1 /* 2 * Driver for Marvell PPv2 network controller for Armada 375 SoC. 3 * 4 * Copyright (C) 2014 Marvell 5 * 6 * Marcin Wojtas <mw@semihalf.com> 7 * 8 * U-Boot version: 9 * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de> 10 * 11 * This file is licensed under the terms of the GNU General Public 12 * License version 2. This program is licensed "as is" without any 13 * warranty of any kind, whether express or implied. 14 */ 15 16 #include <common.h> 17 #include <dm.h> 18 #include <dm/device-internal.h> 19 #include <dm/lists.h> 20 #include <net.h> 21 #include <netdev.h> 22 #include <config.h> 23 #include <malloc.h> 24 #include <asm/io.h> 25 #include <linux/errno.h> 26 #include <phy.h> 27 #include <miiphy.h> 28 #include <watchdog.h> 29 #include <asm/arch/cpu.h> 30 #include <asm/arch/soc.h> 31 #include <linux/compat.h> 32 #include <linux/mbus.h> 33 34 DECLARE_GLOBAL_DATA_PTR; 35 36 /* Some linux -> U-Boot compatibility stuff */ 37 #define netdev_err(dev, fmt, args...) \ 38 printf(fmt, ##args) 39 #define netdev_warn(dev, fmt, args...) \ 40 printf(fmt, ##args) 41 #define netdev_info(dev, fmt, args...) \ 42 printf(fmt, ##args) 43 #define netdev_dbg(dev, fmt, args...) \ 44 printf(fmt, ##args) 45 46 #define ETH_ALEN 6 /* Octets in one ethernet addr */ 47 48 #define __verify_pcpu_ptr(ptr) \ 49 do { \ 50 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ 51 (void)__vpp_verify; \ 52 } while (0) 53 54 #define VERIFY_PERCPU_PTR(__p) \ 55 ({ \ 56 __verify_pcpu_ptr(__p); \ 57 (typeof(*(__p)) __kernel __force *)(__p); \ 58 }) 59 60 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); }) 61 #define smp_processor_id() 0 62 #define num_present_cpus() 1 63 #define for_each_present_cpu(cpu) \ 64 for ((cpu) = 0; (cpu) < 1; (cpu)++) 65 66 #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE) 67 68 #define CONFIG_NR_CPUS 1 69 #define ETH_HLEN ETHER_HDR_SIZE /* Total octets in header */ 70 71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */ 72 #define WRAP (2 + ETH_HLEN + 4 + 32) 73 #define MTU 1500 74 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN)) 75 76 #define MVPP2_SMI_TIMEOUT 10000 77 78 /* RX Fifo Registers */ 79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port)) 80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port)) 81 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60 82 #define MVPP2_RX_FIFO_INIT_REG 0x64 83 84 /* RX DMA Top Registers */ 85 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port)) 86 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16) 87 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31) 88 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool)) 89 #define MVPP2_POOL_BUF_SIZE_OFFSET 5 90 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq)) 91 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff 92 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9) 93 #define MVPP2_RXQ_POOL_SHORT_OFFS 20 94 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000 95 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000 96 #define MVPP2_RXQ_POOL_LONG_OFFS 24 97 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000 98 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000 99 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28 100 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000 101 #define MVPP2_RXQ_DISABLE_MASK BIT(31) 102 103 /* Parser Registers */ 104 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000 105 #define MVPP2_PRS_PORT_LU_MAX 0xf 106 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4)) 107 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4)) 108 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4)) 109 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8)) 110 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8)) 111 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4)) 112 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8)) 113 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8)) 114 #define MVPP2_PRS_TCAM_IDX_REG 0x1100 115 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4) 116 #define MVPP2_PRS_TCAM_INV_MASK BIT(31) 117 #define MVPP2_PRS_SRAM_IDX_REG 0x1200 118 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4) 119 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230 120 #define MVPP2_PRS_TCAM_EN_MASK BIT(0) 121 122 /* Classifier Registers */ 123 #define MVPP2_CLS_MODE_REG 0x1800 124 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0) 125 #define MVPP2_CLS_PORT_WAY_REG 0x1810 126 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port)) 127 #define MVPP2_CLS_LKP_INDEX_REG 0x1814 128 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6 129 #define MVPP2_CLS_LKP_TBL_REG 0x1818 130 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff 131 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25) 132 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820 133 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824 134 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828 135 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c 136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4)) 137 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3 138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7 139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4)) 140 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0 141 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port)) 142 143 /* Descriptor Manager Top Registers */ 144 #define MVPP2_RXQ_NUM_REG 0x2040 145 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044 146 #define MVPP22_DESC_ADDR_OFFS 8 147 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048 148 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0 149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq)) 150 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0 151 #define MVPP2_RXQ_NUM_NEW_OFFSET 16 152 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq)) 153 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff 154 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16 155 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000 156 #define MVPP2_RXQ_THRESH_REG 0x204c 157 #define MVPP2_OCCUPIED_THRESH_OFFSET 0 158 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff 159 #define MVPP2_RXQ_INDEX_REG 0x2050 160 #define MVPP2_TXQ_NUM_REG 0x2080 161 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084 162 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088 163 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0 164 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090 165 #define MVPP2_TXQ_THRESH_REG 0x2094 166 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16 167 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000 168 #define MVPP2_TXQ_INDEX_REG 0x2098 169 #define MVPP2_TXQ_PREF_BUF_REG 0x209c 170 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff) 171 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13)) 172 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14)) 173 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17) 174 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31) 175 #define MVPP2_TXQ_PENDING_REG 0x20a0 176 #define MVPP2_TXQ_PENDING_MASK 0x3fff 177 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4 178 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq)) 179 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16 180 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000 181 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0 182 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16 183 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4 184 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff 185 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8 186 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16 187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu)) 188 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8 189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu)) 190 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0 191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu)) 192 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff 193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu)) 194 195 /* MBUS bridge registers */ 196 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2)) 197 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2)) 198 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2)) 199 #define MVPP2_BASE_ADDR_ENABLE 0x4060 200 201 /* AXI Bridge Registers */ 202 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100 203 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104 204 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110 205 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114 206 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118 207 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c 208 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120 209 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130 210 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150 211 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154 212 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160 213 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164 214 215 /* Values for AXI Bridge registers */ 216 #define MVPP22_AXI_ATTR_CACHE_OFFS 0 217 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12 218 219 #define MVPP22_AXI_CODE_CACHE_OFFS 0 220 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4 221 222 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3 223 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7 224 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb 225 226 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2 227 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3 228 229 /* Interrupt Cause and Mask registers */ 230 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq)) 231 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq)) 232 233 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400 234 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf 235 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 236 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7 237 238 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf 239 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 240 241 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404 242 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f 243 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00 244 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8 245 246 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port)) 247 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff) 248 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000) 249 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port)) 250 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 251 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000 252 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24) 253 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25) 254 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26) 255 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29) 256 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30) 257 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31) 258 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port)) 259 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc 260 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff 261 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000 262 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31) 263 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0 264 265 /* Buffer Manager registers */ 266 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4)) 267 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80 268 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4)) 269 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0 270 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4)) 271 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0 272 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4)) 273 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0 274 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4)) 275 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4)) 276 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff 277 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16) 278 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4)) 279 #define MVPP2_BM_START_MASK BIT(0) 280 #define MVPP2_BM_STOP_MASK BIT(1) 281 #define MVPP2_BM_STATE_MASK BIT(4) 282 #define MVPP2_BM_LOW_THRESH_OFFS 8 283 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00 284 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \ 285 MVPP2_BM_LOW_THRESH_OFFS) 286 #define MVPP2_BM_HIGH_THRESH_OFFS 16 287 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000 288 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \ 289 MVPP2_BM_HIGH_THRESH_OFFS) 290 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4)) 291 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0) 292 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1) 293 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2) 294 #define MVPP2_BM_BPPE_FULL_MASK BIT(3) 295 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4) 296 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4)) 297 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4)) 298 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0) 299 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440 300 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444 301 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff 302 #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00 303 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8 304 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4)) 305 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0) 306 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1) 307 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2) 308 #define MVPP2_BM_VIRT_RLS_REG 0x64c0 309 #define MVPP21_BM_MC_RLS_REG 0x64c4 310 #define MVPP2_BM_MC_ID_MASK 0xfff 311 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12) 312 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4 313 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff 314 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00 315 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8 316 #define MVPP22_BM_MC_RLS_REG 0x64d4 317 318 /* TX Scheduler registers */ 319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000 320 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004 321 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff 322 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8 323 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010 324 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018 325 #define MVPP2_TXP_SCHED_MTU_REG 0x801c 326 #define MVPP2_TXP_MTU_MAX 0x7FFFF 327 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020 328 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff 329 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000 330 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20) 331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024 332 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff 333 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2)) 334 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff 335 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000 336 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20) 337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2)) 338 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff 339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2)) 340 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff 341 342 /* TX general registers */ 343 #define MVPP2_TX_SNOOP_REG 0x8800 344 #define MVPP2_TX_PORT_FLUSH_REG 0x8810 345 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port)) 346 347 /* LMS registers */ 348 #define MVPP2_SRC_ADDR_MIDDLE 0x24 349 #define MVPP2_SRC_ADDR_HIGH 0x28 350 #define MVPP2_PHY_AN_CFG0_REG 0x34 351 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7) 352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c 353 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27 354 355 /* Per-port registers */ 356 #define MVPP2_GMAC_CTRL_0_REG 0x0 357 #define MVPP2_GMAC_PORT_EN_MASK BIT(0) 358 #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1) 359 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2 360 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc 361 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15) 362 #define MVPP2_GMAC_CTRL_1_REG 0x4 363 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1) 364 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5) 365 #define MVPP2_GMAC_PCS_LB_EN_BIT 6 366 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6) 367 #define MVPP2_GMAC_SA_LOW_OFFS 7 368 #define MVPP2_GMAC_CTRL_2_REG 0x8 369 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0) 370 #define MVPP2_GMAC_SGMII_MODE_MASK BIT(0) 371 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3) 372 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4) 373 #define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5) 374 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6) 375 #define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9) 376 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc 377 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0) 378 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1) 379 #define MVPP2_GMAC_EN_PCS_AN BIT(2) 380 #define MVPP2_GMAC_AN_BYPASS_EN BIT(3) 381 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5) 382 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6) 383 #define MVPP2_GMAC_AN_SPEED_EN BIT(7) 384 #define MVPP2_GMAC_FC_ADV_EN BIT(9) 385 #define MVPP2_GMAC_EN_FC_AN BIT(11) 386 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12) 387 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13) 388 #define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15) 389 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c 390 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6 391 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0 392 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \ 393 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK) 394 #define MVPP2_GMAC_CTRL_4_REG 0x90 395 #define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0) 396 #define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5) 397 #define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6) 398 #define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7) 399 400 /* 401 * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0, 402 * relative to port->base. 403 */ 404 405 /* Port Mac Control0 */ 406 #define MVPP22_XLG_CTRL0_REG 0x100 407 #define MVPP22_XLG_PORT_EN BIT(0) 408 #define MVPP22_XLG_MAC_RESETN BIT(1) 409 #define MVPP22_XLG_RX_FC_EN BIT(7) 410 #define MVPP22_XLG_MIBCNT_DIS BIT(13) 411 /* Port Mac Control1 */ 412 #define MVPP22_XLG_CTRL1_REG 0x104 413 #define MVPP22_XLG_MAX_RX_SIZE_OFFS 0 414 #define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff 415 /* Port Interrupt Mask */ 416 #define MVPP22_XLG_INTERRUPT_MASK_REG 0x118 417 #define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1) 418 /* Port Mac Control3 */ 419 #define MVPP22_XLG_CTRL3_REG 0x11c 420 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13) 421 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13) 422 #define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13) 423 /* Port Mac Control4 */ 424 #define MVPP22_XLG_CTRL4_REG 0x184 425 #define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5) 426 #define MVPP22_XLG_FORWARD_PFC_EN BIT(6) 427 #define MVPP22_XLG_MODE_DMA_1G BIT(12) 428 #define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14) 429 430 /* XPCS registers */ 431 432 /* Global Configuration 0 */ 433 #define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0 434 #define MVPP22_XPCS_PCSRESET BIT(0) 435 #define MVPP22_XPCS_PCSMODE_OFFS 3 436 #define MVPP22_XPCS_PCSMODE_MASK (0x3 << \ 437 MVPP22_XPCS_PCSMODE_OFFS) 438 #define MVPP22_XPCS_LANEACTIVE_OFFS 5 439 #define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \ 440 MVPP22_XPCS_LANEACTIVE_OFFS) 441 442 /* MPCS registers */ 443 444 #define PCS40G_COMMON_CONTROL 0x14 445 #define FORWARD_ERROR_CORRECTION_MASK BIT(10) 446 447 #define PCS_CLOCK_RESET 0x14c 448 #define TX_SD_CLK_RESET_MASK BIT(0) 449 #define RX_SD_CLK_RESET_MASK BIT(1) 450 #define MAC_CLK_RESET_MASK BIT(2) 451 #define CLK_DIVISION_RATIO_OFFS 4 452 #define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS) 453 #define CLK_DIV_PHASE_SET_MASK BIT(11) 454 455 /* System Soft Reset 1 */ 456 #define GOP_SOFT_RESET_1_REG 0x108 457 #define NETC_GOP_SOFT_RESET_OFFS 6 458 #define NETC_GOP_SOFT_RESET_MASK (0x1 << \ 459 NETC_GOP_SOFT_RESET_OFFS) 460 461 /* Ports Control 0 */ 462 #define NETCOMP_PORTS_CONTROL_0_REG 0x110 463 #define NETC_BUS_WIDTH_SELECT_OFFS 1 464 #define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \ 465 NETC_BUS_WIDTH_SELECT_OFFS) 466 #define NETC_GIG_RX_DATA_SAMPLE_OFFS 29 467 #define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \ 468 NETC_GIG_RX_DATA_SAMPLE_OFFS) 469 #define NETC_CLK_DIV_PHASE_OFFS 31 470 #define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS) 471 /* Ports Control 1 */ 472 #define NETCOMP_PORTS_CONTROL_1_REG 0x114 473 #define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p) 474 #define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \ 475 NETC_PORTS_ACTIVE_OFFSET(p)) 476 #define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p) 477 #define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \ 478 NETC_PORT_GIG_RF_RESET_OFFS(p)) 479 #define NETCOMP_CONTROL_0_REG 0x120 480 #define NETC_GBE_PORT0_SGMII_MODE_OFFS 0 481 #define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \ 482 NETC_GBE_PORT0_SGMII_MODE_OFFS) 483 #define NETC_GBE_PORT1_SGMII_MODE_OFFS 1 484 #define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \ 485 NETC_GBE_PORT1_SGMII_MODE_OFFS) 486 #define NETC_GBE_PORT1_MII_MODE_OFFS 2 487 #define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \ 488 NETC_GBE_PORT1_MII_MODE_OFFS) 489 490 #define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04) 491 #define MVPP22_SMI_POLLING_EN BIT(10) 492 493 #define MVPP22_SMI_PHY_ADDR_REG(port) (MVPP22_SMI + 0x04 + \ 494 (0x4 * (port))) 495 496 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 497 498 /* Descriptor ring Macros */ 499 #define MVPP2_QUEUE_NEXT_DESC(q, index) \ 500 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 501 502 /* SMI: 0xc0054 -> offset 0x54 to lms_base */ 503 #define MVPP21_SMI 0x0054 504 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */ 505 #define MVPP22_SMI 0x1200 506 #define MVPP2_PHY_REG_MASK 0x1f 507 /* SMI register fields */ 508 #define MVPP2_SMI_DATA_OFFS 0 /* Data */ 509 #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS) 510 #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */ 511 #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/ 512 #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */ 513 #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS) 514 #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */ 515 #define MVPP2_SMI_BUSY (1 << 28) /* Busy */ 516 517 #define MVPP2_PHY_ADDR_MASK 0x1f 518 #define MVPP2_PHY_REG_MASK 0x1f 519 520 /* Additional PPv2.2 offsets */ 521 #define MVPP22_MPCS 0x007000 522 #define MVPP22_XPCS 0x007400 523 #define MVPP22_PORT_BASE 0x007e00 524 #define MVPP22_PORT_OFFSET 0x001000 525 #define MVPP22_RFU1 0x318000 526 527 /* Maximum number of ports */ 528 #define MVPP22_GOP_MAC_NUM 4 529 530 /* Sets the field located at the specified in data */ 531 #define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41 532 #define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5 533 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb 534 535 /* Net Complex */ 536 enum mv_netc_topology { 537 MV_NETC_GE_MAC2_SGMII = BIT(0), 538 MV_NETC_GE_MAC3_SGMII = BIT(1), 539 MV_NETC_GE_MAC3_RGMII = BIT(2), 540 }; 541 542 enum mv_netc_phase { 543 MV_NETC_FIRST_PHASE, 544 MV_NETC_SECOND_PHASE, 545 }; 546 547 enum mv_netc_sgmii_xmi_mode { 548 MV_NETC_GBE_SGMII, 549 MV_NETC_GBE_XMII, 550 }; 551 552 enum mv_netc_mii_mode { 553 MV_NETC_GBE_RGMII, 554 MV_NETC_GBE_MII, 555 }; 556 557 enum mv_netc_lanes { 558 MV_NETC_LANE_23, 559 MV_NETC_LANE_45, 560 }; 561 562 /* Various constants */ 563 564 /* Coalescing */ 565 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15 566 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL 567 #define MVPP2_RX_COAL_PKTS 32 568 #define MVPP2_RX_COAL_USEC 100 569 570 /* The two bytes Marvell header. Either contains a special value used 571 * by Marvell switches when a specific hardware mode is enabled (not 572 * supported by this driver) or is filled automatically by zeroes on 573 * the RX side. Those two bytes being at the front of the Ethernet 574 * header, they allow to have the IP header aligned on a 4 bytes 575 * boundary automatically: the hardware skips those two bytes on its 576 * own. 577 */ 578 #define MVPP2_MH_SIZE 2 579 #define MVPP2_ETH_TYPE_LEN 2 580 #define MVPP2_PPPOE_HDR_SIZE 8 581 #define MVPP2_VLAN_TAG_LEN 4 582 583 /* Lbtd 802.3 type */ 584 #define MVPP2_IP_LBDT_TYPE 0xfffa 585 586 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32 587 #define MVPP2_TX_CSUM_MAX_SIZE 9800 588 589 /* Timeout constants */ 590 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000 591 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000 592 593 #define MVPP2_TX_MTU_MAX 0x7ffff 594 595 /* Maximum number of T-CONTs of PON port */ 596 #define MVPP2_MAX_TCONT 16 597 598 /* Maximum number of supported ports */ 599 #define MVPP2_MAX_PORTS 4 600 601 /* Maximum number of TXQs used by single port */ 602 #define MVPP2_MAX_TXQ 8 603 604 /* Default number of TXQs in use */ 605 #define MVPP2_DEFAULT_TXQ 1 606 607 /* Dfault number of RXQs in use */ 608 #define MVPP2_DEFAULT_RXQ 1 609 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */ 610 611 /* Max number of Rx descriptors */ 612 #define MVPP2_MAX_RXD 16 613 614 /* Max number of Tx descriptors */ 615 #define MVPP2_MAX_TXD 16 616 617 /* Amount of Tx descriptors that can be reserved at once by CPU */ 618 #define MVPP2_CPU_DESC_CHUNK 64 619 620 /* Max number of Tx descriptors in each aggregated queue */ 621 #define MVPP2_AGGR_TXQ_SIZE 256 622 623 /* Descriptor aligned size */ 624 #define MVPP2_DESC_ALIGNED_SIZE 32 625 626 /* Descriptor alignment mask */ 627 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1) 628 629 /* RX FIFO constants */ 630 #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000 631 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80 632 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000 633 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000 634 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000 635 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200 636 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80 637 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40 638 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80 639 640 /* TX general registers */ 641 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2)) 642 #define MVPP22_TX_FIFO_SIZE_MASK 0xf 643 644 /* TX FIFO constants */ 645 #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa 646 #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3 647 648 /* RX buffer constants */ 649 #define MVPP2_SKB_SHINFO_SIZE \ 650 0 651 652 #define MVPP2_RX_PKT_SIZE(mtu) \ 653 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \ 654 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE) 655 656 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 657 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE) 658 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \ 659 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE) 660 661 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8) 662 663 /* IPv6 max L3 address size */ 664 #define MVPP2_MAX_L3_ADDR_SIZE 16 665 666 /* Port flags */ 667 #define MVPP2_F_LOOPBACK BIT(0) 668 669 /* Marvell tag types */ 670 enum mvpp2_tag_type { 671 MVPP2_TAG_TYPE_NONE = 0, 672 MVPP2_TAG_TYPE_MH = 1, 673 MVPP2_TAG_TYPE_DSA = 2, 674 MVPP2_TAG_TYPE_EDSA = 3, 675 MVPP2_TAG_TYPE_VLAN = 4, 676 MVPP2_TAG_TYPE_LAST = 5 677 }; 678 679 /* Parser constants */ 680 #define MVPP2_PRS_TCAM_SRAM_SIZE 256 681 #define MVPP2_PRS_TCAM_WORDS 6 682 #define MVPP2_PRS_SRAM_WORDS 4 683 #define MVPP2_PRS_FLOW_ID_SIZE 64 684 #define MVPP2_PRS_FLOW_ID_MASK 0x3f 685 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1 686 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5) 687 #define MVPP2_PRS_IPV4_HEAD 0x40 688 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0 689 #define MVPP2_PRS_IPV4_MC 0xe0 690 #define MVPP2_PRS_IPV4_MC_MASK 0xf0 691 #define MVPP2_PRS_IPV4_BC_MASK 0xff 692 #define MVPP2_PRS_IPV4_IHL 0x5 693 #define MVPP2_PRS_IPV4_IHL_MASK 0xf 694 #define MVPP2_PRS_IPV6_MC 0xff 695 #define MVPP2_PRS_IPV6_MC_MASK 0xff 696 #define MVPP2_PRS_IPV6_HOP_MASK 0xff 697 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff 698 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f 699 #define MVPP2_PRS_DBL_VLANS_MAX 100 700 701 /* Tcam structure: 702 * - lookup ID - 4 bits 703 * - port ID - 1 byte 704 * - additional information - 1 byte 705 * - header data - 8 bytes 706 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0). 707 */ 708 #define MVPP2_PRS_AI_BITS 8 709 #define MVPP2_PRS_PORT_MASK 0xff 710 #define MVPP2_PRS_LU_MASK 0xf 711 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \ 712 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2)) 713 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \ 714 (((offs) * 2) - ((offs) % 2) + 2) 715 #define MVPP2_PRS_TCAM_AI_BYTE 16 716 #define MVPP2_PRS_TCAM_PORT_BYTE 17 717 #define MVPP2_PRS_TCAM_LU_BYTE 20 718 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2) 719 #define MVPP2_PRS_TCAM_INV_WORD 5 720 /* Tcam entries ID */ 721 #define MVPP2_PE_DROP_ALL 0 722 #define MVPP2_PE_FIRST_FREE_TID 1 723 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31) 724 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30) 725 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29) 726 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28) 727 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27) 728 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26) 729 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19) 730 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18) 731 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17) 732 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16) 733 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15) 734 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14) 735 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13) 736 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12) 737 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11) 738 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10) 739 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9) 740 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8) 741 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7) 742 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6) 743 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5) 744 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4) 745 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3) 746 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2) 747 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1) 748 749 /* Sram structure 750 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0). 751 */ 752 #define MVPP2_PRS_SRAM_RI_OFFS 0 753 #define MVPP2_PRS_SRAM_RI_WORD 0 754 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32 755 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1 756 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32 757 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64 758 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72 759 #define MVPP2_PRS_SRAM_UDF_OFFS 73 760 #define MVPP2_PRS_SRAM_UDF_BITS 8 761 #define MVPP2_PRS_SRAM_UDF_MASK 0xff 762 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81 763 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82 764 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7 765 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1 766 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4 767 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85 768 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3 769 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1 770 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2 771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3 772 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87 773 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2 774 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3 775 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0 776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2 777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3 778 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89 779 #define MVPP2_PRS_SRAM_AI_OFFS 90 780 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98 781 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8 782 #define MVPP2_PRS_SRAM_AI_MASK 0xff 783 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106 784 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf 785 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110 786 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111 787 788 /* Sram result info bits assignment */ 789 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1 790 #define MVPP2_PRS_RI_DSA_MASK 0x2 791 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3)) 792 #define MVPP2_PRS_RI_VLAN_NONE 0x0 793 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2) 794 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3) 795 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3)) 796 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70 797 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4) 798 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) 799 #define MVPP2_PRS_RI_L2_UCAST 0x0 800 #define MVPP2_PRS_RI_L2_MCAST BIT(9) 801 #define MVPP2_PRS_RI_L2_BCAST BIT(10) 802 #define MVPP2_PRS_RI_PPPOE_MASK 0x800 803 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14)) 804 #define MVPP2_PRS_RI_L3_UN 0x0 805 #define MVPP2_PRS_RI_L3_IP4 BIT(12) 806 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13) 807 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13)) 808 #define MVPP2_PRS_RI_L3_IP6 BIT(14) 809 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14)) 810 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14)) 811 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16)) 812 #define MVPP2_PRS_RI_L3_UCAST 0x0 813 #define MVPP2_PRS_RI_L3_MCAST BIT(15) 814 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16)) 815 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000 816 #define MVPP2_PRS_RI_UDF3_MASK 0x300000 817 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21) 818 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000 819 #define MVPP2_PRS_RI_L4_TCP BIT(22) 820 #define MVPP2_PRS_RI_L4_UDP BIT(23) 821 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23)) 822 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000 823 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29) 824 #define MVPP2_PRS_RI_DROP_MASK 0x80000000 825 826 /* Sram additional info bits assignment */ 827 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0) 828 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0) 829 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1) 830 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2) 831 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3) 832 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4) 833 #define MVPP2_PRS_SINGLE_VLAN_AI 0 834 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7) 835 836 /* DSA/EDSA type */ 837 #define MVPP2_PRS_TAGGED true 838 #define MVPP2_PRS_UNTAGGED false 839 #define MVPP2_PRS_EDSA true 840 #define MVPP2_PRS_DSA false 841 842 /* MAC entries, shadow udf */ 843 enum mvpp2_prs_udf { 844 MVPP2_PRS_UDF_MAC_DEF, 845 MVPP2_PRS_UDF_MAC_RANGE, 846 MVPP2_PRS_UDF_L2_DEF, 847 MVPP2_PRS_UDF_L2_DEF_COPY, 848 MVPP2_PRS_UDF_L2_USER, 849 }; 850 851 /* Lookup ID */ 852 enum mvpp2_prs_lookup { 853 MVPP2_PRS_LU_MH, 854 MVPP2_PRS_LU_MAC, 855 MVPP2_PRS_LU_DSA, 856 MVPP2_PRS_LU_VLAN, 857 MVPP2_PRS_LU_L2, 858 MVPP2_PRS_LU_PPPOE, 859 MVPP2_PRS_LU_IP4, 860 MVPP2_PRS_LU_IP6, 861 MVPP2_PRS_LU_FLOWS, 862 MVPP2_PRS_LU_LAST, 863 }; 864 865 /* L3 cast enum */ 866 enum mvpp2_prs_l3_cast { 867 MVPP2_PRS_L3_UNI_CAST, 868 MVPP2_PRS_L3_MULTI_CAST, 869 MVPP2_PRS_L3_BROAD_CAST 870 }; 871 872 /* Classifier constants */ 873 #define MVPP2_CLS_FLOWS_TBL_SIZE 512 874 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3 875 #define MVPP2_CLS_LKP_TBL_SIZE 64 876 877 /* BM constants */ 878 #define MVPP2_BM_POOLS_NUM 1 879 #define MVPP2_BM_LONG_BUF_NUM 16 880 #define MVPP2_BM_SHORT_BUF_NUM 16 881 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4) 882 #define MVPP2_BM_POOL_PTR_ALIGN 128 883 #define MVPP2_BM_SWF_LONG_POOL(port) 0 884 885 /* BM cookie (32 bits) definition */ 886 #define MVPP2_BM_COOKIE_POOL_OFFS 8 887 #define MVPP2_BM_COOKIE_CPU_OFFS 24 888 889 /* BM short pool packet size 890 * These value assure that for SWF the total number 891 * of bytes allocated for each buffer will be 512 892 */ 893 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512) 894 895 enum mvpp2_bm_type { 896 MVPP2_BM_FREE, 897 MVPP2_BM_SWF_LONG, 898 MVPP2_BM_SWF_SHORT 899 }; 900 901 /* Definitions */ 902 903 /* Shared Packet Processor resources */ 904 struct mvpp2 { 905 /* Shared registers' base addresses */ 906 void __iomem *base; 907 void __iomem *lms_base; 908 void __iomem *iface_base; 909 void __iomem *mdio_base; 910 911 void __iomem *mpcs_base; 912 void __iomem *xpcs_base; 913 void __iomem *rfu1_base; 914 915 u32 netc_config; 916 917 /* List of pointers to port structures */ 918 struct mvpp2_port **port_list; 919 920 /* Aggregated TXQs */ 921 struct mvpp2_tx_queue *aggr_txqs; 922 923 /* BM pools */ 924 struct mvpp2_bm_pool *bm_pools; 925 926 /* PRS shadow table */ 927 struct mvpp2_prs_shadow *prs_shadow; 928 /* PRS auxiliary table for double vlan entries control */ 929 bool *prs_double_vlans; 930 931 /* Tclk value */ 932 u32 tclk; 933 934 /* HW version */ 935 enum { MVPP21, MVPP22 } hw_version; 936 937 /* Maximum number of RXQs per port */ 938 unsigned int max_port_rxqs; 939 940 struct mii_dev *bus; 941 942 int probe_done; 943 }; 944 945 struct mvpp2_pcpu_stats { 946 u64 rx_packets; 947 u64 rx_bytes; 948 u64 tx_packets; 949 u64 tx_bytes; 950 }; 951 952 struct mvpp2_port { 953 u8 id; 954 955 /* Index of the port from the "group of ports" complex point 956 * of view 957 */ 958 int gop_id; 959 960 int irq; 961 962 struct mvpp2 *priv; 963 964 /* Per-port registers' base address */ 965 void __iomem *base; 966 967 struct mvpp2_rx_queue **rxqs; 968 struct mvpp2_tx_queue **txqs; 969 970 int pkt_size; 971 972 u32 pending_cause_rx; 973 974 /* Per-CPU port control */ 975 struct mvpp2_port_pcpu __percpu *pcpu; 976 977 /* Flags */ 978 unsigned long flags; 979 980 u16 tx_ring_size; 981 u16 rx_ring_size; 982 struct mvpp2_pcpu_stats __percpu *stats; 983 984 struct phy_device *phy_dev; 985 phy_interface_t phy_interface; 986 int phy_node; 987 int phyaddr; 988 int init; 989 unsigned int link; 990 unsigned int duplex; 991 unsigned int speed; 992 993 unsigned int phy_speed; /* SGMII 1Gbps vs 2.5Gbps */ 994 995 struct mvpp2_bm_pool *pool_long; 996 struct mvpp2_bm_pool *pool_short; 997 998 /* Index of first port's physical RXQ */ 999 u8 first_rxq; 1000 1001 u8 dev_addr[ETH_ALEN]; 1002 }; 1003 1004 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the 1005 * layout of the transmit and reception DMA descriptors, and their 1006 * layout is therefore defined by the hardware design 1007 */ 1008 1009 #define MVPP2_TXD_L3_OFF_SHIFT 0 1010 #define MVPP2_TXD_IP_HLEN_SHIFT 8 1011 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13) 1012 #define MVPP2_TXD_L4_CSUM_NOT BIT(14) 1013 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15) 1014 #define MVPP2_TXD_PADDING_DISABLE BIT(23) 1015 #define MVPP2_TXD_L4_UDP BIT(24) 1016 #define MVPP2_TXD_L3_IP6 BIT(26) 1017 #define MVPP2_TXD_L_DESC BIT(28) 1018 #define MVPP2_TXD_F_DESC BIT(29) 1019 1020 #define MVPP2_RXD_ERR_SUMMARY BIT(15) 1021 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14)) 1022 #define MVPP2_RXD_ERR_CRC 0x0 1023 #define MVPP2_RXD_ERR_OVERRUN BIT(13) 1024 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14)) 1025 #define MVPP2_RXD_BM_POOL_ID_OFFS 16 1026 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18)) 1027 #define MVPP2_RXD_HWF_SYNC BIT(21) 1028 #define MVPP2_RXD_L4_CSUM_OK BIT(22) 1029 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24) 1030 #define MVPP2_RXD_L4_TCP BIT(25) 1031 #define MVPP2_RXD_L4_UDP BIT(26) 1032 #define MVPP2_RXD_L3_IP4 BIT(28) 1033 #define MVPP2_RXD_L3_IP6 BIT(30) 1034 #define MVPP2_RXD_BUF_HDR BIT(31) 1035 1036 /* HW TX descriptor for PPv2.1 */ 1037 struct mvpp21_tx_desc { 1038 u32 command; /* Options used by HW for packet transmitting.*/ 1039 u8 packet_offset; /* the offset from the buffer beginning */ 1040 u8 phys_txq; /* destination queue ID */ 1041 u16 data_size; /* data size of transmitted packet in bytes */ 1042 u32 buf_dma_addr; /* physical addr of transmitted buffer */ 1043 u32 buf_cookie; /* cookie for access to TX buffer in tx path */ 1044 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */ 1045 u32 reserved2; /* reserved (for future use) */ 1046 }; 1047 1048 /* HW RX descriptor for PPv2.1 */ 1049 struct mvpp21_rx_desc { 1050 u32 status; /* info about received packet */ 1051 u16 reserved1; /* parser_info (for future use, PnC) */ 1052 u16 data_size; /* size of received packet in bytes */ 1053 u32 buf_dma_addr; /* physical address of the buffer */ 1054 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 1055 u16 reserved2; /* gem_port_id (for future use, PON) */ 1056 u16 reserved3; /* csum_l4 (for future use, PnC) */ 1057 u8 reserved4; /* bm_qset (for future use, BM) */ 1058 u8 reserved5; 1059 u16 reserved6; /* classify_info (for future use, PnC) */ 1060 u32 reserved7; /* flow_id (for future use, PnC) */ 1061 u32 reserved8; 1062 }; 1063 1064 /* HW TX descriptor for PPv2.2 */ 1065 struct mvpp22_tx_desc { 1066 u32 command; 1067 u8 packet_offset; 1068 u8 phys_txq; 1069 u16 data_size; 1070 u64 reserved1; 1071 u64 buf_dma_addr_ptp; 1072 u64 buf_cookie_misc; 1073 }; 1074 1075 /* HW RX descriptor for PPv2.2 */ 1076 struct mvpp22_rx_desc { 1077 u32 status; 1078 u16 reserved1; 1079 u16 data_size; 1080 u32 reserved2; 1081 u32 reserved3; 1082 u64 buf_dma_addr_key_hash; 1083 u64 buf_cookie_misc; 1084 }; 1085 1086 /* Opaque type used by the driver to manipulate the HW TX and RX 1087 * descriptors 1088 */ 1089 struct mvpp2_tx_desc { 1090 union { 1091 struct mvpp21_tx_desc pp21; 1092 struct mvpp22_tx_desc pp22; 1093 }; 1094 }; 1095 1096 struct mvpp2_rx_desc { 1097 union { 1098 struct mvpp21_rx_desc pp21; 1099 struct mvpp22_rx_desc pp22; 1100 }; 1101 }; 1102 1103 /* Per-CPU Tx queue control */ 1104 struct mvpp2_txq_pcpu { 1105 int cpu; 1106 1107 /* Number of Tx DMA descriptors in the descriptor ring */ 1108 int size; 1109 1110 /* Number of currently used Tx DMA descriptor in the 1111 * descriptor ring 1112 */ 1113 int count; 1114 1115 /* Number of Tx DMA descriptors reserved for each CPU */ 1116 int reserved_num; 1117 1118 /* Index of last TX DMA descriptor that was inserted */ 1119 int txq_put_index; 1120 1121 /* Index of the TX DMA descriptor to be cleaned up */ 1122 int txq_get_index; 1123 }; 1124 1125 struct mvpp2_tx_queue { 1126 /* Physical number of this Tx queue */ 1127 u8 id; 1128 1129 /* Logical number of this Tx queue */ 1130 u8 log_id; 1131 1132 /* Number of Tx DMA descriptors in the descriptor ring */ 1133 int size; 1134 1135 /* Number of currently used Tx DMA descriptor in the descriptor ring */ 1136 int count; 1137 1138 /* Per-CPU control of physical Tx queues */ 1139 struct mvpp2_txq_pcpu __percpu *pcpu; 1140 1141 u32 done_pkts_coal; 1142 1143 /* Virtual address of thex Tx DMA descriptors array */ 1144 struct mvpp2_tx_desc *descs; 1145 1146 /* DMA address of the Tx DMA descriptors array */ 1147 dma_addr_t descs_dma; 1148 1149 /* Index of the last Tx DMA descriptor */ 1150 int last_desc; 1151 1152 /* Index of the next Tx DMA descriptor to process */ 1153 int next_desc_to_proc; 1154 }; 1155 1156 struct mvpp2_rx_queue { 1157 /* RX queue number, in the range 0-31 for physical RXQs */ 1158 u8 id; 1159 1160 /* Num of rx descriptors in the rx descriptor ring */ 1161 int size; 1162 1163 u32 pkts_coal; 1164 u32 time_coal; 1165 1166 /* Virtual address of the RX DMA descriptors array */ 1167 struct mvpp2_rx_desc *descs; 1168 1169 /* DMA address of the RX DMA descriptors array */ 1170 dma_addr_t descs_dma; 1171 1172 /* Index of the last RX DMA descriptor */ 1173 int last_desc; 1174 1175 /* Index of the next RX DMA descriptor to process */ 1176 int next_desc_to_proc; 1177 1178 /* ID of port to which physical RXQ is mapped */ 1179 int port; 1180 1181 /* Port's logic RXQ number to which physical RXQ is mapped */ 1182 int logic_rxq; 1183 }; 1184 1185 union mvpp2_prs_tcam_entry { 1186 u32 word[MVPP2_PRS_TCAM_WORDS]; 1187 u8 byte[MVPP2_PRS_TCAM_WORDS * 4]; 1188 }; 1189 1190 union mvpp2_prs_sram_entry { 1191 u32 word[MVPP2_PRS_SRAM_WORDS]; 1192 u8 byte[MVPP2_PRS_SRAM_WORDS * 4]; 1193 }; 1194 1195 struct mvpp2_prs_entry { 1196 u32 index; 1197 union mvpp2_prs_tcam_entry tcam; 1198 union mvpp2_prs_sram_entry sram; 1199 }; 1200 1201 struct mvpp2_prs_shadow { 1202 bool valid; 1203 bool finish; 1204 1205 /* Lookup ID */ 1206 int lu; 1207 1208 /* User defined offset */ 1209 int udf; 1210 1211 /* Result info */ 1212 u32 ri; 1213 u32 ri_mask; 1214 }; 1215 1216 struct mvpp2_cls_flow_entry { 1217 u32 index; 1218 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS]; 1219 }; 1220 1221 struct mvpp2_cls_lookup_entry { 1222 u32 lkpid; 1223 u32 way; 1224 u32 data; 1225 }; 1226 1227 struct mvpp2_bm_pool { 1228 /* Pool number in the range 0-7 */ 1229 int id; 1230 enum mvpp2_bm_type type; 1231 1232 /* Buffer Pointers Pool External (BPPE) size */ 1233 int size; 1234 /* Number of buffers for this pool */ 1235 int buf_num; 1236 /* Pool buffer size */ 1237 int buf_size; 1238 /* Packet size */ 1239 int pkt_size; 1240 1241 /* BPPE virtual base address */ 1242 unsigned long *virt_addr; 1243 /* BPPE DMA base address */ 1244 dma_addr_t dma_addr; 1245 1246 /* Ports using BM pool */ 1247 u32 port_map; 1248 }; 1249 1250 /* Static declaractions */ 1251 1252 /* Number of RXQs used by single port */ 1253 static int rxq_number = MVPP2_DEFAULT_RXQ; 1254 /* Number of TXQs used by single port */ 1255 static int txq_number = MVPP2_DEFAULT_TXQ; 1256 1257 static int base_id; 1258 1259 #define MVPP2_DRIVER_NAME "mvpp2" 1260 #define MVPP2_DRIVER_VERSION "1.0" 1261 1262 /* 1263 * U-Boot internal data, mostly uncached buffers for descriptors and data 1264 */ 1265 struct buffer_location { 1266 struct mvpp2_tx_desc *aggr_tx_descs; 1267 struct mvpp2_tx_desc *tx_descs; 1268 struct mvpp2_rx_desc *rx_descs; 1269 unsigned long *bm_pool[MVPP2_BM_POOLS_NUM]; 1270 unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM]; 1271 int first_rxq; 1272 }; 1273 1274 /* 1275 * All 4 interfaces use the same global buffer, since only one interface 1276 * can be enabled at once 1277 */ 1278 static struct buffer_location buffer_loc; 1279 1280 /* 1281 * Page table entries are set to 1MB, or multiples of 1MB 1282 * (not < 1MB). driver uses less bd's so use 1MB bdspace. 