xref: /openbmc/u-boot/drivers/net/mvpp2.c (revision a6ac775b)
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 #include <asm-generic/gpio.h>
34 #include <fdt_support.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
38 #define __verify_pcpu_ptr(ptr)						\
39 do {									\
40 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
41 	(void)__vpp_verify;						\
42 } while (0)
43 
44 #define VERIFY_PERCPU_PTR(__p)						\
45 ({									\
46 	__verify_pcpu_ptr(__p);						\
47 	(typeof(*(__p)) __kernel __force *)(__p);			\
48 })
49 
50 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
51 #define smp_processor_id()	0
52 #define num_present_cpus()	1
53 #define for_each_present_cpu(cpu)			\
54 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
55 
56 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
57 
58 #define CONFIG_NR_CPUS		1
59 
60 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
61 #define WRAP			(2 + ETH_HLEN + 4 + 32)
62 #define MTU			1500
63 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
64 
65 #define MVPP2_SMI_TIMEOUT			10000
66 
67 /* RX Fifo Registers */
68 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
69 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
70 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
71 #define MVPP2_RX_FIFO_INIT_REG			0x64
72 
73 /* RX DMA Top Registers */
74 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
75 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
76 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
77 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
78 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
79 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
80 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
81 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
82 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
83 #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
84 #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
85 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
86 #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
87 #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
88 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
89 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
90 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
91 
92 /* Parser Registers */
93 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
94 #define     MVPP2_PRS_PORT_LU_MAX		0xf
95 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
96 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
97 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
98 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
99 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
100 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
101 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
102 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
103 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
104 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
105 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
106 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
107 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
108 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
109 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
110 
111 /* Classifier Registers */
112 #define MVPP2_CLS_MODE_REG			0x1800
113 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
114 #define MVPP2_CLS_PORT_WAY_REG			0x1810
115 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
116 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
117 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
118 #define MVPP2_CLS_LKP_TBL_REG			0x1818
119 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
120 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
121 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
122 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
123 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
124 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
125 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
126 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
127 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
128 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
129 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
130 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
131 
132 /* Descriptor Manager Top Registers */
133 #define MVPP2_RXQ_NUM_REG			0x2040
134 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
135 #define     MVPP22_DESC_ADDR_OFFS		8
136 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
137 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
138 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
139 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
140 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
141 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
142 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
143 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
144 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
145 #define MVPP2_RXQ_THRESH_REG			0x204c
146 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
147 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
148 #define MVPP2_RXQ_INDEX_REG			0x2050
149 #define MVPP2_TXQ_NUM_REG			0x2080
150 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
151 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
152 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
153 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
154 #define MVPP2_TXQ_THRESH_REG			0x2094
155 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
156 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
157 #define MVPP2_TXQ_INDEX_REG			0x2098
158 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
159 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
160 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
161 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
162 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
163 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
164 #define MVPP2_TXQ_PENDING_REG			0x20a0
165 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
166 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
167 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
168 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
169 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
170 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
171 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
172 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
173 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
174 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
175 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
176 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
177 #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
178 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
179 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
180 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
181 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
182 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
183 
184 /* MBUS bridge registers */
185 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
186 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
187 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
188 #define MVPP2_BASE_ADDR_ENABLE			0x4060
189 
190 /* AXI Bridge Registers */
191 #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
192 #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
193 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
194 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
195 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
196 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
197 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
198 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
199 #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
200 #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
201 #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
202 #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
203 
204 /* Values for AXI Bridge registers */
205 #define MVPP22_AXI_ATTR_CACHE_OFFS		0
206 #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
207 
208 #define MVPP22_AXI_CODE_CACHE_OFFS		0
209 #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
210 
211 #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
212 #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
213 #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
214 
215 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
216 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
217 
218 /* Interrupt Cause and Mask registers */
219 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
220 #define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
221 
222 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
