queue *rxq; 5155 u32 cause_rx_tx, cause_rx, cause_misc; 5156 u8 *data; 5157 5158 cause_rx_tx = mvpp2_read(port->priv, 5159 MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); 5160 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; 5161 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK; 5162 if (!cause_rx_tx && !cause_misc) 5163 return 0; 5164 5165 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK; 5166 5167 /* Process RX packets */ 5168 cause_rx |= port->pending_cause_rx; 5169 rxq = mvpp2_get_rx_queue(port, cause_rx); 5170 5171 /* Get number of received packets and clamp the to-do */ 5172 rx_received = mvpp2_rxq_received(port, rxq->id); 5173 5174 /* Return if no packets are received */ 5175 if (!rx_received) 5176 return 0; 5177 5178 rx_desc = mvpp2_rxq_next_desc_get(rxq); 5179 rx_status = mvpp2_rxdesc_status_get(port, rx_desc); 5180 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc); 5181 rx_bytes -= MVPP2_MH_SIZE; 5182 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); 5183 5184 bm = mvpp2_bm_cookie_build(port, rx_desc); 5185 pool = mvpp2_bm_cookie_pool_get(bm); 5186 bm_pool = &port->priv->bm_pools[pool]; 5187 5188 /* In case of an error, release the requested buffer pointer 5189 * to the Buffer Manager. This request process is controlled 5190 * by the hardware, and the information about the buffer is 5191 * comprised by the RX descriptor. 5192 */ 5193 if (rx_status & MVPP2_RXD_ERR_SUMMARY) { 5194 mvpp2_rx_error(port, rx_desc); 5195 /* Return the buffer to the pool */ 5196 mvpp2_pool_refill(port, bm, dma_addr, dma_addr); 5197 return 0; 5198 } 5199 5200 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr); 5201 if (err) { 5202 netdev_err(port->dev, "failed to refill BM pools\n"); 5203 return 0; 5204 } 5205 5206 /* Update Rx queue management counters */ 5207 mb(); 5208 mvpp2_rxq_status_update(port, rxq->id, 1, 1); 5209 5210 /* give packet to stack - skip on first n bytes */ 5211 data = (u8 *)dma_addr + 2 + 32; 5212 5213 if (rx_bytes <= 0) 5214 return 0; 5215 5216 /* 5217 * No cache invalidation needed here, since the rx_buffer's are 5218 * located in a uncached memory region 5219 */ 5220 *packetp = data; 5221 5222 return rx_bytes; 5223 } 5224 5225 /* Drain Txq */ 5226 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, 5227 int enable) 5228 { 5229 u32 val; 5230 5231 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 5232 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 5233 if (enable) 5234 val |= MVPP2_TXQ_DRAIN_EN_MASK; 5235 else 5236 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 5237 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 5238 } 5239 5240 static int mvpp2_send(struct udevice *dev, void *packet, int length) 5241 { 5242 struct mvpp2_port *port = dev_get_priv(dev); 5243 struct mvpp2_tx_queue *txq, *aggr_txq; 5244 struct mvpp2_tx_desc *tx_desc; 5245 int tx_done; 5246 int timeout; 5247 5248 txq = port->txqs[0]; 5249 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()]; 5250 5251 /* Get a descriptor for the first part of the packet */ 5252 tx_desc = mvpp2_txq_next_desc_get(aggr_txq); 5253 mvpp2_txdesc_txq_set(port, tx_desc, txq->id); 5254 mvpp2_txdesc_size_set(port, tx_desc, length); 5255 mvpp2_txdesc_offset_set(port, tx_desc, 5256 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN); 5257 mvpp2_txdesc_dma_addr_set(port, tx_desc, 5258 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN); 5259 /* First and Last descriptor */ 5260 mvpp2_txdesc_cmd_set(port, tx_desc, 5261 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE 5262 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC); 5263 5264 /* Flush tx data */ 5265 flush_dcache_range((unsigned long)packet, 5266 (unsigned long)packet + ALIGN(length, PKTALIGN)); 5267 5268 /* Enable transmit */ 5269 mb(); 5270 mvpp2_aggr_txq_pend_desc_add(port, 1); 5271 5272 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 5273 5274 timeout = 0; 5275 do { 5276 if (timeout++ > 10000) { 5277 printf("timeout: packet not sent from aggregated to phys TXQ\n"); 5278 return 0; 5279 } 5280 tx_done = mvpp2_txq_pend_desc_num_get(port, txq); 5281 } while (tx_done); 5282 5283 /* Enable TXQ drain */ 5284 mvpp2_txq_drain(port, txq, 1); 5285 5286 timeout = 