1283 */ 1284 #define BD_SPACE (1 << 20) 1285 1286 /* Utility/helper methods */ 1287 1288 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) 1289 { 1290 writel(data, priv->base + offset); 1291 } 1292 1293 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset) 1294 { 1295 return readl(priv->base + offset); 1296 } 1297 1298 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port, 1299 struct mvpp2_tx_desc *tx_desc, 1300 dma_addr_t dma_addr) 1301 { 1302 if (port->priv->hw_version == MVPP21) { 1303 tx_desc->pp21.buf_dma_addr = dma_addr; 1304 } else { 1305 u64 val = (u64)dma_addr; 1306 1307 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0); 1308 tx_desc->pp22.buf_dma_addr_ptp |= val; 1309 } 1310 } 1311 1312 static void mvpp2_txdesc_size_set(struct mvpp2_port *port, 1313 struct mvpp2_tx_desc *tx_desc, 1314 size_t size) 1315 { 1316 if (port->priv->hw_version == MVPP21) 1317 tx_desc->pp21.data_size = size; 1318 else 1319 tx_desc->pp22.data_size = size; 1320 } 1321 1322 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port, 1323 struct mvpp2_tx_desc *tx_desc, 1324 unsigned int txq) 1325 { 1326 if (port->priv->hw_version == MVPP21) 1327 tx_desc->pp21.phys_txq = txq; 1328 else 1329 tx_desc->pp22.phys_txq = txq; 1330 } 1331 1332 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port, 1333 struct mvpp2_tx_desc *tx_desc, 1334 unsigned int command) 1335 { 1336 if (port->priv->hw_version == MVPP21) 1337 tx_desc->pp21.command = command; 1338 else 1339 tx_desc->pp22.command = command; 1340 } 1341 1342 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port, 1343 struct mvpp2_tx_desc *tx_desc, 1344 unsigned int offset) 1345 { 1346 if (port->priv->hw_version == MVPP21) 1347 tx_desc->pp21.packet_offset = offset; 1348 else 1349 tx_desc->pp22.packet_offset = offset; 1350 } 1351 1352 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port, 1353 struct mvpp2_rx_desc *rx_desc) 1354 { 1355 if (port->priv->hw_version == MVPP21) 1356 return rx_desc->pp21.buf_dma_addr; 1357 else 1358 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0); 1359 } 1360 1361 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port, 1362 struct mvpp2_rx_desc *rx_desc) 1363 { 1364 if (port->priv->hw_version == MVPP21) 1365 return rx_desc->pp21.buf_cookie; 1366 else 1367 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0); 1368 } 1369 1370 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port, 1371 struct mvpp2_rx_desc *rx_desc) 1372 { 1373 if (port->priv->hw_version == MVPP21) 1374 return rx_desc->pp21.data_size; 1375 else 1376 return rx_desc->pp22.data_size; 1377 } 1378 1379 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port, 1380 struct mvpp2_rx_desc *rx_desc) 1381 { 1382 if (port->priv->hw_version == MVPP21) 1383 return rx_desc->pp21.status; 1384 else 1385 return rx_desc->pp22.status; 1386 } 1387 1388 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) 1389 { 1390 txq_pcpu->txq_get_index++; 1391 if (txq_pcpu->txq_get_index == txq_pcpu->size) 1392 txq_pcpu->txq_get_index = 0; 1393 } 1394 1395 /* Get number of physical egress port */ 1396 static inline int mvpp2_egress_port(struct mvpp2_port *port) 1397 { 1398 return MVPP2_MAX_TCONT + port->id; 1399 } 1400 1401 /* Get number of physical TXQ */ 1402 static inline int mvpp2_txq_phys(int port, int txq) 1403 { 1404 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; 1405 } 1406 1407 /* Parser configuration routines */ 1408 1409 /* Update parser tcam and sram hw entries */ 1410 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1411 { 1412 int i; 1413 1414 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1415 return -EINVAL; 1416 1417 /* Clear entry invalidation bit */ 1418 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK; 1419 1420 /* Write tcam index - indirect access */ 1421 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1422 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1423 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]); 1424 1425 /* Write sram index - indirect access */ 1426 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1427 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1428 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]); 1429 1430 return 0; 1431 } 1432 1433 /* Read tcam entry from hw */ 1434 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) 1435 { 1436 int i; 1437 1438 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) 1439 return -EINVAL; 1440 1441 /* Write tcam index - indirect access */ 1442 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); 1443 1444 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv, 1445 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD)); 1446 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK) 1447 return MVPP2_PRS_TCAM_ENTRY_INVALID; 1448 1449 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 1450 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i)); 1451 1452 /* Write sram index - indirect access */ 1453 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); 1454 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 1455 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i)); 1456 1457 return 0; 1458 } 1459 1460 /* Invalidate tcam hw entry */ 1461 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index) 1462 { 1463 /* Write index - indirect access */ 1464 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 1465 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD), 1466 MVPP2_PRS_TCAM_INV_MASK); 1467 } 1468 1469 /* Enable shadow table entry and set its lookup ID */ 1470 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu) 1471 { 1472 priv->prs_shadow[index].valid = true; 1473 priv->prs_shadow[index].lu = lu; 1474 } 1475 1476 /* Update ri fields in shadow table entry */ 1477 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index, 1478 unsigned int ri, unsigned int ri_mask) 1479 { 1480 priv->prs_shadow[index].ri_mask = ri_mask; 1481 priv->prs_shadow[index].ri = ri; 1482 } 1483 1484 /* Update lookup field in tcam sw entry */ 1485 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) 1486 { 1487 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE); 1488 1489 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu; 1490 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK; 1491 } 1492 1493 /* Update mask for single port in tcam sw entry */ 1494 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe, 1495 unsigned int port, bool add) 1496 { 1497 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1498 1499 if (add) 1500 pe->tcam.byte[enable_off] &= ~(1 << port); 1501 else 1502 pe->tcam.byte[enable_off] |= 1 << port; 1503 } 1504 1505 /* Update port map in tcam sw entry */ 1506 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe, 1507 unsigned int ports) 1508 { 1509 unsigned char port_mask = MVPP2_PRS_PORT_MASK; 1510 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1511 1512 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0; 1513 pe->tcam.byte[enable_off] &= ~port_mask; 1514 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK; 1515 } 1516 1517 /* Obtain port map from tcam sw entry */ 1518 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe) 1519 { 1520 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); 1521 1522 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK; 1523 } 1524 1525 /* Set byte of data and its enable bits in tcam sw entry */ 1526 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe, 1527 unsigned int offs, unsigned char byte, 1528 unsigned char enable) 1529 { 1530 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte; 1531 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable; 1532 } 1533 1534 /* Get byte of data and its enable bits from tcam sw entry */ 1535 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe, 1536 unsigned int offs, unsigned char *byte, 1537 unsigned char *enable) 1538 { 1539 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)]; 1540 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)]; 1541 } 1542 1543 /* Set ethertype in tcam sw entry */ 1544 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset, 1545 unsigned short ethertype) 1546 { 1547 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff); 1548 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff); 1549 } 1550 1551 /* Set bits in sram sw entry */ 1552 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num, 1553 int val) 1554 { 1555 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8)); 1556 } 1557 1558 /* Clear bits in sram sw entry */ 1559 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num, 1560 int val) 1561 { 1562 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8)); 1563 } 1564 1565 /* Update ri bits in sram sw entry */ 1566 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe, 1567 unsigned int bits, unsigned int mask) 1568 { 1569 unsigned int i; 1570 1571 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) { 1572 int ri_off = MVPP2_PRS_SRAM_RI_OFFS; 1573 1574 if (!(mask & BIT(i))) 1575 continue; 1576 1577 if (bits & BIT(i)) 1578 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1); 1579 else 1580 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1); 1581 1582 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1); 1583 } 1584 } 1585 1586 /* Update ai bits in sram sw entry */ 1587 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe, 1588 unsigned int bits, unsigned int mask) 1589 { 1590 unsigned int i; 1591 int ai_off = MVPP2_PRS_SRAM_AI_OFFS; 1592 1593 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) { 1594 1595 if (!(mask & BIT(i))) 1596 continue; 1597 1598 if (bits & BIT(i)) 1599 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1); 1600 else 1601 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1); 1602 1603 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1); 1604 } 1605 } 1606 1607 /* Read ai bits from sram sw entry */ 1608 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe) 1609 { 1610 u8 bits; 1611 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS); 1612 int ai_en_off = ai_off + 1; 1613 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8; 1614 1615 bits = (pe->sram.byte[ai_off] >> ai_shift) | 1616 (pe->sram.byte[ai_en_off] << (8 - ai_shift)); 1617 1618 return bits; 1619 } 1620 1621 /* In sram sw entry set lookup ID field of the tcam key to be used in the next 1622 * lookup interation 1623 */ 1624 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe, 1625 unsigned int lu) 1626 { 1627 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS; 1628 1629 mvpp2_prs_sram_bits_clear(pe, sram_next_off, 1630 MVPP2_PRS_SRAM_NEXT_LU_MASK); 1631 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu); 1632 } 1633 1634 /* In the sram sw entry set sign and value of the next lookup offset 1635 * and the offset value generated to the classifier 1636 */ 1637 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift, 1638 unsigned int op) 1639 { 1640 /* Set sign */ 1641 if (shift < 0) { 1642 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1643 shift = 0 - shift; 1644 } else { 1645 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); 1646 } 1647 1648 /* Set value */ 1649 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] = 1650 (unsigned char)shift; 1651 1652 /* Reset and set operation */ 1653 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, 1654 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK); 1655 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op); 1656 1657 /* Set base offset as current */ 1658 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1659 } 1660 1661 /* In the sram sw entry set sign and value of the user defined offset 1662 * generated to the classifier 1663 */ 1664 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe, 1665 unsigned int type, int offset, 1666 unsigned int op) 1667 { 1668 /* Set sign */ 1669 if (offset < 0) { 1670 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1671 offset = 0 - offset; 1672 } else { 1673 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); 1674 } 1675 1676 /* Set value */ 1677 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS, 1678 MVPP2_PRS_SRAM_UDF_MASK); 1679 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset); 1680 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1681 MVPP2_PRS_SRAM_UDF_BITS)] &= 1682 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1683 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + 1684 MVPP2_PRS_SRAM_UDF_BITS)] |= 1685 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); 1686 1687 /* Set offset type */ 1688 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, 1689 MVPP2_PRS_SRAM_UDF_TYPE_MASK); 1690 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type); 1691 1692 /* Set offset operation */ 1693 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, 1694 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK); 1695 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op); 1696 1697 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1698 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &= 1699 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >> 1700 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1701 1702 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + 1703 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |= 1704 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); 1705 1706 /* Set base offset as current */ 1707 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); 1708 } 1709 1710 /* Find parser flow entry */ 1711 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow) 1712 { 1713 struct mvpp2_prs_entry *pe; 1714 int tid; 1715 1716 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 1717 if (!pe) 1718 return NULL; 1719 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 1720 1721 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */ 1722 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) { 1723 u8 bits; 1724 1725 if (!priv->prs_shadow[tid].valid || 1726 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS) 1727 continue; 1728 1729 pe->index = tid; 1730 mvpp2_prs_hw_read(priv, pe); 1731 bits = mvpp2_prs_sram_ai_get(pe); 1732 1733 /* Sram store classification lookup ID in AI bits [5:0] */ 1734 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow) 1735 return pe; 1736 } 1737 kfree(pe); 1738 1739 return NULL; 1740 } 1741 1742 /* Return first free tcam index, seeking from start to end */ 1743 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start, 1744 unsigned char end) 1745 { 1746 int tid; 1747 1748 if (start > end) 1749 swap(start, end); 1750 1751 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE) 1752 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1; 1753 1754 for (tid = start; tid <= end; tid++) { 1755 if (!priv->prs_shadow[tid].valid) 1756 return tid; 1757 } 1758 1759 return -EINVAL; 1760 } 1761 1762 /* Enable/disable dropping all mac da's */ 1763 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add) 1764 { 1765 struct mvpp2_prs_entry pe; 1766 1767 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) { 1768 /* Entry exist - update port only */ 1769 pe.index = MVPP2_PE_DROP_ALL; 1770 mvpp2_prs_hw_read(priv, &pe); 1771 } else { 1772 /* Entry doesn't exist - create new */ 1773 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1774 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1775 pe.index = MVPP2_PE_DROP_ALL; 1776 1777 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1778 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1779 MVPP2_PRS_RI_DROP_MASK); 1780 1781 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1782 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1783 1784 /* Update shadow table */ 1785 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1786 1787 /* Mask all ports */ 1788 mvpp2_prs_tcam_port_map_set(&pe, 0); 1789 } 1790 1791 /* Update port mask */ 1792 mvpp2_prs_tcam_port_set(&pe, port, add); 1793 1794 mvpp2_prs_hw_write(priv, &pe); 1795 } 1796 1797 /* Set port to promiscuous mode */ 1798 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add) 1799 { 1800 struct mvpp2_prs_entry pe; 1801 1802 /* Promiscuous mode - Accept unknown packets */ 1803 1804 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) { 1805 /* Entry exist - update port only */ 1806 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1807 mvpp2_prs_hw_read(priv, &pe); 1808 } else { 1809 /* Entry doesn't exist - create new */ 1810 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1811 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1812 pe.index = MVPP2_PE_MAC_PROMISCUOUS; 1813 1814 /* Continue - set next lookup */ 1815 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1816 1817 /* Set result info bits */ 1818 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, 1819 MVPP2_PRS_RI_L2_CAST_MASK); 1820 1821 /* Shift to ethertype */ 1822 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1823 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1824 1825 /* Mask all ports */ 1826 mvpp2_prs_tcam_port_map_set(&pe, 0); 1827 1828 /* Update shadow table */ 1829 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1830 } 1831 1832 /* Update port mask */ 1833 mvpp2_prs_tcam_port_set(&pe, port, add); 1834 1835 mvpp2_prs_hw_write(priv, &pe); 1836 } 1837 1838 /* Accept multicast */ 1839 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index, 1840 bool add) 1841 { 1842 struct mvpp2_prs_entry pe; 1843 unsigned char da_mc; 1844 1845 /* Ethernet multicast address first byte is 1846 * 0x01 for IPv4 and 0x33 for IPv6 1847 */ 1848 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33; 1849 1850 if (priv->prs_shadow[index].valid) { 1851 /* Entry exist - update port only */ 1852 pe.index = index; 1853 mvpp2_prs_hw_read(priv, &pe); 1854 } else { 1855 /* Entry doesn't exist - create new */ 1856 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1857 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1858 pe.index = index; 1859 1860 /* Continue - set next lookup */ 1861 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); 1862 1863 /* Set result info bits */ 1864 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST, 1865 MVPP2_PRS_RI_L2_CAST_MASK); 1866 1867 /* Update tcam entry data first byte */ 1868 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff); 1869 1870 /* Shift to ethertype */ 1871 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, 1872 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1873 1874 /* Mask all ports */ 1875 mvpp2_prs_tcam_port_map_set(&pe, 0); 1876 1877 /* Update shadow table */ 1878 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1879 } 1880 1881 /* Update port mask */ 1882 mvpp2_prs_tcam_port_set(&pe, port, add); 1883 1884 mvpp2_prs_hw_write(priv, &pe); 1885 } 1886 1887 /* Parser per-port initialization */ 1888 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first, 1889 int lu_max, int offset) 1890 { 1891 u32 val; 1892 1893 /* Set lookup ID */ 1894 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG); 1895 val &= ~MVPP2_PRS_PORT_LU_MASK(port); 1896 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first); 1897 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val); 1898 1899 /* Set maximum number of loops for packet received from port */ 1900 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port)); 1901 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port); 1902 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max); 1903 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val); 1904 1905 /* Set initial offset for packet header extraction for the