223 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
224 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
225 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
226 
227 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
228 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
229 
230 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
231 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
232 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
233 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8
234 
235 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
236 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
237 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
238 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
239 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
240 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
241 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
242 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
243 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
244 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
245 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
246 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
247 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
248 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
249 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
250 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
251 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
252 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
253 
254 /* Buffer Manager registers */
255 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
256 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
257 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
258 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
259 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
260 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
261 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
262 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
263 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
264 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
265 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
266 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
267 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
268 #define     MVPP2_BM_START_MASK			BIT(0)
269 #define     MVPP2_BM_STOP_MASK			BIT(1)
270 #define     MVPP2_BM_STATE_MASK			BIT(4)
271 #define     MVPP2_BM_LOW_THRESH_OFFS		8
272 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
273 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
274 						MVPP2_BM_LOW_THRESH_OFFS)
275 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
276 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
277 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
278 						MVPP2_BM_HIGH_THRESH_OFFS)
279 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
280 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
281 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
282 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
283 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
284 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
285 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
286 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
287 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
288 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
289 #define MVPP2_BM_ADDR_HIGH_ALLOC		0x6444
290 #define     MVPP2_BM_ADDR_HIGH_PHYS_MASK	0xff
291 #define     MVPP2_BM_ADDR_HIGH_VIRT_MASK	0xff00
292 #define     MVPP2_BM_ADDR_HIGH_VIRT_SHIFT	8
293 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
294 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
295 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
296 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
297 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
298 #define MVPP21_BM_MC_RLS_REG			0x64c4
299 #define     MVPP2_BM_MC_ID_MASK			0xfff
300 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
301 #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
302 #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
303 #define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
304 #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
305 #define MVPP22_BM_MC_RLS_REG			0x64d4
306 #define MVPP22_BM_POOL_BASE_HIGH_REG		0x6310
307 #define MVPP22_BM_POOL_BASE_HIGH_MASK		0xff
308 
309 /* TX Scheduler registers */
310 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
311 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
312 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
313 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
314 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
315 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
316 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
317 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
318 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
319 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
320 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
321 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
322 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
323 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
324 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
325 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
326 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
327 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
328 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
329 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
330 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
331 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
332 
333 /* TX general registers */
334 #define MVPP2_TX_SNOOP_REG			0x8800
335 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
336 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
337 
338 /* LMS registers */
339 #define MVPP2_SRC_ADDR_MIDDLE			0x24
340 #define MVPP2_SRC_ADDR_HIGH			0x28
341 #define MVPP2_PHY_AN_CFG0_REG			0x34
342 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
343 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
344 #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
345 
346 /* Per-port registers */
347 #define MVPP2_GMAC_CTRL_0_REG			0x0
348 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
349 #define      MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
350 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
351 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
352 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
353 #define MVPP2_GMAC_CTRL_1_REG			0x4
354 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
355 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
356 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
357 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
358 #define      MVPP2_GMAC_SA_LOW_OFFS		7
359 #define MVPP2_GMAC_CTRL_2_REG			0x8
360 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
361 #define      MVPP2_GMAC_SGMII_MODE_MASK		BIT(0)
362 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
363 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
364 #define      MVPP2_GMAC_PORT_DIS_PADING_MASK	BIT(5)
365 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
366 #define      MVPP2_GMAC_CLK_125_BYPS_EN_MASK	BIT(9)
367 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
368 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
369 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
370 #define      MVPP2_GMAC_EN_PCS_AN		BIT(2)
371 #define      MVPP2_GMAC_AN_BYPASS_EN		BIT(3)
372 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
373 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
374 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
375 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
376 #define      MVPP2_GMAC_EN_FC_AN		BIT(11)
377 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
378 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
379 #define      MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG	BIT(15)
380 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
381 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
382 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
383 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
384 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
385 #define MVPP2_GMAC_CTRL_4_REG			0x90
386 #define      MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK	BIT(0)
387 #define      MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK	BIT(5)
388 #define      MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK	BIT(6)
389 #define      MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK	BIT(7)
390 
391 /*
392  * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
393  * relative to port->base.