0; 5287 do { 5288 if (timeout++ > 10000) { 5289 printf("timeout: packet not sent\n"); 5290 return 0; 5291 } 5292 tx_done = mvpp2_txq_sent_desc_proc(port, txq); 5293 } while (!tx_done); 5294 5295 /* Disable TXQ drain */ 5296 mvpp2_txq_drain(port, txq, 0); 5297 5298 return 0; 5299 } 5300 5301 static int mvpp2_start(struct udevice *dev) 5302 { 5303 struct eth_pdata *pdata = dev_get_platdata(dev); 5304 struct mvpp2_port *port = dev_get_priv(dev); 5305 5306 /* Load current MAC address */ 5307 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN); 5308 5309 /* Reconfigure parser accept the original MAC address */ 5310 mvpp2_prs_update_mac_da(port, port->dev_addr); 5311 5312 mvpp2_port_power_up(port); 5313 5314 mvpp2_open(dev, port); 5315 5316 return 0; 5317 } 5318 5319 static void mvpp2_stop(struct udevice *dev) 5320 { 5321 struct mvpp2_port *port = dev_get_priv(dev); 5322 5323 mvpp2_stop_dev(port); 5324 mvpp2_cleanup_rxqs(port); 5325 mvpp2_cleanup_txqs(port); 5326 } 5327 5328 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port) 5329 { 5330 writel(port->phyaddr, port->priv->iface_base + 5331 MVPP22_SMI_PHY_ADDR_REG(port->gop_id)); 5332 5333 return 0; 5334 } 5335 5336 static int mvpp2_base_probe(struct udevice *dev) 5337 { 5338 struct mvpp2 *priv = dev_get_priv(dev); 5339 struct mii_dev *bus; 5340 void *bd_space; 5341 u32 size = 0; 5342 int i; 5343 5344 /* Save hw-version */ 5345 priv->hw_version = dev_get_driver_data(dev); 5346 5347 /* 5348 * U-Boot special buffer handling: 5349 * 5350 * Allocate buffer area for descs and rx_buffers. This is only 5351 * done once for all interfaces. As only one interface can 5352 * be active. Make this area DMA-safe by disabling the D-cache 5353 */ 5354 5355 /* Align buffer area for descs and rx_buffers to 1MiB */ 5356 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE); 5357 mmu_set_region_dcache_behaviour((unsigned long)bd_space, 5358 BD_SPACE, DCACHE_OFF); 5359 5360 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space; 5361 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE; 5362 5363 buffer_loc.tx_descs = 5364 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size); 5365 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE; 5366 5367 buffer_loc.rx_descs = 5368 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size); 5369 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE; 5370 5371 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 5372 buffer_loc.bm_pool[i] = 5373 (unsigned long *)((unsigned long)bd_space + size); 5374 if (priv->hw_version == MVPP21) 5375 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32); 5376 else 5377 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64); 5378 } 5379 5380 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) { 5381 buffer_loc.rx_buffer[i] = 5382 (unsigned long *)((unsigned long)bd_space + size); 5383 size += RX_BUFFER_SIZE; 5384 } 5385 5386 /* Clear the complete area so that all descriptors are cleared */ 5387 memset(bd_space, 0, size); 5388 5389 /* Save base addresses for later use */ 5390 priv->base = (void *)dev_get_addr_index(dev, 0); 5391 if (IS_ERR(priv->base)) 5392 return PTR_ERR(priv->base); 5393 5394 if (priv->hw_version == MVPP21) { 5395 priv->lms_base = (void *)dev_get_addr_index(dev, 1); 5396 if (IS_ERR(priv->lms_base)) 5397 return PTR_ERR(priv->lms_base); 5398 5399 priv->mdio_base = priv->lms_base + MVPP21_SMI; 5400 } else { 5401 priv->iface_base = (void *)dev_get_addr_index(dev, 1); 5402 if (IS_ERR(priv->iface_base)) 5403 return PTR_ERR(priv->iface_base); 5404 5405 priv->mdio_base = priv->iface_base + MVPP22_SMI; 5406 5407 /* Store common base addresses for all ports */ 5408 priv->mpcs_base = priv->iface_base + MVPP22_MPCS; 5409 priv->xpcs_base = priv->iface_base + MVPP22_XPCS; 5410 priv->rfu1_base = priv->iface_base + MVPP22_RFU1; 5411 } 5412 5413 if (priv->hw_version == MVPP21) 5414 priv->max_port_rxqs = 8; 5415 else 5416 priv->max_port_rxqs = 32; 5417 5418 /* Finally create and register the MDIO bus driver */ 5419 bus = mdio_alloc(); 5420 if (!bus) { 5421 printf("Failed to allocate MDIO bus\n"); 5422 return -ENOMEM; 5423 } 5424 5425 bus->read = mpp2_mdio_read; 5426 bus->write = mpp2_mdio_write; 5427 