first 1906 * searching loop 1907 */ 1908 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port)); 1909 val &= ~MVPP2_PRS_INIT_OFF_MASK(port); 1910 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset); 1911 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val); 1912 } 1913 1914 /* Default flow entries initialization for all ports */ 1915 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv) 1916 { 1917 struct mvpp2_prs_entry pe; 1918 int port; 1919 1920 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 1921 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1922 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1923 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port; 1924 1925 /* Mask all ports */ 1926 mvpp2_prs_tcam_port_map_set(&pe, 0); 1927 1928 /* Set flow ID*/ 1929 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK); 1930 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 1931 1932 /* Update shadow table and hw entry */ 1933 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS); 1934 mvpp2_prs_hw_write(priv, &pe); 1935 } 1936 } 1937 1938 /* Set default entry for Marvell Header field */ 1939 static void mvpp2_prs_mh_init(struct mvpp2 *priv) 1940 { 1941 struct mvpp2_prs_entry pe; 1942 1943 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1944 1945 pe.index = MVPP2_PE_MH_DEFAULT; 1946 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH); 1947 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE, 1948 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 1949 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC); 1950 1951 /* Unmask all ports */ 1952 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1953 1954 /* Update shadow table and hw entry */ 1955 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH); 1956 mvpp2_prs_hw_write(priv, &pe); 1957 } 1958 1959 /* Set default entires (place holder) for promiscuous, non-promiscuous and 1960 * multicast MAC addresses 1961 */ 1962 static void mvpp2_prs_mac_init(struct mvpp2 *priv) 1963 { 1964 struct mvpp2_prs_entry pe; 1965 1966 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 1967 1968 /* Non-promiscuous mode for all ports - DROP unknown packets */ 1969 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS; 1970 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); 1971 1972 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, 1973 MVPP2_PRS_RI_DROP_MASK); 1974 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 1975 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 1976 1977 /* Unmask all ports */ 1978 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 1979 1980 /* Update shadow table and hw entry */ 1981 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); 1982 mvpp2_prs_hw_write(priv, &pe); 1983 1984 /* place holders only - no ports */ 1985 mvpp2_prs_mac_drop_all_set(priv, 0, false); 1986 mvpp2_prs_mac_promisc_set(priv, 0, false); 1987 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false); 1988 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false); 1989 } 1990 1991 /* Match basic ethertypes */ 1992 static int mvpp2_prs_etype_init(struct mvpp2 *priv) 1993 { 1994 struct mvpp2_prs_entry pe; 1995 int tid; 1996 1997 /* Ethertype: PPPoE */ 1998 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 1999 MVPP2_PE_LAST_FREE_TID); 2000 if (tid < 0) 2001 return tid; 2002 2003 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2004 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2005 pe.index = tid; 2006 2007 mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES); 2008 2009 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE, 2010 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2011 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE); 2012 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK, 2013 MVPP2_PRS_RI_PPPOE_MASK); 2014 2015 /* Update shadow table and hw entry */ 2016 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2017 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2018 priv->prs_shadow[pe.index].finish = false; 2019 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK, 2020 MVPP2_PRS_RI_PPPOE_MASK); 2021 mvpp2_prs_hw_write(priv, &pe); 2022 2023 /* Ethertype: ARP */ 2024 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2025 MVPP2_PE_LAST_FREE_TID); 2026 if (tid < 0) 2027 return tid; 2028 2029 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2030 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2031 pe.index = tid; 2032 2033 mvpp2_prs_match_etype(&pe, 0, PROT_ARP); 2034 2035 /* Generate flow in the next iteration*/ 2036 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2037 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2038 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP, 2039 MVPP2_PRS_RI_L3_PROTO_MASK); 2040 /* Set L3 offset */ 2041 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2042 MVPP2_ETH_TYPE_LEN, 2043 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2044 2045 /* Update shadow table and hw entry */ 2046 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2047 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2048 priv->prs_shadow[pe.index].finish = true; 2049 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP, 2050 MVPP2_PRS_RI_L3_PROTO_MASK); 2051 mvpp2_prs_hw_write(priv, &pe); 2052 2053 /* Ethertype: LBTD */ 2054 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2055 MVPP2_PE_LAST_FREE_TID); 2056 if (tid < 0) 2057 return tid; 2058 2059 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2060 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2061 pe.index = tid; 2062 2063 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE); 2064 2065 /* Generate flow in the next iteration*/ 2066 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2067 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2068 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2069 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2070 MVPP2_PRS_RI_CPU_CODE_MASK | 2071 MVPP2_PRS_RI_UDF3_MASK); 2072 /* Set L3 offset */ 2073 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2074 MVPP2_ETH_TYPE_LEN, 2075 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2076 2077 /* Update shadow table and hw entry */ 2078 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2079 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2080 priv->prs_shadow[pe.index].finish = true; 2081 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | 2082 MVPP2_PRS_RI_UDF3_RX_SPECIAL, 2083 MVPP2_PRS_RI_CPU_CODE_MASK | 2084 MVPP2_PRS_RI_UDF3_MASK); 2085 mvpp2_prs_hw_write(priv, &pe); 2086 2087 /* Ethertype: IPv4 without options */ 2088 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2089 MVPP2_PE_LAST_FREE_TID); 2090 if (tid < 0) 2091 return tid; 2092 2093 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2094 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2095 pe.index = tid; 2096 2097 mvpp2_prs_match_etype(&pe, 0, PROT_IP); 2098 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2099 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, 2100 MVPP2_PRS_IPV4_HEAD_MASK | 2101 MVPP2_PRS_IPV4_IHL_MASK); 2102 2103 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); 2104 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, 2105 MVPP2_PRS_RI_L3_PROTO_MASK); 2106 /* Skip eth_type + 4 bytes of IP header */ 2107 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, 2108 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2109 /* Set L3 offset */ 2110 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2111 MVPP2_ETH_TYPE_LEN, 2112 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2113 2114 /* Update shadow table and hw entry */ 2115 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2116 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2117 priv->prs_shadow[pe.index].finish = false; 2118 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4, 2119 MVPP2_PRS_RI_L3_PROTO_MASK); 2120 mvpp2_prs_hw_write(priv, &pe); 2121 2122 /* Ethertype: IPv4 with options */ 2123 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2124 MVPP2_PE_LAST_FREE_TID); 2125 if (tid < 0) 2126 return tid; 2127 2128 pe.index = tid; 2129 2130 /* Clear tcam data before updating */ 2131 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0; 2132 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0; 2133 2134 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, 2135 MVPP2_PRS_IPV4_HEAD, 2136 MVPP2_PRS_IPV4_HEAD_MASK); 2137 2138 /* Clear ri before updating */ 2139 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; 2140 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; 2141 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, 2142 MVPP2_PRS_RI_L3_PROTO_MASK); 2143 2144 /* Update shadow table and hw entry */ 2145 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2146 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2147 priv->prs_shadow[pe.index].finish = false; 2148 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT, 2149 MVPP2_PRS_RI_L3_PROTO_MASK); 2150 mvpp2_prs_hw_write(priv, &pe); 2151 2152 /* Ethertype: IPv6 without options */ 2153 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2154 MVPP2_PE_LAST_FREE_TID); 2155 if (tid < 0) 2156 return tid; 2157 2158 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2159 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2160 pe.index = tid; 2161 2162 mvpp2_prs_match_etype(&pe, 0, PROT_IPV6); 2163 2164 /* Skip DIP of IPV6 header */ 2165 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 + 2166 MVPP2_MAX_L3_ADDR_SIZE, 2167 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2168 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); 2169 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, 2170 MVPP2_PRS_RI_L3_PROTO_MASK); 2171 /* Set L3 offset */ 2172 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2173 MVPP2_ETH_TYPE_LEN, 2174 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2175 2176 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2177 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2178 priv->prs_shadow[pe.index].finish = false; 2179 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6, 2180 MVPP2_PRS_RI_L3_PROTO_MASK); 2181 mvpp2_prs_hw_write(priv, &pe); 2182 2183 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */ 2184 memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); 2185 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); 2186 pe.index = MVPP2_PE_ETH_TYPE_UN; 2187 2188 /* Unmask all ports */ 2189 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); 2190 2191 /* Generate flow in the next iteration*/ 2192 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); 2193 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); 2194 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, 2195 MVPP2_PRS_RI_L3_PROTO_MASK); 2196 /* Set L3 offset even it's unknown L3 */ 2197 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, 2198 MVPP2_ETH_TYPE_LEN, 2199 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); 2200 2201 /* Update shadow table and hw entry */ 2202 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); 2203 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; 2204 priv->prs_shadow[pe.index].finish = true; 2205 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN, 2206 MVPP2_PRS_RI_L3_PROTO_MASK); 2207 mvpp2_prs_hw_write(priv, &pe); 2208 2209 return 0; 2210 } 2211 2212 /* Parser default initialization */ 2213 static int mvpp2_prs_default_init(struct udevice *dev, 2214 struct mvpp2 *priv) 2215 { 2216 int err, index, i; 2217 2218 /* Enable tcam table */ 2219 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK); 2220 2221 /* Clear all tcam and sram entries */ 2222 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) { 2223 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); 2224 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) 2225 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0); 2226 2227 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index); 2228 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) 2229 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0); 2230 } 2231 2232 /* Invalidate all tcam entries */ 2233 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) 2234 mvpp2_prs_hw_inv(priv, index); 2235 2236 priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE, 2237 sizeof(struct mvpp2_prs_shadow), 2238 GFP_KERNEL); 2239 if (!priv->prs_shadow) 2240 return -ENOMEM; 2241 2242 /* Always start from lookup = 0 */ 2243 for (index = 0; index < MVPP2_MAX_PORTS; index++) 2244 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH, 2245 MVPP2_PRS_PORT_LU_MAX, 0); 2246 2247 mvpp2_prs_def_flow_init(priv); 2248 2249 mvpp2_prs_mh_init(priv); 2250 2251 mvpp2_prs_mac_init(priv); 2252 2253 err = mvpp2_prs_etype_init(priv); 2254 if (err) 2255 return err; 2256 2257 return 0; 2258 } 2259 2260 /* Compare MAC DA with tcam entry data */ 2261 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe, 2262 const u8 *da, unsigned char *mask) 2263 { 2264 unsigned char tcam_byte, tcam_mask; 2265 int index; 2266 2267 for (index = 0; index < ETH_ALEN; index++) { 2268 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask); 2269 if (tcam_mask != mask[index]) 2270 return false; 2271 2272 if ((tcam_mask & tcam_byte) != (da[index] & mask[index])) 2273 return false; 2274 } 2275 2276 return true; 2277 } 2278 2279 /* Find tcam entry with matched pair <MAC DA, port> */ 2280 static struct mvpp2_prs_entry * 2281 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da, 2282 unsigned char *mask, int udf_type) 2283 { 2284 struct mvpp2_prs_entry *pe; 2285 int tid; 2286 2287 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2288 if (!pe) 2289 return NULL; 2290 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2291 2292 /* Go through the all entires with MVPP2_PRS_LU_MAC */ 2293 for (tid = MVPP2_PE_FIRST_FREE_TID; 2294 tid <= MVPP2_PE_LAST_FREE_TID; tid++) { 2295 unsigned int entry_pmap; 2296 2297 if (!priv->prs_shadow[tid].valid || 2298 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || 2299 (priv->prs_shadow[tid].udf != udf_type)) 2300 continue; 2301 2302 pe->index = tid; 2303 mvpp2_prs_hw_read(priv, pe); 2304 entry_pmap = mvpp2_prs_tcam_port_map_get(pe); 2305 2306 if (mvpp2_prs_mac_range_equals(pe, da, mask) && 2307 entry_pmap == pmap) 2308 return pe; 2309 } 2310 kfree(pe); 2311 2312 return NULL; 2313 } 2314 2315 /* Update parser's mac da entry */ 2316 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port, 2317 const u8 *da, bool add) 2318 { 2319 struct mvpp2_prs_entry *pe; 2320 unsigned int pmap, len, ri; 2321 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 2322 int tid; 2323 2324 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */ 2325 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask, 2326 MVPP2_PRS_UDF_MAC_DEF); 2327 2328 /* No such entry */ 2329 if (!pe) { 2330 if (!add) 2331 return 0; 2332 2333 /* Create new TCAM entry */ 2334 /* Find first range mac entry*/ 2335 for (tid = MVPP2_PE_FIRST_FREE_TID; 2336 tid <= MVPP2_PE_LAST_FREE_TID; tid++) 2337 if (priv->prs_shadow[tid].valid && 2338 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) && 2339 (priv->prs_shadow[tid].udf == 2340 MVPP2_PRS_UDF_MAC_RANGE)) 2341 break; 2342 2343 /* Go through the all entries from first to last */ 2344 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, 2345 tid - 1); 2346 if (tid < 0) 2347 return tid; 2348 2349 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2350 if (!pe) 2351 return -1; 2352 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); 2353 pe->index = tid; 2354 2355 /* Mask all ports */ 2356 mvpp2_prs_tcam_port_map_set(pe, 0); 2357 } 2358 2359 /* Update port mask */ 2360 mvpp2_prs_tcam_port_set(pe, port, add); 2361 2362 /* Invalidate the entry if no ports are left enabled */ 2363 pmap = mvpp2_prs_tcam_port_map_get(pe); 2364 if (pmap == 0) { 2365 if (add) { 2366 kfree(pe); 2367 return -1; 2368 } 2369 mvpp2_prs_hw_inv(priv, pe->index); 2370 priv->prs_shadow[pe->index].valid = false; 2371 kfree(pe); 2372 return 0; 2373 } 2374 2375 /* Continue - set next lookup */ 2376 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA); 2377 2378 /* Set match on DA */ 2379 len = ETH_ALEN; 2380 while (len--) 2381 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff); 2382 2383 /* Set result info bits */ 2384 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK; 2385 2386 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK | 2387 MVPP2_PRS_RI_MAC_ME_MASK); 2388 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK | 2389 MVPP2_PRS_RI_MAC_ME_MASK); 2390 2391 /* Shift to ethertype */ 2392 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN, 2393 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); 2394 2395 /* Update shadow table and hw entry */ 2396 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF; 2397 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC); 2398 mvpp2_prs_hw_write(priv, pe); 2399 2400 kfree(pe); 2401 2402 return 0; 2403 } 2404 2405 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da) 2406 { 2407 int err; 2408 2409 /* Remove old parser entry */ 2410 err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr, 2411 false); 2412 if (err) 2413 return err; 2414 2415 /* Add new parser entry */ 2416 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true); 2417 if (err) 2418 return err; 2419 2420 /* Set addr in the device */ 2421 memcpy(port->dev_addr, da, ETH_ALEN); 2422 2423 return 0; 2424 } 2425 2426 /* Set prs flow for the port */ 2427 static int mvpp2_prs_def_flow(struct mvpp2_port *port) 2428 { 2429 struct mvpp2_prs_entry *pe; 2430 int tid; 2431 2432 pe = mvpp2_prs_flow_find(port->priv, port->id); 2433 2434 /* Such entry not exist */ 2435 if (!pe) { 2436 /* Go through the all entires from last to first */ 2437 tid = mvpp2_prs_tcam_first_free(port->priv, 2438 MVPP2_PE_LAST_FREE_TID, 2439 MVPP2_PE_FIRST_FREE_TID); 2440 if (tid < 0) 2441 return tid; 2442 2443 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2444 if (!pe) 2445 return -ENOMEM; 2446 2447 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); 2448 pe->index = tid; 2449 2450 /* Set flow ID*/ 2451 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK); 2452 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); 2453 2454 /* Update shadow table */ 2455 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS); 2456 } 2457 2458 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id)); 2459 mvpp2_prs_hw_write(port->priv, pe); 2460 kfree(pe); 2461 2462 return 0; 2463 } 2464 2465 /* Classifier configuration routines */ 2466 2467 /* Update classification flow table registers */ 2468 static void mvpp2_cls_flow_write(struct mvpp2 *priv, 2469 struct mvpp2_cls_flow_entry *fe) 2470 { 2471 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); 2472 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); 2473 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); 2474 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); 2475 } 2476 2477 /* Update classification lookup table register */ 2478 static void mvpp2_cls_lookup_write(struct mvpp2 *priv, 2479 struct mvpp2_cls_lookup_entry *le) 2480 { 2481 u32 val; 2482 2483 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; 2484 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); 2485 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); 2486 } 2487 2488 /* Classifier default initialization */ 2489 static void mvpp2_cls_init(struct mvpp2 *priv) 2490 { 2491 struct mvpp2_cls_lookup_entry le; 2492 struct mvpp2_cls_flow_entry fe; 2493 int index; 2494 2495 /* Enable classifier */ 2496 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); 2497 2498 /* Clear classifier flow table */ 2499 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS); 2500 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { 2501 fe.index = index; 2502 mvpp2_cls_flow_write(priv, &fe); 2503 } 2504 2505 /* Clear classifier lookup table */ 2506 le.data = 0; 2507 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { 2508 le.lkpid = index; 2509 le.way = 0; 2510 mvpp2_cls_lookup_write(priv, &le); 2511 2512 le.way = 1; 2513 mvpp2_cls_lookup_write(priv, &le); 2514 } 2515 } 2516 2517 static void mvpp2_cls_port_config(struct mvpp2_port *port) 2518 { 2519 struct mvpp2_cls_lookup_entry le; 2520 u32 val; 2521 2522 /* Set way for the port */ 2523 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); 2524 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); 2525 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); 2526 2527 /* Pick the entry to be accessed in lookup ID decoding table 2528 * according to the way and lkpid. 