394  */
395 
396 /* Port Mac Control0 */
397 #define MVPP22_XLG_CTRL0_REG			0x100
398 #define      MVPP22_XLG_PORT_EN			BIT(0)
399 #define      MVPP22_XLG_MAC_RESETN		BIT(1)
400 #define      MVPP22_XLG_RX_FC_EN		BIT(7)
401 #define      MVPP22_XLG_MIBCNT_DIS		BIT(13)
402 /* Port Mac Control1 */
403 #define MVPP22_XLG_CTRL1_REG			0x104
404 #define      MVPP22_XLG_MAX_RX_SIZE_OFFS	0
405 #define      MVPP22_XLG_MAX_RX_SIZE_MASK	0x1fff
406 /* Port Interrupt Mask */
407 #define MVPP22_XLG_INTERRUPT_MASK_REG		0x118
408 #define      MVPP22_XLG_INTERRUPT_LINK_CHANGE	BIT(1)
409 /* Port Mac Control3 */
410 #define MVPP22_XLG_CTRL3_REG			0x11c
411 #define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
412 #define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
413 #define      MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC	(1 << 13)
414 /* Port Mac Control4 */
415 #define MVPP22_XLG_CTRL4_REG			0x184
416 #define      MVPP22_XLG_FORWARD_802_3X_FC_EN	BIT(5)
417 #define      MVPP22_XLG_FORWARD_PFC_EN		BIT(6)
418 #define      MVPP22_XLG_MODE_DMA_1G		BIT(12)
419 #define      MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK	BIT(14)
420 
421 /* XPCS registers */
422 
423 /* Global Configuration 0 */
424 #define MVPP22_XPCS_GLOBAL_CFG_0_REG		0x0
425 #define      MVPP22_XPCS_PCSRESET		BIT(0)
426 #define      MVPP22_XPCS_PCSMODE_OFFS		3
427 #define      MVPP22_XPCS_PCSMODE_MASK		(0x3 << \
428 						 MVPP22_XPCS_PCSMODE_OFFS)
429 #define      MVPP22_XPCS_LANEACTIVE_OFFS	5
430 #define      MVPP22_XPCS_LANEACTIVE_MASK	(0x3 << \
431 						 MVPP22_XPCS_LANEACTIVE_OFFS)
432 
433 /* MPCS registers */
434 
435 #define PCS40G_COMMON_CONTROL			0x14
436 #define      FORWARD_ERROR_CORRECTION_MASK	BIT(10)
437 
438 #define PCS_CLOCK_RESET				0x14c
439 #define      TX_SD_CLK_RESET_MASK		BIT(0)
440 #define      RX_SD_CLK_RESET_MASK		BIT(1)
441 #define      MAC_CLK_RESET_MASK			BIT(2)
442 #define      CLK_DIVISION_RATIO_OFFS		4
443 #define      CLK_DIVISION_RATIO_MASK		(0x7 << CLK_DIVISION_RATIO_OFFS)
444 #define      CLK_DIV_PHASE_SET_MASK		BIT(11)
445 
446 /* System Soft Reset 1 */
447 #define GOP_SOFT_RESET_1_REG			0x108
448 #define     NETC_GOP_SOFT_RESET_OFFS		6
449 #define     NETC_GOP_SOFT_RESET_MASK		(0x1 << \
450 						 NETC_GOP_SOFT_RESET_OFFS)
451 
452 /* Ports Control 0 */
453 #define NETCOMP_PORTS_CONTROL_0_REG		0x110
454 #define     NETC_BUS_WIDTH_SELECT_OFFS		1
455 #define     NETC_BUS_WIDTH_SELECT_MASK		(0x1 << \
456 						 NETC_BUS_WIDTH_SELECT_OFFS)
457 #define     NETC_GIG_RX_DATA_SAMPLE_OFFS	29
458 #define     NETC_GIG_RX_DATA_SAMPLE_MASK	(0x1 << \
459 						 NETC_GIG_RX_DATA_SAMPLE_OFFS)
460 #define     NETC_CLK_DIV_PHASE_OFFS		31
461 #define     NETC_CLK_DIV_PHASE_MASK		(0x1 << NETC_CLK_DIV_PHASE_OFFS)
462 /* Ports Control 1 */
463 #define NETCOMP_PORTS_CONTROL_1_REG		0x114
464 #define     NETC_PORTS_ACTIVE_OFFSET(p)		(0 + p)
465 #define     NETC_PORTS_ACTIVE_MASK(p)		(0x1 << \
466 						 NETC_PORTS_ACTIVE_OFFSET(p))
467 #define     NETC_PORT_GIG_RF_RESET_OFFS(p)	(28 + p)
468 #define     NETC_PORT_GIG_RF_RESET_MASK(p)	(0x1 << \
469 						 NETC_PORT_GIG_RF_RESET_OFFS(p))
470 #define NETCOMP_CONTROL_0_REG			0x120
471 #define     NETC_GBE_PORT0_SGMII_MODE_OFFS	0
472 #define     NETC_GBE_PORT0_SGMII_MODE_MASK	(0x1 << \
473 						 NETC_GBE_PORT0_SGMII_MODE_OFFS)