snprintf(bus->name, sizeof(bus->name), dev->name); 5428 bus->priv = (void *)priv; 5429 priv->bus = bus; 5430 5431 return mdio_register(bus); 5432 } 5433 5434 static int mvpp2_probe(struct udevice *dev) 5435 { 5436 struct mvpp2_port *port = dev_get_priv(dev); 5437 struct mvpp2 *priv = dev_get_priv(dev->parent); 5438 int err; 5439 5440 /* Only call the probe function for the parent once */ 5441 if (!priv->probe_done) { 5442 err = mvpp2_base_probe(dev->parent); 5443 priv->probe_done = 1; 5444 } 5445 5446 port->priv = dev_get_priv(dev->parent); 5447 5448 err = phy_info_parse(dev, port); 5449 if (err) 5450 return err; 5451 5452 /* 5453 * We need the port specific io base addresses at this stage, since 5454 * gop_port_init() accesses these registers 5455 */ 5456 if (priv->hw_version == MVPP21) { 5457 int priv_common_regs_num = 2; 5458 5459 port->base = (void __iomem *)dev_get_addr_index( 5460 dev->parent, priv_common_regs_num + port->id); 5461 if (IS_ERR(port->base)) 5462 return PTR_ERR(port->base); 5463 } else { 5464 port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), 5465 "gop-port-id", -1); 5466 if (port->id == -1) { 5467 dev_err(&pdev->dev, "missing gop-port-id value\n"); 5468 return -EINVAL; 5469 } 5470 5471 port->base = priv->iface_base + MVPP22_PORT_BASE + 5472 port->gop_id * MVPP22_PORT_OFFSET; 5473 5474 /* Set phy address of the port */ 5475 mvpp22_smi_phy_addr_cfg(port); 5476 5477 /* GoP Init */ 5478 gop_port_init(port); 5479 } 5480 5481 /* Initialize network controller */ 5482 err = mvpp2_init(dev, priv); 5483 if (err < 0) { 5484 dev_err(&pdev->dev, "failed to initialize controller\n"); 5485 return err; 5486 } 5487 5488 err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv); 5489 if (err) 5490 return err; 5491 5492 if (priv->hw_version == MVPP22) { 5493 priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id, 5494 port->phy_interface); 5495 5496 /* Netcomplex configurations for all ports */ 5497 gop_netc_init(priv, MV_NETC_FIRST_PHASE); 5498 gop_netc_init(priv, MV_NETC_SECOND_PHASE); 5499 } 5500 5501 return 0; 5502 } 5503 5504 static const struct eth_ops mvpp2_ops = { 5505 .start = mvpp2_start, 5506 .send = mvpp2_send, 5507 .recv = mvpp2_recv, 5508 .stop = mvpp2_stop, 5509 }; 5510 5511 static struct driver mvpp2_driver = { 5512 .name = "mvpp2", 5513 .id = UCLASS_ETH, 5514 .probe = mvpp2_probe, 5515 .ops = &mvpp2_ops, 5516 .priv_auto_alloc_size = sizeof(struct mvpp2_port), 5517 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 5518 }; 5519 5520 /* 5521 * Use a MISC device to bind the n instances (child nodes) of the 5522 * network base controller in UCLASS_ETH. 5523 */ 5524 static int mvpp2_base_bind(struct udevice *parent) 5525 { 5526 const void *blob = gd->fdt_blob; 5527 int node = dev_of_offset(parent); 5528 struct uclass_driver *drv; 5529 struct udevice *dev; 5530 struct eth_pdata *plat; 5531 char *name; 5532 int subnode; 5533 u32 id; 5534 int base_id_add; 5535 5536 /* Lookup eth driver */ 5537 drv = lists_uclass_lookup(UCLASS_ETH); 5538 if (!drv) { 5539 puts("Cannot find eth driver\n"); 5540 return -ENOENT; 5541 } 5542 5543 base_id_add = base_id; 5544 5545 fdt_for_each_subnode(subnode, blob, node) { 5546 /* Increment base_id for all subnodes, also the disabled ones */ 5547 base_id++; 5548 5549 /* Skip disabled ports */ 5550 if (!fdtdec_get_is_enabled(blob, subnode)) 5551 continue; 5552 5553 plat = calloc(1, sizeof(*plat)); 5554 if (!plat) 5555 return -ENOMEM; 5556 5557 id = fdtdec_get_int(blob, subnode, "port-id", -1); 5558 id += base_id_add; 5559 5560 name = calloc(1, 16); 5561 sprintf(name, "mvpp2-%d", id); 5562 5563 /* Create child device UCLASS_ETH and bind it */ 5564 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev); 5565 dev_set_of_offset(dev, subnode); 5566 } 5567 5568 return 0; 5569 } 5570 5571 static const struct udevice_id mvpp2_ids[] = { 5572 { 5573 .compatible = "marvell,armada-375-pp2", 5574 .data = MVPP21, 5575 }, 5576 { 5577 .compatible = "marvell,armada-7k-pp22", 5578 .data = MVPP22, 5579 }, 5580 { } 5581 }; 5582 5583 U_BOOT_DRIVER(mvpp2_base) = { 5584 .name = "mvpp2_base", 5585 .id = UCLASS_MISC, 5586 .of_match = mvpp2_ids, 5587 .bind = mvpp2_base_bind, 5588 .priv_auto_alloc_size = sizeof(struct mvpp2), 5589 }; 5590