2529 */ 2530 le.lkpid = port->id; 2531 le.way = 0; 2532 le.data = 0; 2533 2534 /* Set initial CPU queue for receiving packets */ 2535 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; 2536 le.data |= port->first_rxq; 2537 2538 /* Disable classification engines */ 2539 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; 2540 2541 /* Update lookup ID table entry */ 2542 mvpp2_cls_lookup_write(port->priv, &le); 2543 } 2544 2545 /* Set CPU queue number for oversize packets */ 2546 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) 2547 { 2548 u32 val; 2549 2550 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), 2551 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); 2552 2553 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), 2554 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); 2555 2556 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); 2557 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); 2558 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); 2559 } 2560 2561 /* Buffer Manager configuration routines */ 2562 2563 /* Create pool */ 2564 static int mvpp2_bm_pool_create(struct udevice *dev, 2565 struct mvpp2 *priv, 2566 struct mvpp2_bm_pool *bm_pool, int size) 2567 { 2568 u32 val; 2569 2570 /* Number of buffer pointers must be a multiple of 16, as per 2571 * hardware constraints 2572 */ 2573 if (!IS_ALIGNED(size, 16)) 2574 return -EINVAL; 2575 2576 bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id]; 2577 bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id]; 2578 if (!bm_pool->virt_addr) 2579 return -ENOMEM; 2580 2581 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr, 2582 MVPP2_BM_POOL_PTR_ALIGN)) { 2583 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n", 2584 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); 2585 return -ENOMEM; 2586 } 2587 2588 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), 2589 lower_32_bits(bm_pool->dma_addr)); 2590 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); 2591 2592 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 2593 val |= MVPP2_BM_START_MASK; 2594 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 2595 2596 bm_pool->type = MVPP2_BM_FREE; 2597 bm_pool->size = size; 2598 bm_pool->pkt_size = 0; 2599 bm_pool->buf_num = 0; 2600 2601 return 0; 2602 } 2603 2604 /* Set pool buffer size */ 2605 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, 2606 struct mvpp2_bm_pool *bm_pool, 2607 int buf_size) 2608 { 2609 u32 val; 2610 2611 bm_pool->buf_size = buf_size; 2612 2613 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); 2614 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); 2615 } 2616 2617 /* Free all buffers from the pool */ 2618 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv, 2619 struct mvpp2_bm_pool *bm_pool) 2620 { 2621 int i; 2622 2623 for (i = 0; i < bm_pool->buf_num; i++) { 2624 /* Allocate buffer back from the buffer manager */ 2625 mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id)); 2626 } 2627 2628 bm_pool->buf_num = 0; 2629 } 2630 2631 /* Cleanup pool */ 2632 static int mvpp2_bm_pool_destroy(struct udevice *dev, 2633 struct mvpp2 *priv, 2634 struct mvpp2_bm_pool *bm_pool) 2635 { 2636 u32 val; 2637 2638 mvpp2_bm_bufs_free(dev, priv, bm_pool); 2639 if (bm_pool->buf_num) { 2640 dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id); 2641 return 0; 2642 } 2643 2644 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); 2645 val |= MVPP2_BM_STOP_MASK; 2646 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); 2647 2648 return 0; 2649 } 2650 2651 static int mvpp2_bm_pools_init(struct udevice *dev, 2652 struct mvpp2 *priv) 2653 { 2654 int i, err, size; 2655 struct mvpp2_bm_pool *bm_pool; 2656 2657 /* Create all pools with maximum size */ 2658 size = MVPP2_BM_POOL_SIZE_MAX; 2659 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 2660 bm_pool = &priv->bm_pools[i]; 2661 bm_pool->id = i; 2662 err = mvpp2_bm_pool_create(dev, priv, bm_pool, size); 2663 if (err) 2664 goto err_unroll_pools; 2665 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0); 2666 } 2667 return 0; 2668 2669 err_unroll_pools: 2670 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size); 2671 for (i = i - 1; i >= 0; i--) 2672 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); 2673 return err; 2674 } 2675 2676 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv) 2677 { 2678 int i, err; 2679 2680 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 2681 /* Mask BM all interrupts */ 2682 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); 2683 /* Clear BM cause register */ 2684 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); 2685 } 2686 2687 /* Allocate and initialize BM pools */ 2688 priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM, 2689 sizeof(struct mvpp2_bm_pool), GFP_KERNEL); 2690 if (!priv->bm_pools) 2691 return -ENOMEM; 2692 2693 err = mvpp2_bm_pools_init(dev, priv); 2694 if (err < 0) 2695 return err; 2696 return 0; 2697 } 2698 2699 /* Attach long pool to rxq */ 2700 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, 2701 int lrxq, int long_pool) 2702 { 2703 u32 val, mask; 2704 int prxq; 2705 2706 /* Get queue physical ID */ 2707 prxq = port->rxqs[lrxq]->id; 2708 2709 if (port->priv->hw_version == MVPP21) 2710 mask = MVPP21_RXQ_POOL_LONG_MASK; 2711 else 2712 mask = MVPP22_RXQ_POOL_LONG_MASK; 2713 2714 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 2715 val &= ~mask; 2716 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask; 2717 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 2718 } 2719 2720 /* Set pool number in a BM cookie */ 2721 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool) 2722 { 2723 u32 bm; 2724 2725 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS); 2726 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS); 2727 2728 return bm; 2729 } 2730 2731 /* Get pool number from a BM cookie */ 2732 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie) 2733 { 2734 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF; 2735 } 2736 2737 /* Release buffer to BM */ 2738 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, 2739 dma_addr_t buf_dma_addr, 2740 unsigned long buf_phys_addr) 2741 { 2742 if (port->priv->hw_version == MVPP22) { 2743 u32 val = 0; 2744 2745 if (sizeof(dma_addr_t) == 8) 2746 val |= upper_32_bits(buf_dma_addr) & 2747 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK; 2748 2749 if (sizeof(phys_addr_t) == 8) 2750 val |= (upper_32_bits(buf_phys_addr) 2751 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) & 2752 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK; 2753 2754 mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val); 2755 } 2756 2757 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply 2758 * returned in the "cookie" field of the RX 2759 * descriptor. Instead of storing the virtual address, we 2760 * store the physical address 2761 */ 2762 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr); 2763 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr); 2764 } 2765 2766 /* Refill BM pool */ 2767 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm, 2768 dma_addr_t dma_addr, 2769 phys_addr_t phys_addr) 2770 { 2771 int pool = mvpp2_bm_cookie_pool_get(bm); 2772 2773 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); 2774 } 2775 2776 /* Allocate buffers for the pool */ 2777 static int mvpp2_bm_bufs_add(struct mvpp2_port *port, 2778 struct mvpp2_bm_pool *bm_pool, int buf_num) 2779 { 2780 int i; 2781 2782 if (buf_num < 0 || 2783 (buf_num + bm_pool->buf_num > bm_pool->size)) { 2784 netdev_err(port->dev, 2785 "cannot allocate %d buffers for pool %d\n", 2786 buf_num, bm_pool->id); 2787 return 0; 2788 } 2789 2790 for (i = 0; i < buf_num; i++) { 2791 mvpp2_bm_pool_put(port, bm_pool->id, 2792 (dma_addr_t)buffer_loc.rx_buffer[i], 2793 (unsigned long)buffer_loc.rx_buffer[i]); 2794 2795 } 2796 2797 /* Update BM driver with number of buffers added to pool */ 2798 bm_pool->buf_num += i; 2799 2800 return i; 2801 } 2802 2803 /* Notify the driver that BM pool is being used as specific type and return the 2804 * pool pointer on success 2805 */ 2806 static struct mvpp2_bm_pool * 2807 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type, 2808 int pkt_size) 2809 { 2810 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; 2811 int num; 2812 2813 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) { 2814 netdev_err(port->dev, "mixing pool types is forbidden\n"); 2815 return NULL; 2816 } 2817 2818 if (new_pool->type == MVPP2_BM_FREE) 2819 new_pool->type = type; 2820 2821 /* Allocate buffers in case BM pool is used as long pool, but packet 2822 * size doesn't match MTU or BM pool hasn't being used yet 2823 */ 2824 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) || 2825 (new_pool->pkt_size == 0)) { 2826 int pkts_num; 2827 2828 /* Set default buffer number or free all the buffers in case 2829 * the pool is not empty 2830 */ 2831 pkts_num = new_pool->buf_num; 2832 if (pkts_num == 0) 2833 pkts_num = type == MVPP2_BM_SWF_LONG ? 2834 MVPP2_BM_LONG_BUF_NUM : 2835 MVPP2_BM_SHORT_BUF_NUM; 2836 else 2837 mvpp2_bm_bufs_free(NULL, 2838 port->priv, new_pool); 2839 2840 new_pool->pkt_size = pkt_size; 2841 2842 /* Allocate buffers for this pool */ 2843 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); 2844 if (num != pkts_num) { 2845 dev_err(dev, "pool %d: %d of %d allocated\n", 2846 new_pool->id, num, pkts_num); 2847 return NULL; 2848 } 2849 } 2850 2851 mvpp2_bm_pool_bufsize_set(port->priv, new_pool, 2852 MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); 2853 2854 return new_pool; 2855 } 2856 2857 /* Initialize pools for swf */ 2858 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) 2859 { 2860 int rxq; 2861 2862 if (!port->pool_long) { 2863 port->pool_long = 2864 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id), 2865 MVPP2_BM_SWF_LONG, 2866 port->pkt_size); 2867 if (!port->pool_long) 2868 return -ENOMEM; 2869 2870 port->pool_long->port_map |= (1 << port->id); 2871 2872 for (rxq = 0; rxq < rxq_number; rxq++) 2873 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); 2874 } 2875 2876 return 0; 2877 } 2878 2879 /* Port configuration routines */ 2880 2881 static void mvpp2_port_mii_set(struct mvpp2_port *port) 2882 { 2883 u32 val; 2884 2885 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 2886 2887 switch (port->phy_interface) { 2888 case PHY_INTERFACE_MODE_SGMII: 2889 val |= MVPP2_GMAC_INBAND_AN_MASK; 2890 break; 2891 case PHY_INTERFACE_MODE_RGMII: 2892 case PHY_INTERFACE_MODE_RGMII_ID: 2893 val |= MVPP2_GMAC_PORT_RGMII_MASK; 2894 default: 2895 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 2896 } 2897 2898 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2899 } 2900 2901 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port) 2902 { 2903 u32 val; 2904 2905 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 2906 val |= MVPP2_GMAC_FC_ADV_EN; 2907 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 2908 } 2909 2910 static void mvpp2_port_enable(struct mvpp2_port *port) 2911 { 2912 u32 val; 2913 2914 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2915 val |= MVPP2_GMAC_PORT_EN_MASK; 2916 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; 2917 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2918 } 2919 2920 static void mvpp2_port_disable(struct mvpp2_port *port) 2921 { 2922 u32 val; 2923 2924 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2925 val &= ~(MVPP2_GMAC_PORT_EN_MASK); 2926 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2927 } 2928 2929 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ 2930 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) 2931 { 2932 u32 val; 2933 2934 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & 2935 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 2936 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 2937 } 2938 2939 /* Configure loopback port */ 2940 static void mvpp2_port_loopback_set(struct mvpp2_port *port) 2941 { 2942 u32 val; 2943 2944 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 2945 2946 if (port->speed == 1000) 2947 val |= MVPP2_GMAC_GMII_LB_EN_MASK; 2948 else 2949 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; 2950 2951 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) 2952 val |= MVPP2_GMAC_PCS_LB_EN_MASK; 2953 else 2954 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; 2955 2956 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 2957 } 2958 2959 static void mvpp2_port_reset(struct mvpp2_port *port) 2960 { 2961 u32 val; 2962 2963 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 2964 ~MVPP2_GMAC_PORT_RESET_MASK; 2965 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2966 2967 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & 2968 MVPP2_GMAC_PORT_RESET_MASK) 2969 continue; 2970 } 2971 2972 /* Change maximum receive size of the port */ 2973 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) 2974 { 2975 u32 val; 2976 2977 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 2978 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 2979 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << 2980 MVPP2_GMAC_MAX_RX_SIZE_OFFS); 2981 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 2982 } 2983 2984 /* PPv2.2 GoP/GMAC config */ 2985 2986 /* Set the MAC to reset or exit from reset */ 2987 static int gop_gmac_reset(struct mvpp2_port *port, int reset) 2988 { 2989 u32 val; 2990 2991 /* read - modify - write */ 2992 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 2993 if (reset) 2994 val |= MVPP2_GMAC_PORT_RESET_MASK; 2995 else 2996 val &= ~MVPP2_GMAC_PORT_RESET_MASK; 2997 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 2998 2999 return 0; 3000 } 3001 3002 /* 3003 * gop_gpcs_mode_cfg 3004 * 3005 * Configure port to working with Gig PCS or don't. 3006 */ 3007 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en) 3008 { 3009 u32 val; 3010 3011 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3012 if (en) 3013 val |= MVPP2_GMAC_PCS_ENABLE_MASK; 3014 else 3015 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; 3016 /* enable / disable PCS on this port */ 3017 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3018 3019 return 0; 3020 } 3021 3022 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en) 3023 { 3024 u32 val; 3025 3026 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3027 if (en) 3028 val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK; 3029 else 3030 val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK; 3031 /* enable / disable PCS on this port */ 3032 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3033 3034 return 0; 3035 } 3036 3037 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port) 3038 { 3039 u32 val, thresh; 3040 3041 /* 3042 * Configure minimal level of the Tx FIFO before the lower part 3043 * starts to read a packet 3044 */ 3045 thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH; 3046 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3047 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3048 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3049 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3050 3051 /* Disable bypass of sync module */ 3052 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3053 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3054 /* configure DP clock select according to mode */ 3055 val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3056 /* configure QSGMII bypass according to mode */ 3057 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3058 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3059 3060 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3061 val |= MVPP2_GMAC_PORT_DIS_PADING_MASK; 3062 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3063 3064 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3065 /* 3066 * Configure GIG MAC to 1000Base-X mode connected to a fiber 3067 * transceiver 3068 */ 3069 val |= MVPP2_GMAC_PORT_TYPE_MASK; 3070 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3071 3072 /* configure AN 0x9268 */ 3073 val = MVPP2_GMAC_EN_PCS_AN | 3074 MVPP2_GMAC_AN_BYPASS_EN | 3075 MVPP2_GMAC_CONFIG_MII_SPEED | 3076 MVPP2_GMAC_CONFIG_GMII_SPEED | 3077 MVPP2_GMAC_FC_ADV_EN | 3078 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 3079 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3080 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3081 } 3082 3083 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port) 3084 { 3085 u32 val, thresh; 3086 3087 /* 3088 * Configure minimal level of the Tx FIFO before the lower part 3089 * starts to read a packet 3090 */ 3091 thresh = MVPP2_SGMII_TX_FIFO_MIN_TH; 3092 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3093 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3094 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3095 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3096 3097 /* Disable bypass of sync module */ 3098 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3099 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3100 /* configure DP clock select according to mode */ 3101 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3102 /* configure QSGMII bypass according to mode */ 3103 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3104 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3105 3106 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3107 val |= MVPP2_GMAC_PORT_DIS_PADING_MASK; 3108 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3109 3110 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3111 /* configure GIG MAC to SGMII mode */ 3112 val &= ~MVPP2_GMAC_PORT_TYPE_MASK; 3113 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3114 3115 /* configure AN */ 3116 val = MVPP2_GMAC_EN_PCS_AN | 3117 MVPP2_GMAC_AN_BYPASS_EN | 3118 MVPP2_GMAC_AN_SPEED_EN | 3119 MVPP2_GMAC_EN_FC_AN | 3120 MVPP2_GMAC_AN_DUPLEX_EN | 3121 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3122 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3123 } 3124 3125 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port) 3126 { 3127 u32 val, thresh; 3128 3129 /* 3130 * Configure minimal level of the Tx FIFO before the lower part 3131 * starts to read a packet 3132 */ 3133 thresh = MVPP2_RGMII_TX_FIFO_MIN_TH; 3134 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3135 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3136 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); 3137 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3138 3139 /* Disable bypass of sync module */ 3140 val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); 3141 val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; 3142 /* configure DP clock select according to mode */ 3143 val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; 3144 val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; 3145 val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK; 3146 writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); 3147 3148 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3149 val &= ~MVPP2_GMAC_PORT_DIS_PADING_MASK; 3150 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3151 3152 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3153 /* configure GIG MAC to SGMII mode */ 3154 val &= ~MVPP2_GMAC_PORT_TYPE_MASK; 3155 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3156 3157 /* configure AN 0xb8e8 */ 3158 val = MVPP2_GMAC_AN_BYPASS_EN | 3159 MVPP2_GMAC_AN_SPEED_EN | 3160 MVPP2_GMAC_EN_FC_AN | 3161 MVPP2_GMAC_AN_DUPLEX_EN | 3162 MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; 3163 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 3164 } 3165 3166 /* Set the internal mux's to the required MAC in the GOP */ 3167 static int gop_gmac_mode_cfg(struct mvpp2_port *port) 3168 { 3169 u32 val; 3170 3171 /* Set TX FIFO thresholds */ 3172 switch (port->phy_interface) { 3173 case PHY_INTERFACE_MODE_SGMII: 3174 if (port->phy_speed == 2500) 3175 gop_gmac_sgmii2_5_cfg(port); 3176 else 3177 gop_gmac_sgmii_cfg(port); 3178 break; 3179 3180 case PHY_INTERFACE_MODE_RGMII: 3181 case PHY_INTERFACE_MODE_RGMII_ID: 3182 gop_gmac_rgmii_cfg(port); 3183 break; 3184 3185 default: 3186 return -1; 3187 } 3188 3189 /* Jumbo frame support - 0x1400*2= 0x2800 bytes */ 3190 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); 3191 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; 3192 val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS; 3193 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); 3194 3195 /* PeriodicXonEn disable */ 3196 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); 3197 val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; 3198 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); 3199 3200 return 0; 3201 } 3202 3203 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port) 3204 { 3205 u32 val; 3206 3207 /* relevant only for MAC0 (XLG0 and GMAC0) */ 3208 if (port->gop_id > 0) 3209 return; 3210 3211 /* configure 1Gig MAC mode */ 3212 val = readl(port->base + MVPP22_XLG_CTRL3_REG); 3213 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; 3214 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC; 3215 writel(val, port->base + MVPP22_XLG_CTRL3_REG); 3216 } 3217 3218 static int gop_gpcs_reset(struct mvpp2_port *port, int reset) 3219 { 3220 u32 val; 3221 3222 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); 3223 if (reset) 3224 val &= ~MVPP2_GMAC_SGMII_MODE_MASK; 3225 else 3226 val |= MVPP2_GMAC_SGMII_MODE_MASK; 3227 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); 3228 3229 return 0; 3230 } 3231 3232 /* Set the internal mux's to the required PCS in the PI */ 3233 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes) 3234 { 3235 u32 val; 3236 int lane; 3237 3238 switch (num_of_lanes) { 3239 case 1: 3240 lane = 0; 3241 break; 3242 case 2: 3243 lane = 1; 3244 break; 3245 case 4: 3246 lane = 2; 3247 break; 3248 default: 3249 return -1; 3250 } 3251 3252 /* configure XG MAC mode */ 3253 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3254 val &= ~MVPP22_XPCS_PCSMODE_MASK; 3255 val &= ~MVPP22_XPCS_LANEACTIVE_MASK; 3256 val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS; 3257 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3258 3259 return 0; 3260 } 3261 3262 static int gop_mpcs_mode(struct mvpp2_port *port) 3263 { 3264 u32 val; 3265 3266 /* configure PCS40G COMMON CONTROL */ 3267 val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL); 3268 val &= ~FORWARD_ERROR_CORRECTION_MASK; 3269 writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL); 3270 3271 /* configure PCS CLOCK RESET */ 3272 val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET); 3273 val &= ~CLK_DIVISION_RATIO_MASK; 3274 val |= 1 << CLK_DIVISION_RATIO_OFFS; 3275 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); 3276 3277 val &= ~CLK_DIV_PHASE_SET_MASK; 3278 val |= MAC_CLK_RESET_MASK; 3279 val |= RX_SD_CLK_RESET_MASK; 3280 val |= TX_SD_CLK_RESET_MASK; 3281 writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); 3282 3283 return 0; 3284 } 3285 3286 /* Set the internal mux's to the required MAC in the GOP */ 3287 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes) 3288 { 3289 u32 val; 3290 3291 /* configure 10G MAC mode */ 3292 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3293 val |= MVPP22_XLG_RX_FC_EN; 3294 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3295 3296 val = readl(port->base + MVPP22_XLG_CTRL3_REG); 3297 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; 3298 val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC; 3299 writel(val, port->base + MVPP22_XLG_CTRL3_REG); 3300 3301 /* read - modify - write */ 3302 val = readl(port->base + MVPP22_XLG_CTRL4_REG); 3303 val &= ~MVPP22_XLG_MODE_DMA_1G; 3304 val |= MVPP22_XLG_FORWARD_PFC_EN; 3305 val |= MVPP22_XLG_FORWARD_802_3X_FC_EN; 3306 val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK; 3307 writel(val, port->base + MVPP22_XLG_CTRL4_REG); 3308 3309 /* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */ 3310 val = readl(port->base + MVPP22_XLG_CTRL1_REG); 3311 val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK; 3312 val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS; 3313 writel(val, port->base + MVPP22_XLG_CTRL1_REG); 3314 3315 /* unmask link change interrupt */ 3316 val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG); 3317 val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE; 3318 val |= 1; /* unmask summary bit */ 3319 writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG); 3320 3321 return 0; 3322 } 3323 3324 /* Set PCS to reset or exit from reset */ 3325 static int gop_xpcs_reset(struct mvpp2_port *port, int reset) 3326 { 3327 u32 val; 3328 3329 /* read - modify - write */ 3330 val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3331 if (reset) 3332 val &= ~MVPP22_XPCS_PCSRESET; 3333 else 3334 val |= MVPP22_XPCS_PCSRESET; 3335 writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); 3336 3337 return 0; 3338 } 3339 3340 /* Set the MAC to reset or exit from reset */ 3341 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset) 3342 { 3343 u32 val; 3344 3345 /* read - modify - write */ 3346 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3347 if (reset) 3348 val &= ~MVPP22_XLG_MAC_RESETN; 3349 else 3350 val |= MVPP22_XLG_MAC_RESETN; 3351 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3352 3353 return 0; 3354 } 3355 3356 /* 3357 * gop_port_init 3358 * 3359 * Init physical port. Configures the port mode and all it's elements 3360 * accordingly. 