474 #define     NETC_GBE_PORT1_SGMII_MODE_OFFS	1
475 #define     NETC_GBE_PORT1_SGMII_MODE_MASK	(0x1 << \
476 						 NETC_GBE_PORT1_SGMII_MODE_OFFS)
477 #define     NETC_GBE_PORT1_MII_MODE_OFFS	2
478 #define     NETC_GBE_PORT1_MII_MODE_MASK	(0x1 << \
479 						 NETC_GBE_PORT1_MII_MODE_OFFS)
480 
481 #define MVPP22_SMI_MISC_CFG_REG			(MVPP22_SMI + 0x04)
482 #define      MVPP22_SMI_POLLING_EN		BIT(10)
483 
484 #define MVPP22_SMI_PHY_ADDR_REG(port)		(MVPP22_SMI + 0x04 + \
485 						 (0x4 * (port)))
486 
487 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
488 
489 /* Descriptor ring Macros */
490 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
491 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
492 
493 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
494 #define MVPP21_SMI				0x0054
495 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
496 #define MVPP22_SMI				0x1200
497 #define     MVPP2_PHY_REG_MASK			0x1f
498 /* SMI register fields */
499 #define     MVPP2_SMI_DATA_OFFS			0	/* Data */
500 #define     MVPP2_SMI_DATA_MASK			(0xffff << MVPP2_SMI_DATA_OFFS)
501 #define     MVPP2_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
502 #define     MVPP2_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
503 #define     MVPP2_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
504 #define     MVPP2_SMI_OPCODE_READ		(1 << MVPP2_SMI_OPCODE_OFFS)
505 #define     MVPP2_SMI_READ_VALID		(1 << 27)	/* Read Valid */
506 #define     MVPP2_SMI_BUSY			(1 << 28)	/* Busy */
507 
508 #define     MVPP2_PHY_ADDR_MASK			0x1f
509 #define     MVPP2_PHY_REG_MASK			0x1f
510 
511 /* Additional PPv2.2 offsets */
512 #define MVPP22_MPCS				0x007000
513 #define MVPP22_XPCS				0x007400
514 #define MVPP22_PORT_BASE			0x007e00
515 #define MVPP22_PORT_OFFSET			0x001000
516 #define MVPP22_RFU1				0x318000
517 
518 /* Maximum number of ports */
519 #define MVPP22_GOP_MAC_NUM			4
520 
521 /* Sets the field located at the specified in data */
522 #define MVPP2_RGMII_TX_FIFO_MIN_TH		0x41
523 #define MVPP2_SGMII_TX_FIFO_MIN_TH		0x5
524 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH		0xb
525 
526 /* Net Complex */
527 enum mv_netc_topology {
528 	MV_NETC_GE_MAC2_SGMII		=	BIT(0),
529 	MV_NETC_GE_MAC3_SGMII		=	BIT(1),
530 	MV_NETC_GE_MAC3_RGMII		=	BIT(2),
531 };
532 
533 enum mv_netc_phase {
534 	MV_NETC_FIRST_PHASE,
535 	MV_NETC_SECOND_PHASE,
536 };
537 
538 enum mv_netc_sgmii_xmi_mode {
539 	MV_NETC_GBE_SGMII,
540 	MV_NETC_GBE_XMII,
541 };
542 
543 enum mv_netc_mii_mode {
544 	MV_NETC_GBE_RGMII,
545 	MV_NETC_GBE_MII,
546 };
547 
548 enum mv_netc_lanes {
549 	MV_NETC_LANE_23,
550 	MV_NETC_LANE_45,
551 };
552 
553 /* Various constants */
554 
555 /* Coalescing */
556 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
557 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
558 #define MVPP2_RX_COAL_PKTS		32
559 #define MVPP2_RX_COAL_USEC		100
560 
561 /* The two bytes Marvell header. Either contains a special value used
562  * by Marvell switches when a specific hardware mode is enabled (not
563  * supported by this driver) or is filled automatically by zeroes on
564  * the RX side. Those two bytes being at the front of the Ethernet
565  * header, they allow to have the IP header aligned on a 4 bytes
566  * boundary automatically: the hardware skips those two bytes on its
567  * own.