3361 * Does not verify that the selected mode/port number is valid at the 3362 * core level. 3363 */ 3364 static int gop_port_init(struct mvpp2_port *port) 3365 { 3366 int mac_num = port->gop_id; 3367 int num_of_act_lanes; 3368 3369 if (mac_num >= MVPP22_GOP_MAC_NUM) { 3370 netdev_err(NULL, "%s: illegal port number %d", __func__, 3371 mac_num); 3372 return -1; 3373 } 3374 3375 switch (port->phy_interface) { 3376 case PHY_INTERFACE_MODE_RGMII: 3377 case PHY_INTERFACE_MODE_RGMII_ID: 3378 gop_gmac_reset(port, 1); 3379 3380 /* configure PCS */ 3381 gop_gpcs_mode_cfg(port, 0); 3382 gop_bypass_clk_cfg(port, 1); 3383 3384 /* configure MAC */ 3385 gop_gmac_mode_cfg(port); 3386 /* pcs unreset */ 3387 gop_gpcs_reset(port, 0); 3388 3389 /* mac unreset */ 3390 gop_gmac_reset(port, 0); 3391 break; 3392 3393 case PHY_INTERFACE_MODE_SGMII: 3394 /* configure PCS */ 3395 gop_gpcs_mode_cfg(port, 1); 3396 3397 /* configure MAC */ 3398 gop_gmac_mode_cfg(port); 3399 /* select proper Mac mode */ 3400 gop_xlg_2_gig_mac_cfg(port); 3401 3402 /* pcs unreset */ 3403 gop_gpcs_reset(port, 0); 3404 /* mac unreset */ 3405 gop_gmac_reset(port, 0); 3406 break; 3407 3408 case PHY_INTERFACE_MODE_SFI: 3409 num_of_act_lanes = 2; 3410 mac_num = 0; 3411 /* configure PCS */ 3412 gop_xpcs_mode(port, num_of_act_lanes); 3413 gop_mpcs_mode(port); 3414 /* configure MAC */ 3415 gop_xlg_mac_mode_cfg(port, num_of_act_lanes); 3416 3417 /* pcs unreset */ 3418 gop_xpcs_reset(port, 0); 3419 3420 /* mac unreset */ 3421 gop_xlg_mac_reset(port, 0); 3422 break; 3423 3424 default: 3425 netdev_err(NULL, "%s: Requested port mode (%d) not supported\n", 3426 __func__, port->phy_interface); 3427 return -1; 3428 } 3429 3430 return 0; 3431 } 3432 3433 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable) 3434 { 3435 u32 val; 3436 3437 val = readl(port->base + MVPP22_XLG_CTRL0_REG); 3438 if (enable) { 3439 /* Enable port and MIB counters update */ 3440 val |= MVPP22_XLG_PORT_EN; 3441 val &= ~MVPP22_XLG_MIBCNT_DIS; 3442 } else { 3443 /* Disable port */ 3444 val &= ~MVPP22_XLG_PORT_EN; 3445 } 3446 writel(val, port->base + MVPP22_XLG_CTRL0_REG); 3447 } 3448 3449 static void gop_port_enable(struct mvpp2_port *port, int enable) 3450 { 3451 switch (port->phy_interface) { 3452 case PHY_INTERFACE_MODE_RGMII: 3453 case PHY_INTERFACE_MODE_RGMII_ID: 3454 case PHY_INTERFACE_MODE_SGMII: 3455 if (enable) 3456 mvpp2_port_enable(port); 3457 else 3458 mvpp2_port_disable(port); 3459 break; 3460 3461 case PHY_INTERFACE_MODE_SFI: 3462 gop_xlg_mac_port_enable(port, enable); 3463 3464 break; 3465 default: 3466 netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__, 3467 port->phy_interface); 3468 return; 3469 } 3470 } 3471 3472 /* RFU1 functions */ 3473 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset) 3474 { 3475 return readl(priv->rfu1_base + offset); 3476 } 3477 3478 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data) 3479 { 3480 writel(data, priv->rfu1_base + offset); 3481 } 3482 3483 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type) 3484 { 3485 u32 val = 0; 3486 3487 if (gop_id == 2) { 3488 if (phy_type == PHY_INTERFACE_MODE_SGMII) 3489 val |= MV_NETC_GE_MAC2_SGMII; 3490 } 3491 3492 if (gop_id == 3) { 3493 if (phy_type == PHY_INTERFACE_MODE_SGMII) 3494 val |= MV_NETC_GE_MAC3_SGMII; 3495 else if (phy_type == PHY_INTERFACE_MODE_RGMII || 3496 phy_type == PHY_INTERFACE_MODE_RGMII_ID) 3497 val |= MV_NETC_GE_MAC3_RGMII; 3498 } 3499 3500 return val; 3501 } 3502 3503 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val) 3504 { 3505 u32 reg; 3506 3507 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); 3508 reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id)); 3509 3510 val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id); 3511 val &= NETC_PORTS_ACTIVE_MASK(gop_id); 3512 3513 reg |= val; 3514 3515 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); 3516 } 3517 3518 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val) 3519 { 3520 u32 reg; 3521 3522 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); 3523 reg &= ~NETC_GBE_PORT1_MII_MODE_MASK; 3524 3525 val <<= NETC_GBE_PORT1_MII_MODE_OFFS; 3526 val &= NETC_GBE_PORT1_MII_MODE_MASK; 3527 3528 reg |= val; 3529 3530 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); 3531 } 3532 3533 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val) 3534 { 3535 u32 reg; 3536 3537 reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG); 3538 reg &= ~NETC_GOP_SOFT_RESET_MASK; 3539 3540 val <<= NETC_GOP_SOFT_RESET_OFFS; 3541 val &= NETC_GOP_SOFT_RESET_MASK; 3542 3543 reg |= val; 3544 3545 gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg); 3546 } 3547 3548 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val) 3549 { 3550 u32 reg; 3551 3552 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3553 reg &= ~NETC_CLK_DIV_PHASE_MASK; 3554 3555 val <<= NETC_CLK_DIV_PHASE_OFFS; 3556 val &= NETC_CLK_DIV_PHASE_MASK; 3557 3558 reg |= val; 3559 3560 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3561 } 3562 3563 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val) 3564 { 3565 u32 reg; 3566 3567 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); 3568 reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id)); 3569 3570 val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id); 3571 val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id); 3572 3573 reg |= val; 3574 3575 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); 3576 } 3577 3578 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id, 3579 u32 val) 3580 { 3581 u32 reg, mask, offset; 3582 3583 if (gop_id == 2) { 3584 mask = NETC_GBE_PORT0_SGMII_MODE_MASK; 3585 offset = NETC_GBE_PORT0_SGMII_MODE_OFFS; 3586 } else { 3587 mask = NETC_GBE_PORT1_SGMII_MODE_MASK; 3588 offset = NETC_GBE_PORT1_SGMII_MODE_OFFS; 3589 } 3590 reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); 3591 reg &= ~mask; 3592 3593 val <<= offset; 3594 val &= mask; 3595 3596 reg |= val; 3597 3598 gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); 3599 } 3600 3601 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val) 3602 { 3603 u32 reg; 3604 3605 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3606 reg &= ~NETC_BUS_WIDTH_SELECT_MASK; 3607 3608 val <<= NETC_BUS_WIDTH_SELECT_OFFS; 3609 val &= NETC_BUS_WIDTH_SELECT_MASK; 3610 3611 reg |= val; 3612 3613 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3614 } 3615 3616 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val) 3617 { 3618 u32 reg; 3619 3620 reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); 3621 reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK; 3622 3623 val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS; 3624 val &= NETC_GIG_RX_DATA_SAMPLE_MASK; 3625 3626 reg |= val; 3627 3628 gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); 3629 } 3630 3631 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id, 3632 enum mv_netc_phase phase) 3633 { 3634 switch (phase) { 3635 case MV_NETC_FIRST_PHASE: 3636 /* Set Bus Width to HB mode = 1 */ 3637 gop_netc_bus_width_select(priv, 1); 3638 /* Select RGMII mode */ 3639 gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII); 3640 break; 3641 3642 case MV_NETC_SECOND_PHASE: 3643 /* De-assert the relevant port HB reset */ 3644 gop_netc_port_rf_reset(priv, gop_id, 1); 3645 break; 3646 } 3647 } 3648 3649 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id, 3650 enum mv_netc_phase phase) 3651 { 3652 switch (phase) { 3653 case MV_NETC_FIRST_PHASE: 3654 /* Set Bus Width to HB mode = 1 */ 3655 gop_netc_bus_width_select(priv, 1); 3656 /* Select SGMII mode */ 3657 if (gop_id >= 1) { 3658 gop_netc_gbe_sgmii_mode_select(priv, gop_id, 3659 MV_NETC_GBE_SGMII); 3660 } 3661 3662 /* Configure the sample stages */ 3663 gop_netc_sample_stages_timing(priv, 0); 3664 /* Configure the ComPhy Selector */ 3665 /* gop_netc_com_phy_selector_config(netComplex); */ 3666 break; 3667 3668 case MV_NETC_SECOND_PHASE: 3669 /* De-assert the relevant port HB reset */ 3670 gop_netc_port_rf_reset(priv, gop_id, 1); 3671 break; 3672 } 3673 } 3674 3675 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase) 3676 { 3677 u32 c = priv->netc_config; 3678 3679 if (c & MV_NETC_GE_MAC2_SGMII) 3680 gop_netc_mac_to_sgmii(priv, 2, phase); 3681 else 3682 gop_netc_mac_to_xgmii(priv, 2, phase); 3683 3684 if (c & MV_NETC_GE_MAC3_SGMII) { 3685 gop_netc_mac_to_sgmii(priv, 3, phase); 3686 } else { 3687 gop_netc_mac_to_xgmii(priv, 3, phase); 3688 if (c & MV_NETC_GE_MAC3_RGMII) 3689 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII); 3690 else 3691 gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII); 3692 } 3693 3694 /* Activate gop ports 0, 2, 3 */ 3695 gop_netc_active_port(priv, 0, 1); 3696 gop_netc_active_port(priv, 2, 1); 3697 gop_netc_active_port(priv, 3, 1); 3698 3699 if (phase == MV_NETC_SECOND_PHASE) { 3700 /* Enable the GOP internal clock logic */ 3701 gop_netc_gop_clock_logic_set(priv, 1); 3702 /* De-assert GOP unit reset */ 3703 gop_netc_gop_reset(priv, 1); 3704 } 3705 3706 return 0; 3707 } 3708 3709 /* Set defaults to the MVPP2 port */ 3710 static void mvpp2_defaults_set(struct mvpp2_port *port) 3711 { 3712 int tx_port_num, val, queue, ptxq, lrxq; 3713 3714 if (port->priv->hw_version == MVPP21) { 3715 /* Configure port to loopback if needed */ 3716 if (port->flags & MVPP2_F_LOOPBACK) 3717 mvpp2_port_loopback_set(port); 3718 3719 /* Update TX FIFO MIN Threshold */ 3720 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3721 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; 3722 /* Min. TX threshold must be less than minimal packet length */ 3723 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); 3724 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); 3725 } 3726 3727 /* Disable Legacy WRR, Disable EJP, Release from reset */ 3728 tx_port_num = mvpp2_egress_port(port); 3729 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, 3730 tx_port_num); 3731 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); 3732 3733 /* Close bandwidth for all queues */ 3734 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) { 3735 ptxq = mvpp2_txq_phys(port->id, queue); 3736 mvpp2_write(port->priv, 3737 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0); 3738 } 3739 3740 /* Set refill period to 1 usec, refill tokens 3741 * and bucket size to maximum 3742 */ 3743 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8); 3744 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); 3745 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; 3746 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); 3747 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; 3748 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); 3749 val = MVPP2_TXP_TOKEN_SIZE_MAX; 3750 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 3751 3752 /* Set MaximumLowLatencyPacketSize value to 256 */ 3753 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), 3754 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | 3755 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); 3756 3757 /* Enable Rx cache snoop */ 3758 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3759 queue = port->rxqs[lrxq]->id; 3760 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3761 val |= MVPP2_SNOOP_PKT_SIZE_MASK | 3762 MVPP2_SNOOP_BUF_HDR_MASK; 3763 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3764 } 3765 } 3766 3767 /* Enable/disable receiving packets */ 3768 static void mvpp2_ingress_enable(struct mvpp2_port *port) 3769 { 3770 u32 val; 3771 int lrxq, queue; 3772 3773 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3774 queue = port->rxqs[lrxq]->id; 3775 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3776 val &= ~MVPP2_RXQ_DISABLE_MASK; 3777 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3778 } 3779 } 3780 3781 static void mvpp2_ingress_disable(struct mvpp2_port *port) 3782 { 3783 u32 val; 3784 int lrxq, queue; 3785 3786 for (lrxq = 0; lrxq < rxq_number; lrxq++) { 3787 queue = port->rxqs[lrxq]->id; 3788 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); 3789 val |= MVPP2_RXQ_DISABLE_MASK; 3790 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); 3791 } 3792 } 3793 3794 /* Enable transmit via physical egress queue 3795 * - HW starts take descriptors from DRAM 3796 */ 3797 static void mvpp2_egress_enable(struct mvpp2_port *port) 3798 { 3799 u32 qmap; 3800 int queue; 3801 int tx_port_num = mvpp2_egress_port(port); 3802 3803 /* Enable all initialized TXs. */ 3804 qmap = 0; 3805 for (queue = 0; queue < txq_number; queue++) { 3806 struct mvpp2_tx_queue *txq = port->txqs[queue]; 3807 3808 if (txq->descs != NULL) 3809 qmap |= (1 << queue); 3810 } 3811 3812 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3813 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); 3814 } 3815 3816 /* Disable transmit via physical egress queue 3817 * - HW doesn't take descriptors from DRAM 3818 */ 3819 static void mvpp2_egress_disable(struct mvpp2_port *port) 3820 { 3821 u32 reg_data; 3822 int delay; 3823 int tx_port_num = mvpp2_egress_port(port); 3824 3825 /* Issue stop command for active channels only */ 3826 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3827 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & 3828 MVPP2_TXP_SCHED_ENQ_MASK; 3829 if (reg_data != 0) 3830 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, 3831 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); 3832 3833 /* Wait for all Tx activity to terminate. */ 3834 delay = 0; 3835 do { 3836 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { 3837 netdev_warn(port->dev, 3838 "Tx stop timed out, status=0x%08x\n", 3839 reg_data); 3840 break; 3841 } 3842 mdelay(1); 3843 delay++; 3844 3845 /* Check port TX Command register that all 3846 * Tx queues are stopped 3847 */ 3848 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); 3849 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); 3850 } 3851 3852 /* Rx descriptors helper methods */ 3853 3854 /* Get number of Rx descriptors occupied by received packets */ 3855 static inline int 3856 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) 3857 { 3858 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); 3859 3860 return val & MVPP2_RXQ_OCCUPIED_MASK; 3861 } 3862 3863 /* Update Rx queue status with the number of occupied and available 3864 * Rx descriptor slots. 3865 */ 3866 static inline void 3867 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, 3868 int used_count, int free_count) 3869 { 3870 /* Decrement the number of used descriptors and increment count 3871 * increment the number of free descriptors. 3872 */ 3873 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); 3874 3875 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); 3876 } 3877 3878 /* Get pointer to next RX descriptor to be processed by SW */ 3879 static inline struct mvpp2_rx_desc * 3880 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) 3881 { 3882 int rx_desc = rxq->next_desc_to_proc; 3883 3884 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); 3885 prefetch(rxq->descs + rxq->next_desc_to_proc); 3886 return rxq->descs + rx_desc; 3887 } 3888 3889 /* Set rx queue offset */ 3890 static void mvpp2_rxq_offset_set(struct mvpp2_port *port, 3891 int prxq, int offset) 3892 { 3893 u32 val; 3894 3895 /* Convert offset from bytes to units of 32 bytes */ 3896 offset = offset >> 5; 3897 3898 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); 3899 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; 3900 3901 /* Offset is in */ 3902 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & 3903 MVPP2_RXQ_PACKET_OFFSET_MASK); 3904 3905 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); 3906 } 3907 3908 /* Obtain BM cookie information from descriptor */ 3909 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port, 3910 struct mvpp2_rx_desc *rx_desc) 3911 { 3912 int cpu = smp_processor_id(); 3913 int pool; 3914 3915 pool = (mvpp2_rxdesc_status_get(port, rx_desc) & 3916 MVPP2_RXD_BM_POOL_ID_MASK) >> 3917 MVPP2_RXD_BM_POOL_ID_OFFS; 3918 3919 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) | 3920 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS); 3921 } 3922 3923 /* Tx descriptors helper methods */ 3924 3925 /* Get number of Tx descriptors waiting to be transmitted by HW */ 3926 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port, 3927 struct mvpp2_tx_queue *txq) 3928 { 3929 u32 val; 3930 3931 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 3932 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 3933 3934 return val & MVPP2_TXQ_PENDING_MASK; 3935 } 3936 3937 /* Get pointer to next Tx descriptor to be processed (send) by HW */ 3938 static struct mvpp2_tx_desc * 3939 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) 3940 { 3941 int tx_desc = txq->next_desc_to_proc; 3942 3943 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); 3944 return txq->descs + tx_desc; 3945 } 3946 3947 /* Update HW with number of aggregated Tx descriptors to be sent */ 3948 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) 3949 { 3950 /* aggregated access - relevant TXQ number is written in TX desc */ 3951 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending); 3952 } 3953 3954 /* Get number of sent descriptors and decrement counter. 3955 * The number of sent descriptors is returned. 3956 * Per-CPU access 3957 */ 3958 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, 3959 struct mvpp2_tx_queue *txq) 3960 { 3961 u32 val; 3962 3963 /* Reading status reg resets transmitted descriptor counter */ 3964 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id)); 3965 3966 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> 3967 MVPP2_TRANSMITTED_COUNT_OFFSET; 3968 } 3969 3970 static void mvpp2_txq_sent_counter_clear(void *arg) 3971 { 3972 struct mvpp2_port *port = arg; 3973 int queue; 3974 3975 for (queue = 0; queue < txq_number; queue++) { 3976 int id = port->txqs[queue]->id; 3977 3978 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id)); 3979 } 3980 } 3981 3982 /* Set max sizes for Tx queues */ 3983 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) 3984 { 3985 u32 val, size, mtu; 3986 int txq, tx_port_num; 3987 3988 mtu = port->pkt_size * 8; 3989 if (mtu > MVPP2_TXP_MTU_MAX) 3990 mtu = MVPP2_TXP_MTU_MAX; 3991 3992 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ 3993 mtu = 3 * mtu; 3994 3995 /* Indirect access to registers */ 3996 tx_port_num = mvpp2_egress_port(port); 3997 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 3998 3999 /* Set MTU */ 4000 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); 4001 val &= ~MVPP2_TXP_MTU_MAX; 4002 val |= mtu; 4003 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); 4004 4005 /* TXP token size and all TXQs token size must be larger that MTU */ 4006 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); 4007 size = val & MVPP2_TXP_TOKEN_SIZE_MAX; 4008 if (size < mtu) { 4009 size = mtu; 4010 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; 4011 val |= size; 4012 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); 4013 } 4014 4015 for (txq = 0; txq < txq_number; txq++) { 4016 val = mvpp2_read(port->priv, 4017 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); 4018 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; 4019 4020 if (size < mtu) { 4021 size = mtu; 4022 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; 4023 val |= size; 4024 mvpp2_write(port->priv, 4025 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), 4026 val); 4027 } 4028 } 4029 } 4030 4031 /* Free Tx queue skbuffs */ 4032 static void mvpp2_txq_bufs_free(struct mvpp2_port *port, 4033 struct mvpp2_tx_queue *txq, 4034 struct mvpp2_txq_pcpu *txq_pcpu, int num) 4035 { 4036 int i; 4037 4038 for (i = 0; i < num; i++) 4039 mvpp2_txq_inc_get(txq_pcpu); 4040 } 4041 4042 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, 4043 u32 cause) 4044 { 4045 int queue = fls(cause) - 1; 4046 4047 return port->rxqs[queue]; 4048 } 4049 4050 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, 4051 u32 cause) 4052 { 4053 int queue = fls(cause) - 1; 4054 4055 return port->txqs[queue]; 4056 } 4057 4058 /* Rx/Tx queue initialization/cleanup methods */ 4059 4060 /* Allocate and initialize descriptors for aggr TXQ */ 4061 static int mvpp2_aggr_txq_init(struct udevice *dev, 4062 struct mvpp2_tx_queue *aggr_txq, 4063 int desc_num, int cpu, 4064 struct mvpp2 *priv) 4065 { 4066 u32 txq_dma; 4067 4068 /* Allocate memory for TX descriptors */ 4069 aggr_txq->descs = buffer_loc.aggr_tx_descs; 4070 aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs; 4071 if (!aggr_txq->descs) 4072 return -ENOMEM; 4073 4074 /* Make sure descriptor address is cache line size aligned */ 4075 BUG_ON(aggr_txq->descs != 4076 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4077 4078 aggr_txq->last_desc = aggr_txq->size - 1; 4079 4080 /* Aggr TXQ no reset WA */ 4081 aggr_txq->next_desc_to_proc = mvpp2_read(priv, 4082 MVPP2_AGGR_TXQ_INDEX_REG(cpu)); 4083 4084 /* Set Tx descriptors queue starting address indirect 4085 * access 4086 */ 4087 if (priv->hw_version == MVPP21) 4088 txq_dma = aggr_txq->descs_dma; 4089 else 4090 txq_dma = aggr_txq->descs_dma >> 4091 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS; 4092 4093 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma); 4094 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num); 4095 4096 return 0; 4097 } 4098 4099 /* Create a specified Rx queue */ 4100 static int mvpp2_rxq_init(struct mvpp2_port *port, 4101 struct mvpp2_rx_queue *rxq) 4102 4103 { 4104 u32 rxq_dma; 4105 4106 rxq->size = port->rx_ring_size; 4107 4108 /* Allocate memory for RX descriptors */ 4109 rxq->descs = buffer_loc.rx_descs; 4110 rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs; 4111 if (!rxq->descs) 4112 return -ENOMEM; 4113 4114 BUG_ON(rxq->descs != 4115 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4116 4117 rxq->last_desc = rxq->size - 1; 4118 4119 /* Zero occupied and non-occupied counters - direct access */ 4120 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4121 4122 /* Set Rx descriptors queue starting address - indirect access */ 4123 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4124 if (port->priv->hw_version == MVPP21) 4125 rxq_dma = rxq->descs_dma; 4126 else 4127 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS; 4128 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma); 4129 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); 4130 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0); 4131 4132 /* Set Offset */ 4133 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD); 4134 4135 /* Add number of descriptors ready for receiving packets */ 4136 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); 4137 4138 return 0; 4139 } 4140 4141 /* Push packets received by the RXQ to BM pool */ 4142 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, 4143 struct mvpp2_rx_queue *rxq) 4144 { 4145 int rx_received, i; 4146 4147 rx_received = mvpp2_rxq_received(port, rxq->id); 4148 if (!rx_received) 4149 return; 4150 4151 for (i = 0; i < rx_received; i++) { 4152 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); 4153 u32 bm = mvpp2_bm_cookie_build(port, rx_desc); 4154 4155 mvpp2_pool_refill(port, bm, 4156 mvpp2_rxdesc_dma_addr_get(port, rx_desc), 4157 mvpp2_rxdesc_cookie_get(port, rx_desc)); 4158 } 4159 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); 4160 } 4161 4162 /* Cleanup Rx queue */ 4163 static void mvpp2_rxq_deinit(struct mvpp2_port *port, 4164 struct mvpp2_rx_queue *rxq) 4165 { 4166 mvpp2_rxq_drop_pkts(port, rxq); 4167 4168 rxq->descs = NULL; 4169 rxq->last_desc = 0; 4170 rxq->next_desc_to_proc = 0; 4171 rxq->descs_dma = 0; 4172 4173 /* Clear Rx descriptors queue starting address and size; 4174 * free descriptor number 4175 */ 4176 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); 4177 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); 4178 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0); 4179 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0); 4180 } 4181 4182 /* Create and initialize a Tx queue */ 4183 static int mvpp2_txq_init(struct mvpp2_port *port, 4184 struct mvpp2_tx_queue *txq) 4185 { 4186 u32 val; 4187 int cpu, desc, desc_per_txq, tx_port_num; 4188 struct mvpp2_txq_pcpu *txq_pcpu; 4189 4190 txq->size = port->tx_ring_size; 4191 4192 /* Allocate memory for Tx descriptors */ 4193 txq->descs = buffer_loc.tx_descs; 4194 txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs; 4195 if (!txq->descs) 4196 return -ENOMEM; 4197 4198 /* Make sure descriptor address is cache line size aligned */ 4199 BUG_ON(txq->descs != 4200 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); 4201 4202 txq->last_desc = txq->size - 1; 4203 4204 /* Set Tx descriptors queue starting address - indirect access */ 4205 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4206 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma); 4207 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size & 4208 MVPP2_TXQ_DESC_SIZE_MASK); 4209 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0); 4210 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG, 4211 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); 4212 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); 4213 val &= ~MVPP2_TXQ_PENDING_MASK; 4214 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val); 4215 4216 /* Calculate base address in prefetch buffer. We reserve 16 descriptors 4217 * for each existing TXQ. 4218 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT 4219 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS 4220 */ 4221 desc_per_txq = 16; 4222 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + 4223 (txq->log_id * desc_per_txq); 4224 4225 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, 4226 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | 4227 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2)); 4228 4229 /* WRR / EJP configuration - indirect access */ 4230 tx_port_num = mvpp2_egress_port(port); 4231 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); 4232 4233 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); 4234 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; 4235 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); 4236 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; 4237 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); 4238 4239 val = MVPP2_TXQ_TOKEN_SIZE_MAX; 4240 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), 4241 val); 4242 4243 for_each_present_cpu(cpu) { 4244 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4245 txq_pcpu->size = txq->size; 4246 } 4247 4248 return 0; 4249 } 4250 4251 /* Free allocated TXQ resources */ 4252 static void mvpp2_txq_deinit(struct mvpp2_port *port, 4253 struct mvpp2_tx_queue *txq) 4254 { 4255 txq->descs = NULL; 4256 txq->last_desc = 0; 4257 txq->next_desc_to_proc = 0; 4258 txq->descs_dma = 0; 4259 4260 /* Set minimum bandwidth for disabled TXQs */ 4261 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0); 4262 4263 /* Set Tx descriptors queue starting address and size */ 4264 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4265 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0); 4266 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0); 4267 } 4268 4269 /* Cleanup Tx ports */ 4270 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) 4271 { 4272 struct mvpp2_txq_pcpu *txq_pcpu; 4273 int delay, pending, cpu; 4274 u32 val; 4275 4276 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 4277 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 4278 val |= MVPP2_TXQ_DRAIN_EN_MASK; 4279 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4280 4281 /* The napi queue has been stopped so wait for all packets 4282 * to be transmitted. 4283 */ 4284 delay = 0; 4285 do { 4286 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { 4287 netdev_warn(port->dev, 4288 "port %d: cleaning queue %d timed out\n", 4289 port->id, txq->log_id); 4290 break; 4291 } 4292 mdelay(1); 4293 delay++; 4294 4295 pending = mvpp2_txq_pend_desc_num_get(port, txq); 4296 } while (pending); 4297 4298 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 4299 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 4300 4301 for_each_present_cpu(cpu) { 4302 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4303 4304 /* Release all packets */ 4305 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); 4306 4307 /* Reset queue */ 4308 txq_pcpu->count = 0; 4309 txq_pcpu->txq_put_index = 0; 4310 txq_pcpu->txq_get_index = 0; 4311 } 4312 } 4313 4314 /* Cleanup all Tx queues */ 4315 static void mvpp2_cleanup_txqs(struct mvpp2_port *port) 4316 { 4317 struct mvpp2_tx_queue *txq; 4318 int queue; 4319 u32 val; 4320 4321 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); 4322 4323 /* Reset Tx ports and delete Tx queues */ 4324 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); 4325 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4326 4327 for (queue = 0; queue < txq_number; queue++) { 4328 txq = port->txqs[queue]; 4329 mvpp2_txq_clean(port, txq); 4330 mvpp2_txq_deinit(port, txq); 4331 } 4332 4333 mvpp2_txq_sent_counter_clear(port); 4334 4335 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); 4336 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); 4337 } 4338 4339 /* Cleanup all Rx queues */ 4340 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) 4341 { 4342 int queue; 4343 4344 for (queue = 0; queue < rxq_number; queue++) 4345 mvpp2_rxq_deinit(port, port->rxqs[queue]); 4346 } 4347 4348 /* Init all Rx queues for port */ 4349 static int mvpp2_setup_rxqs(struct mvpp2_port *port) 4350 { 4351 int queue, err; 4352 4353 for (queue = 0; queue < rxq_number; queue++) { 4354 err = mvpp2_rxq_init(port, port->rxqs[queue]); 4355 if (err) 4356 goto err_cleanup; 4357 } 4358 return 0; 4359 4360 err_cleanup: 4361 mvpp2_cleanup_rxqs(port); 4362 return err; 4363 } 4364 4365 /* Init all tx queues for port */ 4366 static int mvpp2_setup_txqs(struct mvpp2_port *port) 4367 { 4368 struct mvpp2_tx_queue *txq; 4369 int queue, err; 4370 4371 for (queue = 0; queue < txq_number; queue++) { 4372 txq = port->txqs[queue]; 4373 err = mvpp2_txq_init(port, txq); 4374 if (err) 4375 goto err_cleanup; 4376 } 4377 4378 mvpp2_txq_sent_counter_clear(port); 4379 return 0; 4380 4381 err_cleanup: 4382 mvpp2_cleanup_txqs(port); 4383 return err; 4384 } 4385 4386 /* Adjust link */ 4387 static void mvpp2_link_event(struct mvpp2_port *port) 4388 { 4389 struct phy_device *phydev = port->phy_dev; 4390 int status_change = 0; 4391 u32 val; 4392 4393 if (phydev->link) { 4394 if ((port->speed != phydev->speed) || 4395 (port->duplex != phydev->duplex)) { 4396 u32 val; 4397 4398 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4399 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | 4400 MVPP2_GMAC_CONFIG_GMII_SPEED | 4401 MVPP2_GMAC_CONFIG_FULL_DUPLEX | 4402 MVPP2_GMAC_AN_SPEED_EN | 4403 MVPP2_GMAC_AN_DUPLEX_EN); 4404 4405 if (phydev->duplex) 4406 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; 4407 4408 if (phydev->speed == SPEED_1000) 4409 val |= MVPP2_GMAC_CONFIG_GMII_SPEED; 4410 else if (phydev->speed == SPEED_100) 4411 val |= MVPP2_GMAC_CONFIG_MII_SPEED; 4412 4413 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4414 4415 port->duplex = phydev->duplex; 4416 port->speed = phydev->speed; 4417 } 4418 } 4419 4420 if (phydev->link != port->link) { 4421 if (!phydev->link) { 4422 port->duplex = -1; 4423 port->speed = 0; 4424 } 4425 4426 port->link = phydev->link; 4427 status_change = 1; 4428 } 4429 4430 if (status_change) { 4431 if (phydev->link) { 4432 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4433 val |= (MVPP2_GMAC_FORCE_LINK_PASS | 4434 MVPP2_GMAC_FORCE_LINK_DOWN); 4435 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); 4436 mvpp2_egress_enable(port); 4437 mvpp2_ingress_enable(port); 4438 } else { 4439 mvpp2_ingress_disable(port); 4440 mvpp2_egress_disable(port); 4441 } 4442 } 4443 } 4444 4445 /* Main RX/TX processing routines */ 4446 4447 /* Display more error info */ 4448 static void mvpp2_rx_error(struct mvpp2_port *port, 4449 struct mvpp2_rx_desc *rx_desc) 4450 { 4451 u32 status = mvpp2_rxdesc_status_get(port, rx_desc); 4452 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc); 4453 4454 switch (status & MVPP2_RXD_ERR_CODE_MASK) { 4455 case MVPP2_RXD_ERR_CRC: 4456 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n", 4457 status, sz); 4458 break; 4459 case MVPP2_RXD_ERR_OVERRUN: 4460 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n", 4461 status, sz); 4462 break; 4463 case MVPP2_RXD_ERR_RESOURCE: 4464 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n", 4465 status, sz); 4466 break; 4467 } 4468 } 4469 4470 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */ 4471 static int mvpp2_rx_refill(struct mvpp2_port *port, 4472 struct mvpp2_bm_pool *bm_pool, 4473 u32 bm, dma_addr_t dma_addr) 4474 { 4475 mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr); 4476 return 0; 4477 } 4478 4479 /* Set hw internals when starting port */ 4480 static void mvpp2_start_dev(struct mvpp2_port *port) 4481 { 4482 switch (port->phy_interface) { 4483 case PHY_INTERFACE_MODE_RGMII: 4484 case PHY_INTERFACE_MODE_RGMII_ID: 4485 case PHY_INTERFACE_MODE_SGMII: 4486 mvpp2_gmac_max_rx_size_set(port); 4487 default: 4488 break; 4489 } 4490 4491 mvpp2_txp_max_tx_size_set(port); 4492 4493 if (port->priv->hw_version == MVPP21) 4494 mvpp2_port_enable(port); 4495 else 4496 gop_port_enable(port, 1); 4497 } 4498 4499 /* Set hw internals when stopping port */ 4500 static void mvpp2_stop_dev(struct mvpp2_port *port) 4501 { 4502 /* Stop new packets from arriving to RXQs */ 4503 mvpp2_ingress_disable(port); 4504 4505 mvpp2_egress_disable(port); 4506 4507 if (port->priv->hw_version == MVPP21) 4508 mvpp2_port_disable(port); 4509 else 4510 gop_port_enable(port, 0); 4511 } 4512 4513 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port) 4514 { 4515 struct phy_device *phy_dev; 4516 4517 if (!port->init || port->link == 0) { 4518 phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev, 4519 port->phy_interface); 4520 port->phy_dev = phy_dev; 4521 if (!phy_dev) { 4522 netdev_err(port->dev, "cannot connect to phy\n"); 4523 return -ENODEV; 4524 } 4525 phy_dev->supported &= PHY_GBIT_FEATURES; 4526 phy_dev->advertising = phy_dev->supported; 4527 4528 port->phy_dev = phy_dev; 4529 port->link = 0; 4530 port->duplex = 0; 4531 port->speed = 0; 4532 4533 phy_config(phy_dev); 4534 phy_startup(phy_dev); 4535 if (!phy_dev->link) { 4536 printf("%s: No link\n", phy_dev->dev->name); 4537 return -1; 4538 } 4539 4540 port->init = 1; 4541 } else { 4542 mvpp2_egress_enable(port); 4543 mvpp2_ingress_enable(port); 4544 } 4545 4546 return 0; 4547 } 4548 4549 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port) 4550 { 4551 unsigned char mac_bcast[ETH_ALEN] = { 4552 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 4553 int err; 4554 4555 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true); 4556 if (err) { 4557 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); 4558 return err; 4559 } 4560 err = mvpp2_prs_mac_da_accept(port->priv, port->id, 4561 port->dev_addr, true); 4562 if (err) { 4563 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n"); 4564 return err; 4565 } 4566 err = mvpp2_prs_def_flow(port); 4567 if (err) { 4568 netdev_err(dev, "mvpp2_prs_def_flow failed\n"); 4569 return err; 4570 } 4571 4572 /* Allocate the Rx/Tx queues */ 4573 err = mvpp2_setup_rxqs(port); 4574 if (err) { 4575 netdev_err(port->dev, "cannot allocate Rx queues\n"); 4576 return err; 4577 } 4578 4579 err = mvpp2_setup_txqs(port); 4580 if (err) { 4581 netdev_err(port->dev, "cannot allocate Tx queues\n"); 4582 return err; 4583 } 4584 4585 if (port->phy_node) { 4586 err = mvpp2_phy_connect(dev, port); 4587 if (err < 0) 4588 return err; 4589 4590 mvpp2_link_event(port); 4591 } else { 4592 mvpp2_egress_enable(port); 4593 mvpp2_ingress_enable(port); 4594 } 4595 4596 mvpp2_start_dev(port); 4597 4598 return 0; 4599 } 4600 4601 /* No Device ops here in U-Boot */ 4602 4603 /* Driver initialization */ 4604 4605 static void mvpp2_port_power_up(struct mvpp2_port *port) 4606 { 4607 struct mvpp2 *priv = port->priv; 4608 4609 /* On PPv2.2 the GoP / interface configuration has already been done */ 4610 if (priv->hw_version == MVPP21) 4611 mvpp2_port_mii_set(port); 4612 mvpp2_port_periodic_xon_disable(port); 4613 if (priv->hw_version == MVPP21) 4614 mvpp2_port_fc_adv_enable(port); 4615 mvpp2_port_reset(port); 4616 } 4617 4618 /* Initialize port HW */ 4619 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port) 4620 { 4621 struct mvpp2 *priv = port->priv; 4622 struct mvpp2_txq_pcpu *txq_pcpu; 4623 int queue, cpu, err; 4624 4625 if (port->first_rxq + rxq_number > 4626 MVPP2_MAX_PORTS * priv->max_port_rxqs) 4627 return -EINVAL; 4628 4629 /* Disable port */ 4630 mvpp2_egress_disable(port); 4631 if (priv->hw_version == MVPP21) 4632 mvpp2_port_disable(port); 4633 else 4634 gop_port_enable(port, 0); 4635 4636 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs), 4637 GFP_KERNEL); 4638 if (!port->txqs) 4639 return -ENOMEM; 4640 4641 /* Associate physical Tx queues to this port and initialize. 4642 * The mapping is predefined. 4643 */ 4644 for (queue = 0; queue < txq_number; queue++) { 4645 int queue_phy_id = mvpp2_txq_phys(port->id, queue); 4646 struct mvpp2_tx_queue *txq; 4647 4648 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); 4649 if (!txq) 4650 return -ENOMEM; 4651 4652 txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu), 4653 GFP_KERNEL); 4654 if (!txq->pcpu) 4655 return -ENOMEM; 4656 4657 txq->id = queue_phy_id; 4658 txq->log_id = queue; 4659 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; 4660 for_each_present_cpu(cpu) { 4661 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); 4662 txq_pcpu->cpu = cpu; 4663 } 4664 4665 port->txqs[queue] = txq; 4666 } 4667 4668 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs), 4669 GFP_KERNEL); 4670 if (!port->rxqs) 4671 return -ENOMEM; 4672 4673 /* Allocate and initialize Rx queue for this port */ 4674 for (queue = 0; queue < rxq_number; queue++) { 4675 struct mvpp2_rx_queue *rxq; 4676 4677 /* Map physical Rx queue to port's logical Rx queue */ 4678 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); 4679 if (!rxq) 4680 return -ENOMEM; 4681 /* Map this Rx queue to a physical queue */ 4682 rxq->id = port->first_rxq + queue; 4683 rxq->port = port->id; 4684 rxq->logic_rxq = queue; 4685 4686 port->rxqs[queue] = rxq; 4687 } 4688 4689 /* Configure Rx queue group interrupt for this port */ 4690 if (priv->hw_version == MVPP21) { 4691 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id), 4692 CONFIG_MV_ETH_RXQ); 4693 } else { 4694 u32 val; 4695 4696 val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); 4697 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); 4698 4699 val = (CONFIG_MV_ETH_RXQ << 4700 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); 4701 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); 4702 } 4703 4704 /* Create Rx descriptor rings */ 4705 for (queue = 0; queue < rxq_number; queue++) { 4706 struct mvpp2_rx_queue *rxq = port->rxqs[queue]; 4707 4708 rxq->size = port->rx_ring_size; 4709 rxq->pkts_coal = MVPP2_RX_COAL_PKTS; 4710 rxq->time_coal = MVPP2_RX_COAL_USEC; 4711 } 4712 4713 mvpp2_ingress_disable(port); 4714 4715 /* Port default configuration */ 4716 mvpp2_defaults_set(port); 4717 4718 /* Port's classifier configuration */ 4719 mvpp2_cls_oversize_rxq_set(port); 4720 mvpp2_cls_port_config(port); 4721 4722 /* Provide an initial Rx packet size */ 4723 port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN); 4724 4725 /* Initialize pools for swf */ 4726 err = mvpp2_swf_bm_pool_init(port); 4727 if (err) 4728 return err; 4729 4730 return 0; 4731 } 4732 4733 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port) 4734 { 4735 int port_node = dev_of_offset(dev); 4736 const char *phy_mode_str; 4737 int phy_node; 4738 u32 id; 4739 u32 phyaddr = 0; 4740 int phy_mode = -1; 4741 4742 phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy"); 4743 4744 if (phy_node > 0) { 4745 phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0); 4746 if (phyaddr < 0) { 4747 dev_err(&pdev->dev, "could not find phy address\n"); 4748 return -1; 4749 } 4750 } else { 4751 phy_node = 0; 4752 } 4753 4754 phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL); 4755 if (phy_mode_str) 4756 phy_mode = phy_get_interface_by_name(phy_mode_str); 4757 if (phy_mode == -1) { 4758 dev_err(&pdev->dev, "incorrect phy mode\n"); 4759 return -EINVAL; 4760 } 4761 4762 id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1); 4763 if (id == -1) { 4764 dev_err(&pdev->dev, "missing port-id value\n"); 4765 return -EINVAL; 4766 } 4767 4768 /* 4769 * ToDo: 4770 * Not sure if this DT property "phy-speed" will get accepted, so 4771 * this might change later 4772 */ 4773 /* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */ 4774 port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node, 4775 "phy-speed", 1000); 4776 4777 port->id = id; 4778 if (port->priv->hw_version == MVPP21) 4779 port->first_rxq = port->id * rxq_number; 4780 else 4781 port->first_rxq = port->id * port->priv->max_port_rxqs; 4782 port->phy_node = phy_node; 4783 port->phy_interface = phy_mode; 4784 port->phyaddr = phyaddr; 4785 4786 return 0; 4787 } 4788 4789 /* Ports initialization */ 4790 static int mvpp2_port_probe(struct udevice *dev, 4791 struct mvpp2_port *port, 4792 int port_node, 4793 struct mvpp2 *priv) 4794 { 4795 int err; 4796 4797 port->tx_ring_size = MVPP2_MAX_TXD; 4798 port->rx_ring_size = MVPP2_MAX_RXD; 4799 4800 err = mvpp2_port_init(dev, port); 4801 if (err < 0) { 4802 dev_err(&pdev->dev, "failed to init port %d\n", port->id); 4803 return err; 4804 } 4805 mvpp2_port_power_up(port); 4806 4807 priv->port_list[port->id] = port; 4808 return 0; 4809 } 4810 4811 /* Initialize decoding windows */ 4812 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, 4813 struct mvpp2 *priv) 4814 { 4815 u32 win_enable; 4816 int i; 4817 4818 for (i = 0; i < 6; i++) { 4819 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); 4820 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); 4821 4822 if (i < 4) 4823 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); 4824 } 4825 4826 win_enable = 0; 4827 4828 for (i = 0; i < dram->num_cs; i++) { 4829 const struct mbus_dram_window *cs = dram->cs + i; 4830 4831 mvpp2_write(priv, MVPP2_WIN_BASE(i), 4832 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | 4833 dram->mbus_dram_target_id); 4834 4835 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 4836 (cs->size - 1) & 0xffff0000); 4837 4838 win_enable |= (1 << i); 4839 } 4840 4841 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); 4842 } 4843 4844 /* Initialize Rx FIFO's */ 4845 static void mvpp2_rx_fifo_init(struct mvpp2 *priv) 4846 { 4847 int port; 4848 4849 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 4850 if (priv->hw_version == MVPP22) { 4851 if (port == 0) { 4852 mvpp2_write(priv, 4853 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4854 MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE); 4855 mvpp2_write(priv, 4856 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4857 MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE); 4858 } else if (port == 1) { 4859 mvpp2_write(priv, 4860 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4861 MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE); 4862 mvpp2_write(priv, 4863 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4864 MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE); 4865 } else { 4866 mvpp2_write(priv, 4867 MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4868 MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE); 4869 mvpp2_write(priv, 4870 MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4871 MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE); 4872 } 4873 } else { 4874 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), 