568  */
569 #define MVPP2_MH_SIZE			2
570 #define MVPP2_ETH_TYPE_LEN		2
571 #define MVPP2_PPPOE_HDR_SIZE		8
572 #define MVPP2_VLAN_TAG_LEN		4
573 
574 /* Lbtd 802.3 type */
575 #define MVPP2_IP_LBDT_TYPE		0xfffa
576 
577 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
578 #define MVPP2_TX_CSUM_MAX_SIZE		9800
579 
580 /* Timeout constants */
581 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
582 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
583 
584 #define MVPP2_TX_MTU_MAX		0x7ffff
585 
586 /* Maximum number of T-CONTs of PON port */
587 #define MVPP2_MAX_TCONT			16
588 
589 /* Maximum number of supported ports */
590 #define MVPP2_MAX_PORTS			4
591 
592 /* Maximum number of TXQs used by single port */
593 #define MVPP2_MAX_TXQ			8
594 
595 /* Default number of TXQs in use */
596 #define MVPP2_DEFAULT_TXQ		1
597 
598 /* Dfault number of RXQs in use */
599 #define MVPP2_DEFAULT_RXQ		1
600 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
601 
602 /* Max number of Rx descriptors */
603 #define MVPP2_MAX_RXD			16
604 
605 /* Max number of Tx descriptors */
606 #define MVPP2_MAX_TXD			16
607 
608 /* Amount of Tx descriptors that can be reserved at once by CPU */
609 #define MVPP2_CPU_DESC_CHUNK		16
610 
611 /* Max number of Tx descriptors in each aggregated queue */
612 #define MVPP2_AGGR_TXQ_SIZE		16
613 
614 /* Descriptor aligned size */
615 #define MVPP2_DESC_ALIGNED_SIZE		32
616 
617 /* Descriptor alignment mask */
618 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
619 
620 /* RX FIFO constants */
621 #define MVPP21_RX_FIFO_PORT_DATA_SIZE		0x2000
622 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE		0x80
623 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE	0x8000
624 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE	0x2000
625 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE	0x1000
626 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE	0x200
627 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE	0x80
628 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE	0x40
629 #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
630 
631 /* TX general registers */
632 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port)	(0x8860 + ((eth_tx_port) << 2))
633 #define MVPP22_TX_FIFO_SIZE_MASK		0xf
634 
635 /* TX FIFO constants */
636 #define MVPP2_TX_FIFO_DATA_SIZE_10KB		0xa
637 #define MVPP2_TX_FIFO_DATA_SIZE_3KB		0x3
638 
639 /* RX buffer constants */
640 #define MVPP2_SKB_SHINFO_SIZE \
641 	0
642 
643 #define MVPP2_RX_PKT_SIZE(mtu) \
644 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
645 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
646 
647 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
648 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
649 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
650 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
651 
652 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
653 
654 /* IPv6 max L3 address size */
655 #define MVPP2_MAX_L3_ADDR_SIZE		16
656 
657 /* Port flags */
658 #define MVPP2_F_LOOPBACK		BIT(0)
659 
660 /* Marvell tag types */
661 enum mvpp2_tag_type {
662 	MVPP2_TAG_TYPE_NONE = 0,
663 	MVPP2_TAG_TYPE_MH   = 1,
664 	MVPP2_TAG_TYPE_DSA  = 2,
665 	MVPP2_TAG_TYPE_EDSA = 3,
666 	MVPP2_TAG_TYPE_VLAN = 4,
667 	MVPP2_TAG_TYPE_LAST = 5
668 };
669 
670 /* Parser constants */
671 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
672 #define MVPP2_PRS_TCAM_WORDS		6
673 #define MVPP2_PRS_SRAM_WORDS		4
674 #define MVPP2_PRS_FLOW_ID_SIZE		64
675 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
676 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
677 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
678 #define MVPP2_PRS_IPV4_HEAD		0x40
679 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
680 #define MVPP2_PRS_IPV4_MC		0xe0
681 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
682 #define MVPP2_PRS_IPV4_BC_MASK		0xff
683 #define MVPP2_PRS_IPV4_IHL		0x5
684 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
685 #define MVPP2_PRS_IPV6_MC		0xff
686 #define MVPP2_PRS_IPV6_MC_MASK		0xff
687 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
688 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
689 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
690 #define MVPP2_PRS_DBL_VLANS_MAX		100
691 
692 /* Tcam structure:
693  * - lookup ID - 4 bits
694  * - port ID - 1 byte
695  * - additional information - 1 byte
696  * - header data - 8 bytes
697  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
698  */
699 #define MVPP2_PRS_AI_BITS			8
700 #define MVPP2_PRS_PORT_MASK			0xff
701 #define MVPP2_PRS_LU_MASK			0xf
702 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
703 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
704 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
705 					      (((offs) * 2) - ((offs) % 2)  + 2)
706 #define MVPP2_PRS_TCAM_AI_BYTE			16
707 #define MVPP2_PRS_TCAM_PORT_BYTE		17
708 #define MVPP2_PRS_TCAM_LU_BYTE			20
709 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
710 #define MVPP2_PRS_TCAM_INV_WORD			5
711 /* Tcam entries ID */
712 #define MVPP2_PE_DROP_ALL		0
713 #define MVPP2_PE_FIRST_FREE_TID		1
714 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
715 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
716 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
717 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
718 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
719 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
720 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
721 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
722 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
723 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
724 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
725 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
726 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
727 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
728 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
729 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
730 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
731 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
732 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
733 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
734 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
735 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
736 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
737 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
738 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
739 
740 /* Sram structure
741  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
742  */
743 #define MVPP2_PRS_SRAM_RI_OFFS			0
744 #define MVPP2_PRS_SRAM_RI_WORD			0
745 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
746 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
747 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
748 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
749 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
750 #define MVPP2_PRS_SRAM_UDF_OFFS			73
751 #define MVPP2_PRS_SRAM_UDF_BITS			8
752 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
753 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
754 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
755 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
756 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
757 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
758 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
759 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
760 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
761 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
762 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
763 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
764 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
765 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
766 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
767 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
768 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
769 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
770 #define MVPP2_PRS_SRAM_AI_OFFS			90
771 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
772 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
773 #define MVPP2_PRS_SRAM_AI_MASK			0xff
774 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
775 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
776 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
777 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
778 
779 /* Sram result info bits assignment */
780 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
781 #define MVPP2_PRS_RI_DSA_MASK			0x2
782 #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
783 #define MVPP2_PRS_RI_VLAN_NONE			0x0
784 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
785 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
786 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