4875 MVPP21_RX_FIFO_PORT_DATA_SIZE); 4876 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), 4877 MVPP21_RX_FIFO_PORT_ATTR_SIZE); 4878 } 4879 } 4880 4881 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, 4882 MVPP2_RX_FIFO_PORT_MIN_PKT); 4883 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); 4884 } 4885 4886 /* Initialize Tx FIFO's */ 4887 static void mvpp2_tx_fifo_init(struct mvpp2 *priv) 4888 { 4889 int port, val; 4890 4891 for (port = 0; port < MVPP2_MAX_PORTS; port++) { 4892 /* Port 0 supports 10KB TX FIFO */ 4893 if (port == 0) { 4894 val = MVPP2_TX_FIFO_DATA_SIZE_10KB & 4895 MVPP22_TX_FIFO_SIZE_MASK; 4896 } else { 4897 val = MVPP2_TX_FIFO_DATA_SIZE_3KB & 4898 MVPP22_TX_FIFO_SIZE_MASK; 4899 } 4900 mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val); 4901 } 4902 } 4903 4904 static void mvpp2_axi_init(struct mvpp2 *priv) 4905 { 4906 u32 val, rdval, wrval; 4907 4908 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0); 4909 4910 /* AXI Bridge Configuration */ 4911 4912 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE 4913 << MVPP22_AXI_ATTR_CACHE_OFFS; 4914 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4915 << MVPP22_AXI_ATTR_DOMAIN_OFFS; 4916 4917 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE 4918 << MVPP22_AXI_ATTR_CACHE_OFFS; 4919 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4920 << MVPP22_AXI_ATTR_DOMAIN_OFFS; 4921 4922 /* BM */ 4923 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval); 4924 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval); 4925 4926 /* Descriptors */ 4927 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval); 4928 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval); 4929 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval); 4930 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval); 4931 4932 /* Buffer Data */ 4933 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval); 4934 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval); 4935 4936 val = MVPP22_AXI_CODE_CACHE_NON_CACHE 4937 << MVPP22_AXI_CODE_CACHE_OFFS; 4938 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM 4939 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4940 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val); 4941 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val); 4942 4943 val = MVPP22_AXI_CODE_CACHE_RD_CACHE 4944 << MVPP22_AXI_CODE_CACHE_OFFS; 4945 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4946 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4947 4948 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val); 4949 4950 val = MVPP22_AXI_CODE_CACHE_WR_CACHE 4951 << MVPP22_AXI_CODE_CACHE_OFFS; 4952 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 4953 << MVPP22_AXI_CODE_DOMAIN_OFFS; 4954 4955 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val); 4956 } 4957 4958 /* Initialize network controller common part HW */ 4959 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv) 4960 { 4961 const struct mbus_dram_target_info *dram_target_info; 4962 int err, i; 4963 u32 val; 4964 4965 /* Checks for hardware constraints (U-Boot uses only one rxq) */ 4966 if ((rxq_number > priv->max_port_rxqs) || 4967 (txq_number > MVPP2_MAX_TXQ)) { 4968 dev_err(&pdev->dev, "invalid queue size parameter\n"); 4969 return -EINVAL; 4970 } 4971 4972 /* MBUS windows configuration */ 4973 dram_target_info = mvebu_mbus_dram_info(); 4974 if (dram_target_info) 4975 mvpp2_conf_mbus_windows(dram_target_info, priv); 4976 4977 if (priv->hw_version == MVPP22) 4978 mvpp2_axi_init(priv); 4979 4980 if (priv->hw_version == MVPP21) { 4981 /* Disable HW PHY polling */ 4982 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 4983 val |= MVPP2_PHY_AN_STOP_SMI0_MASK; 4984 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); 4985 } else { 4986 /* Enable HW PHY polling */ 4987 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG); 4988 val |= MVPP22_SMI_POLLING_EN; 4989 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG); 4990 } 4991 4992 /* Allocate and initialize aggregated TXQs */ 4993 priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(), 4994 sizeof(struct mvpp2_tx_queue), 4995 GFP_KERNEL); 4996 if (!priv->aggr_txqs) 4997 return -ENOMEM; 4998 4999 for_each_present_cpu(i) { 5000 priv->aggr_txqs[i].id = i; 5001 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; 5002 err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i], 5003 MVPP2_AGGR_TXQ_SIZE, i, priv); 5004 if (err < 0) 5005 return err; 5006 } 5007 5008 /* Rx Fifo Init */ 5009 mvpp2_rx_fifo_init(priv); 5010 5011 /* Tx Fifo Init */ 5012 if (priv->hw_version == MVPP22) 5013 mvpp2_tx_fifo_init(priv); 5014 5015 /* Reset Rx queue group interrupt configuration */ 5016 for (i = 0; i < MVPP2_MAX_PORTS; i++) { 5017 if (priv->hw_version == MVPP21) { 5018 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i), 5019 CONFIG_MV_ETH_RXQ); 5020 continue; 5021 } else { 5022 u32 val; 5023 5024 val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET); 5025 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); 5026 5027 val = (CONFIG_MV_ETH_RXQ << 5028 MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET); 5029 mvpp2_write(priv, 5030 MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); 5031 } 5032 } 5033 5034 if (priv->hw_version == MVPP21) 5035 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, 5036 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); 5037 5038 /* Allow cache snoop when transmiting packets */ 5039 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); 5040 5041 /* Buffer Manager initialization */ 5042 err = mvpp2_bm_init(dev, priv); 5043 if (err < 0) 5044 return err; 5045 5046 /* Parser default initialization */ 5047 err = mvpp2_prs_default_init(dev, priv); 5048 if (err < 0) 5049 return err; 5050 5051 /* Classifier default initialization */ 5052 mvpp2_cls_init(priv); 5053 5054 return 0; 5055 } 5056 5057 /* SMI / MDIO functions */ 5058 5059 static int smi_wait_ready(struct mvpp2 *priv) 5060 { 5061 u32 timeout = MVPP2_SMI_TIMEOUT; 5062 u32 smi_reg; 5063 5064 /* wait till the SMI is not busy */ 5065 do { 5066 /* read smi register */ 5067 smi_reg = readl(priv->mdio_base); 5068 if (timeout-- == 0) { 5069 printf("Error: SMI busy timeout\n"); 5070 return -EFAULT; 5071 } 5072 } while (smi_reg & MVPP2_SMI_BUSY); 5073 5074 return 0; 5075 } 5076 5077 /* 5078 * mpp2_mdio_read - miiphy_read callback function. 5079 * 5080 * Returns 16bit phy register value, or 0xffff on error 5081 */ 5082 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) 5083 { 5084 struct mvpp2 *priv = bus->priv; 5085 u32 smi_reg; 5086 u32 timeout; 5087 5088 /* check parameters */ 5089 if (addr > MVPP2_PHY_ADDR_MASK) { 5090 printf("Error: Invalid PHY address %d\n", addr); 5091 return -EFAULT; 5092 } 5093 5094 if (reg > MVPP2_PHY_REG_MASK) { 5095 printf("Err: Invalid register offset %d\n", reg); 5096 return -EFAULT; 5097 } 5098 5099 /* wait till the SMI is not busy */ 5100 if (smi_wait_ready(priv) < 0) 5101 return -EFAULT; 5102 5103 /* fill the phy address and regiser offset and read opcode */ 5104 smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS) 5105 | (reg << MVPP2_SMI_REG_ADDR_OFFS) 5106 | MVPP2_SMI_OPCODE_READ; 5107 5108 /* write the smi register */ 5109 writel(smi_reg, priv->mdio_base); 5110 5111 /* wait till read value is ready */ 5112 timeout = MVPP2_SMI_TIMEOUT; 5113 5114 do { 5115 /* read smi register */ 5116 smi_reg = readl(priv->mdio_base); 5117 if (timeout-- == 0) { 5118 printf("Err: SMI read ready timeout\n"); 5119 return -EFAULT; 5120 } 5121 } while (!(smi_reg & MVPP2_SMI_READ_VALID)); 5122 5123 /* Wait for the data to update in the SMI register */ 5124 for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++) 5125 ; 5126 5127 return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK; 5128 } 5129 5130 /* 5131 * mpp2_mdio_write - miiphy_write callback function. 5132 * 5133 * Returns 0 if write succeed, -EINVAL on bad parameters 5134 * -ETIME on timeout 5135 */ 5136 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, 5137 u16 value) 5138 { 5139 struct mvpp2 *priv = bus->priv; 5140 u32 smi_reg; 5141 5142 /* check parameters */ 5143 if (addr > MVPP2_PHY_ADDR_MASK) { 5144 printf("Error: Invalid PHY address %d\n", addr); 5145 return -EFAULT; 5146 } 5147 5148 if (reg > MVPP2_PHY_REG_MASK) { 5149 printf("Err: Invalid register offset %d\n", reg); 5150 return -EFAULT; 5151 } 5152 5153 /* wait till the SMI is not busy */ 5154 if (smi_wait_ready(priv) < 0) 5155 return -EFAULT; 5156 5157 /* fill the phy addr and reg offset and write opcode and data */ 5158 smi_reg = value << MVPP2_SMI_DATA_OFFS; 5159 smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS) 5160 | (reg << MVPP2_SMI_REG_ADDR_OFFS); 5161 smi_reg &= ~MVPP2_SMI_OPCODE_READ; 5162 5163 /* write the smi register */ 5164 writel(smi_reg, priv->mdio_base); 5165 5166 return 0; 5167 } 5168 5169 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp) 5170 { 5171 struct mvpp2_port *port = dev_get_priv(dev); 5172 struct mvpp2_rx_desc *rx_desc; 5173 struct mvpp2_bm_pool *bm_pool; 5174 dma_addr_t dma_addr; 5175 u32 bm, rx_status; 5176 int pool, rx_bytes, err; 5177 int rx_received; 5178 struct mvpp2_rx_queue *rxq; 5179 u32 cause_rx_tx, cause_rx, cause_misc; 5180 u8 *data; 5181 5182 cause_rx_tx = mvpp2_read(port->priv, 5183 MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); 5184 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; 5185 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK; 5186 if (!cause_rx_tx && !cause_misc) 5187 return 0; 5188 5189 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK; 5190 5191 /* Process RX packets */ 5192 cause_rx |= port->pending_cause_rx; 5193 rxq = mvpp2_get_rx_queue(port, cause_rx); 5194 5195 /* Get number of received packets and clamp the to-do */ 5196 rx_received = mvpp2_rxq_received(port, rxq->id); 5197 5198 /* Return if no packets are received */ 5199 if (!rx_received) 5200 return 0; 5201 5202 rx_desc = mvpp2_rxq_next_desc_get(rxq); 5203 rx_status = mvpp2_rxdesc_status_get(port, rx_desc); 5204 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc); 5205 rx_bytes -= MVPP2_MH_SIZE; 5206 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); 5207 5208 bm = mvpp2_bm_cookie_build(port, rx_desc); 5209 pool = mvpp2_bm_cookie_pool_get(bm); 5210 bm_pool = &port->priv->bm_pools[pool]; 5211 5212 /* In case of an error, release the requested buffer pointer 5213 * to the Buffer Manager. This request process is controlled 5214 * by the hardware, and the information about the buffer is 5215 * comprised by the RX descriptor. 5216 */ 5217 if (rx_status & MVPP2_RXD_ERR_SUMMARY) { 5218 mvpp2_rx_error(port, rx_desc); 5219 /* Return the buffer to the pool */ 5220 mvpp2_pool_refill(port, bm, dma_addr, dma_addr); 5221 return 0; 5222 } 5223 5224 err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr); 5225 if (err) { 5226 netdev_err(port->dev, "failed to refill BM pools\n"); 5227 return 0; 5228 } 5229 5230 /* Update Rx queue management counters */ 5231 mb(); 5232 mvpp2_rxq_status_update(port, rxq->id, 1, 1); 5233 5234 /* give packet to stack - skip on first n bytes */ 5235 data = (u8 *)dma_addr + 2 + 32; 5236 5237 if (rx_bytes <= 0) 5238 return 0; 5239 5240 /* 5241 * No cache invalidation needed here, since the rx_buffer's are 5242 * located in a uncached memory region 5243 */ 5244 *packetp = data; 5245 5246 return rx_bytes; 5247 } 5248 5249 /* Drain Txq */ 5250 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, 5251 int enable) 5252 { 5253 u32 val; 5254 5255 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 5256 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); 5257 if (enable) 5258 val |= MVPP2_TXQ_DRAIN_EN_MASK; 5259 else 5260 val &= ~MVPP2_TXQ_DRAIN_EN_MASK; 5261 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); 5262 } 5263 5264 static int mvpp2_send(struct udevice *dev, void *packet, int length) 5265 { 5266 struct mvpp2_port *port = dev_get_priv(dev); 5267 struct mvpp2_tx_queue *txq, *aggr_txq; 5268 struct mvpp2_tx_desc *tx_desc; 5269 int tx_done; 5270 int timeout; 5271 5272 txq = port->txqs[0]; 5273 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()]; 5274 5275 /* Get a descriptor for the first part of the packet */ 5276 tx_desc = mvpp2_txq_next_desc_get(aggr_txq); 5277 mvpp2_txdesc_txq_set(port, tx_desc, txq->id); 5278 mvpp2_txdesc_size_set(port, tx_desc, length); 5279 mvpp2_txdesc_offset_set(port, tx_desc, 5280 (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN); 5281 mvpp2_txdesc_dma_addr_set(port, tx_desc, 5282 (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN); 5283 /* First and Last descriptor */ 5284 mvpp2_txdesc_cmd_set(port, tx_desc, 5285 MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE 5286 | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC); 5287 5288 /* Flush tx data */ 5289 flush_dcache_range((unsigned long)packet, 5290 (unsigned long)packet + ALIGN(length, PKTALIGN)); 5291 5292 /* Enable transmit */ 5293 mb(); 5294 mvpp2_aggr_txq_pend_desc_add(port, 1); 5295 5296 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); 5297 5298 timeout = 0; 5299 do { 5300 if (timeout++ > 10000) { 5301 printf("timeout: packet not sent from aggregated to phys TXQ\n"); 5302 return 0; 5303 } 5304 tx_done = mvpp2_txq_pend_desc_num_get(port, txq); 5305 } while (tx_done); 5306 5307 /* Enable TXQ drain */ 5308 mvpp2_txq_drain(port, txq, 1); 5309 5310 timeout = 0; 5311 do { 5312 if (timeout++ > 10000) { 5313 printf("timeout: packet not sent\n"); 5314 return 0; 5315 } 5316 tx_done = mvpp2_txq_sent_desc_proc(port, txq); 5317 } while (!tx_done); 5318 5319 /* Disable TXQ drain */ 5320 mvpp2_txq_drain(port, txq, 0); 5321 5322 return 0; 5323 } 5324 5325 static int mvpp2_start(struct udevice *dev) 5326 { 5327 struct eth_pdata *pdata = dev_get_platdata(dev); 5328 struct mvpp2_port *port = dev_get_priv(dev); 5329 5330 /* Load current MAC address */ 5331 memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN); 5332 5333 /* Reconfigure parser accept the original MAC address */ 5334 mvpp2_prs_update_mac_da(port, port->dev_addr); 5335 5336 switch (port->phy_interface) { 5337 case PHY_INTERFACE_MODE_RGMII: 5338 case PHY_INTERFACE_MODE_RGMII_ID: 5339 case PHY_INTERFACE_MODE_SGMII: 5340 mvpp2_port_power_up(port); 5341 default: 5342 break; 5343 } 5344 5345 mvpp2_open(dev, port); 5346 5347 return 0; 5348 } 5349 5350 static void mvpp2_stop(struct udevice *dev) 5351 { 5352 struct mvpp2_port *port = dev_get_priv(dev); 5353 5354 mvpp2_stop_dev(port); 5355 mvpp2_cleanup_rxqs(port); 5356 mvpp2_cleanup_txqs(port); 5357 } 5358 5359 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port) 5360 { 5361 writel(port->phyaddr, port->priv->iface_base + 5362 MVPP22_SMI_PHY_ADDR_REG(port->gop_id)); 5363 5364 return 0; 5365 } 5366 5367 static int mvpp2_base_probe(struct udevice *dev) 5368 { 5369 struct mvpp2 *priv = dev_get_priv(dev); 5370 struct mii_dev *bus; 5371 void *bd_space; 5372 u32 size = 0; 5373 int i; 5374 5375 /* Save hw-version */ 5376 priv->hw_version = dev_get_driver_data(dev); 5377 5378 /* 5379 * U-Boot special buffer handling: 5380 * 5381 * Allocate buffer area for descs and rx_buffers. This is only 5382 * done once for all interfaces. As only one interface can 5383 * be active. Make this area DMA-safe by disabling the D-cache 5384 */ 5385 5386 /* Align buffer area for descs and rx_buffers to 1MiB */ 5387 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE); 5388 mmu_set_region_dcache_behaviour((unsigned long)bd_space, 5389 BD_SPACE, DCACHE_OFF); 5390 5391 buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space; 5392 size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE; 5393 5394 buffer_loc.tx_descs = 5395 (struct mvpp2_tx_desc *)((unsigned long)bd_space + size); 5396 size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE; 5397 5398 buffer_loc.rx_descs = 5399 (struct mvpp2_rx_desc *)((unsigned long)bd_space + size); 5400 size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE; 5401 5402 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { 5403 buffer_loc.bm_pool[i] = 5404 (unsigned long *)((unsigned long)bd_space + size); 5405 if (priv->hw_version == MVPP21) 5406 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32); 5407 else 5408 size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64); 5409 } 5410 5411 for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) { 5412 buffer_loc.rx_buffer[i] = 5413 (unsigned long *)((unsigned long)bd_space + size); 5414 size += RX_BUFFER_SIZE; 5415 } 5416 5417 /* Clear the complete area so that all descriptors are cleared */ 5418 memset(bd_space, 0, size); 5419 5420 /* Save base addresses for later use */ 5421 priv->base = (void *)devfdt_get_addr_index(dev, 0); 5422 if (IS_ERR(priv->base)) 5423 return PTR_ERR(priv->base); 5424 5425 if (priv->hw_version == MVPP21) { 5426 priv->lms_base = (void *)devfdt_get_addr_index(dev, 1); 5427 if (IS_ERR(priv->lms_base)) 5428 return PTR_ERR(priv->lms_base); 5429 5430 priv->mdio_base = priv->lms_base + MVPP21_SMI; 5431 } else { 5432 priv->iface_base = (void *)devfdt_get_addr_index(dev, 1); 5433 if (IS_ERR(priv->iface_base)) 5434 return PTR_ERR(priv->iface_base); 5435 5436 priv->mdio_base = priv->iface_base + MVPP22_SMI; 5437 5438 /* Store common base addresses for all ports */ 5439 priv->mpcs_base = priv->iface_base + MVPP22_MPCS; 5440 priv->xpcs_base = priv->iface_base + MVPP22_XPCS; 5441 priv->rfu1_base = priv->iface_base + MVPP22_RFU1; 5442 } 5443 5444 if (priv->hw_version == MVPP21) 5445 priv->max_port_rxqs = 8; 5446 else 5447 priv->max_port_rxqs = 32; 5448 5449 /* Finally create and register the MDIO bus driver */ 5450 bus = mdio_alloc(); 5451 if (!bus) { 5452 printf("Failed to allocate MDIO bus\n"); 5453 return -ENOMEM; 5454 } 5455 5456 bus->read = mpp2_mdio_read; 5457 bus->write = mpp2_mdio_write; 5458 snprintf(bus->name, sizeof(bus->name), dev->name); 5459 bus->priv = (void *)priv; 5460 priv->bus = bus; 5461 5462 return mdio_register(bus); 5463 } 5464 5465 static int mvpp2_probe(struct udevice *dev) 5466 { 5467 struct mvpp2_port *port = dev_get_priv(dev); 5468 struct mvpp2 *priv = dev_get_priv(dev->parent); 5469 int err; 5470 5471 /* Only call the probe function for the parent once */ 5472 if (!priv->probe_done) { 5473 err = mvpp2_base_probe(dev->parent); 5474 priv->probe_done = 1; 5475 } 5476 5477 port->priv = dev_get_priv(dev->parent); 5478 5479 err = phy_info_parse(dev, port); 5480 if (err) 5481 return err; 5482 5483 /* 5484 * We need the port specific io base addresses at this stage, since 5485 * gop_port_init() accesses these registers 5486 */ 5487 if (priv->hw_version == MVPP21) { 5488 int priv_common_regs_num = 2; 5489 5490 port->base = (void __iomem *)devfdt_get_addr_index( 5491 dev->parent, priv_common_regs_num + port->id); 5492 if (IS_ERR(port->base)) 5493 return PTR_ERR(port->base); 5494 } else { 5495 port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), 5496 "gop-port-id", -1); 5497 if (port->id == -1) { 5498 dev_err(&pdev->dev, "missing gop-port-id value\n"); 5499 return -EINVAL; 5500 } 5501 5502 port->base = priv->iface_base + MVPP22_PORT_BASE + 5503 port->gop_id * MVPP22_PORT_OFFSET; 5504 5505 /* Set phy address of the port */ 5506 if(port->phy_node) 5507 mvpp22_smi_phy_addr_cfg(port); 5508 5509 /* GoP Init */ 5510 gop_port_init(port); 5511 } 5512 5513 /* Initialize network controller */ 5514 err = mvpp2_init(dev, priv); 5515 if (err < 0) { 5516 dev_err(&pdev->dev, "failed to initialize controller\n"); 5517 return err; 5518 } 5519 5520 err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv); 5521 if (err) 5522 return err; 5523 5524 if (priv->hw_version == MVPP22) { 5525 priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id, 5526 port->phy_interface); 5527 5528 /* Netcomplex configurations for all ports */ 5529 gop_netc_init(priv, MV_NETC_FIRST_PHASE); 5530 gop_netc_init(priv, MV_NETC_SECOND_PHASE); 5531 } 5532 5533 return 0; 5534 } 5535 5536 /* 5537 * Empty BM pool and stop its activity before the OS is started 5538 */ 5539 static int mvpp2_remove(struct udevice *dev) 5540 { 5541 struct mvpp2_port *port = dev_get_priv(dev); 5542 struct mvpp2 *priv = port->priv; 5543 int i; 5544 5545 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) 5546 mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); 5547 5548 return 0; 5549 } 5550 5551 static const struct eth_ops mvpp2_ops = { 5552 .start = mvpp2_start, 5553 .send = mvpp2_send, 5554 .recv = mvpp2_recv, 5555 .stop = mvpp2_stop, 5556 }; 5557 5558 static struct driver mvpp2_driver = { 5559 .name = "mvpp2", 5560 .id = UCLASS_ETH, 5561 .probe = mvpp2_probe, 5562 .remove = mvpp2_remove, 5563 .ops = &mvpp2_ops, 5564 .priv_auto_alloc_size = sizeof(struct mvpp2_port), 5565 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 5566 .flags = DM_FLAG_ACTIVE_DMA, 5567 }; 5568 5569 /* 5570 * Use a MISC device to bind the n instances (child nodes) of the 5571 * network base controller in UCLASS_ETH. 5572 */ 5573 static int mvpp2_base_bind(struct udevice *parent) 5574 { 5575 const void *blob = gd->fdt_blob; 5576 int node = dev_of_offset(parent); 5577 struct uclass_driver *drv; 5578 struct udevice *dev; 5579 struct eth_pdata *plat; 5580 char *name; 5581 int subnode; 5582 u32 id; 5583 int base_id_add; 5584 5585 /* Lookup eth driver */ 5586 drv = lists_uclass_lookup(UCLASS_ETH); 5587 if (!drv) { 5588 puts("Cannot find eth driver\n"); 5589 return -ENOENT; 5590 } 5591 5592 base_id_add = base_id; 5593 5594 fdt_for_each_subnode(subnode, blob, node) { 5595 /* Increment base_id for all subnodes, also the disabled ones */ 5596 base_id++; 5597 5598 /* Skip disabled ports */ 5599 if (!fdtdec_get_is_enabled(blob, subnode)) 5600 continue; 5601 5602 plat = calloc(1, sizeof(*plat)); 5603 if (!plat) 5604 return -ENOMEM; 5605 5606 id = fdtdec_get_int(blob, subnode, "port-id", -1); 5607 id += base_id_add; 5608 5609 name = calloc(1, 16); 5610 sprintf(name, "mvpp2-%d", id); 5611 5612 /* Create child device UCLASS_ETH and bind it */ 5613 device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev); 5614 dev_set_of_offset(dev, subnode); 5615 } 5616 5617 return 0; 5618 } 5619 5620 static const struct udevice_id mvpp2_ids[] = { 5621 { 5622 .compatible = "marvell,armada-375-pp2", 5623 .data = MVPP21, 5624 }, 5625 { 5626 .compatible = "marvell,armada-7k-pp22", 5627 .data = MVPP22, 5628 }, 5629 { } 5630 }; 5631 5632 U_BOOT_DRIVER(mvpp2_base) = { 5633 .name = "mvpp2_base", 5634 .id = UCLASS_MISC, 5635 .of_match = mvpp2_ids, 5636 .bind = mvpp2_base_bind, 5637 .priv_auto_alloc_size = sizeof(struct mvpp2), 5638 }; 5639