787 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
788 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
789 #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
790 #define MVPP2_PRS_RI_L2_UCAST			0x0
791 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
792 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
793 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
794 #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
795 #define MVPP2_PRS_RI_L3_UN			0x0
796 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
797 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
798 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
799 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
800 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
801 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
802 #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
803 #define MVPP2_PRS_RI_L3_UCAST			0x0
804 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
805 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
806 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
807 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
808 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
809 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
810 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
811 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
812 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
813 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
814 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
815 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
816 
817 /* Sram additional info bits assignment */
818 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
819 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
820 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
821 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
822 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
823 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
824 #define MVPP2_PRS_SINGLE_VLAN_AI		0
825 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
826 
827 /* DSA/EDSA type */
828 #define MVPP2_PRS_TAGGED		true
829 #define MVPP2_PRS_UNTAGGED		false
830 #define MVPP2_PRS_EDSA			true
831 #define MVPP2_PRS_DSA			false
832 
833 /* MAC entries, shadow udf */
834 enum mvpp2_prs_udf {
835 	MVPP2_PRS_UDF_MAC_DEF,
836 	MVPP2_PRS_UDF_MAC_RANGE,
837 	MVPP2_PRS_UDF_L2_DEF,
838 	MVPP2_PRS_UDF_L2_DEF_COPY,
839 	MVPP2_PRS_UDF_L2_USER,
840 };
841 
842 /* Lookup ID */
843 enum mvpp2_prs_lookup {
844 	MVPP2_PRS_LU_MH,
845 	MVPP2_PRS_LU_MAC,
846 	MVPP2_PRS_LU_DSA,
847 	MVPP2_PRS_LU_VLAN,
848 	MVPP2_PRS_LU_L2,
849 	MVPP2_PRS_LU_PPPOE,
850 	MVPP2_PRS_LU_IP4,
851 	MVPP2_PRS_LU_IP6,
852 	MVPP2_PRS_LU_FLOWS,
853 	MVPP2_PRS_LU_LAST,
854 };
855 
856 /* L3 cast enum */
857 enum mvpp2_prs_l3_cast {
858 	MVPP2_PRS_L3_UNI_CAST,
859 	MVPP2_PRS_L3_MULTI_CAST,
860 	MVPP2_PRS_L3_BROAD_CAST
861 };
862 
863 /* Classifier constants */
864 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
865 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
866 #define MVPP2_CLS_LKP_TBL_SIZE		64
867 
868 /* BM constants */
869 #define MVPP2_BM_POOLS_NUM		1
870 #define MVPP2_BM_LONG_BUF_NUM		16
871 #define MVPP2_BM_SHORT_BUF_NUM		16
872 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
873 #define MVPP2_BM_POOL_PTR_ALIGN		128
874 #define MVPP2_BM_SWF_LONG_POOL(port)	0
875 
876 /* BM cookie (32 bits) definition */
877 #define MVPP2_BM_COOKIE_POOL_OFFS	8
878 #define MVPP2_BM_COOKIE_CPU_OFFS	24
879 
880 /* BM short pool packet size
881  * These value assure that for SWF the total number
882  * of bytes allocated for each buffer will be 512
883  */
884 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
885 
886 enum mvpp2_bm_type {
887 	MVPP2_BM_FREE,
888 	MVPP2_BM_SWF_LONG,
889 	MVPP2_BM_SWF_SHORT
890 };
891 
892 /* Definitions */
893 
894 /* Shared Packet Processor resources */
895 struct mvpp2 {
896 	/* Shared registers' base addresses */
897 	void __iomem *base;
898 	void __iomem *lms_base;
899 	void __iomem *iface_base;
900 
901 	void __iomem *mpcs_base;
902 	void __iomem *xpcs_base;
903 	void __iomem *rfu1_base;
904 
905 	u32 netc_config;
906 
907 	/* List of pointers to port structures */
908 	struct mvpp2_port **port_list;
909 
910 	/* Aggregated TXQs */
911 	struct mvpp2_tx_queue *aggr_txqs;
912 
913 	/* BM pools */
914 	struct mvpp2_bm_pool *bm_pools;
915 
916 	/* PRS shadow table */
917 	struct mvpp2_prs_shadow *prs_shadow;
918 	/* PRS auxiliary table for double vlan entries control */
919 	bool *prs_double_vlans;
920 
921 	/* Tclk value */
922 	u32 tclk;
923 
924 	/* HW version */
925 	enum { MVPP21, MVPP22 } hw_version;
926 
927 	/* Maximum number of RXQs per port */
928 	unsigned int max_port_rxqs;
929 
930 	int probe_done;
931 	u8 num_ports;
932 };
933 
934 struct mvpp2_pcpu_stats {
935 	u64	rx_packets;
936 	u64	rx_bytes;
937 	u64	tx_packets;
938 	u64	tx_bytes;
939 };
940 
941 struct mvpp2_port {
942 	u8 id;
943 
944 	/* Index of the port from the "group of ports" complex point
945 	 * of view
946 	 */
947 	int gop_id;
948 
949 	int irq;
950 
951 	struct mvpp2 *priv;
952 
953 	/* Per-port registers' base address */
954 	void __iomem *base;
955 	void __iomem *mdio_base;
956 
957 	struct mvpp2_rx_queue **rxqs;
958 	struct mvpp2_tx_queue **txqs;
959 
960 	int pkt_size;
961 
962 	u32 pending_cause_rx;
963 
964 	/* Per-CPU port control */
965 	struct mvpp2_port_pcpu __percpu *pcpu;
966 
967 	/* Flags */
968 	unsigned long flags;
969 
970 	u16 tx_ring_size;
971 	u16 rx_ring_size;
972 	struct mvpp2_pcpu_stats __percpu *stats;
973 
974 	struct phy_device *phy_dev;
975 	phy_interface_t phy_interface;
976 	int phy_node;
977 	int phyaddr;
978 	struct mii_dev *bus;
979 #ifdef CONFIG_DM_GPIO
980 	struct gpio_desc phy_reset_gpio;
981 	struct gpio_desc phy_tx_disable_gpio;
982 #endif
983 	int init;
984 	unsigned int link;
985 	unsigned int duplex;
986 	unsigned int speed;
987 
988 	unsigned int phy_speed;		/* SGMII 1Gbps vs 2.5Gbps */
989 
990 	struct mvpp2_bm_pool *pool_long;
991 	struct mvpp2_bm_pool *pool_short;
992 
993 	/* Index of first port's physical RXQ */
994 	u8 first_rxq;
995 
996 	u8 dev_addr[ETH_ALEN];
997 };
998 
999 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1000  * layout of the transmit and reception DMA descriptors, and their
1001  * layout is therefore defined by the hardware design
1002  */
1003 
1004 #define MVPP2_TXD_L3_OFF_SHIFT		0
1005 #define MVPP2_TXD_IP_HLEN_SHIFT		8
1006 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
1007 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
1008 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
1009 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
1010 #define MVPP2_TXD_L4_UDP		BIT(24)
1011 #define MVPP2_TXD_L3_IP6		BIT(26)
1012 #define MVPP2_TXD_L_DESC		BIT(28)
1013 #define MVPP2_TXD_F_DESC		BIT(29)
1014 
1015 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
1016 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
1017 #define MVPP2_RXD_ERR_CRC		0x0
1018 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
1019 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
1020 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
1021 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
1022 #define MVPP2_RXD_HWF_SYNC		BIT(21)
1023 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
1024 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
1025 #define MVPP2_RXD_L4_TCP		BIT(25)
1026 #define MVPP2_RXD_L4_UDP		BIT(26)
1027 #define MVPP2_RXD_L3_IP4		BIT(28)
1028 #define MVPP2_RXD_L3_IP6		BIT(30)
1029 #define MVPP2_RXD_BUF_HDR		BIT(31)
1030 
1031 /* HW TX descriptor for PPv2.1 */
1032 struct mvpp21_tx_desc {
1033 	u32 command;		/* Options used by HW for packet transmitting.*/
1034 	u8  packet_offset;	/* the offset from the buffer beginning	*/
1035 	u8  phys_txq;		/* destination queue ID			*/
1036 	u16 data_size;		/* data size of transmitted packet in bytes */
1037 	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
1038 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
1039 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
1040 	u32 reserved2;		/* reserved (for future use)		*/
1041 };
1042 
1043 /* HW RX descriptor for PPv2.1 */
1044 struct mvpp21_rx_desc {
1045 	u32 status;		/* info about received packet		*/
1046 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
1047 	u16 data_size;		/* size of received packet in bytes	*/
1048 	u32 buf_dma_addr;	/* physical address of the buffer	*/
1049 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
1050 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
1051 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
1052 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
1053 	u8  reserved5;
1054 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
1055 	u32 reserved7;		/* flow_id (for future use, PnC) */
1056 	u32 reserved8;
1057 };
1058 
1059 /* HW TX descriptor for PPv2.2 */
1060 struct mvpp22_tx_desc {
1061 	u32 command;
1062 	u8  packet_offset;
1063 	u8  phys_txq;
1064 	u16 data_size;
1065 	u64 reserved1;
1066 	u64 buf_dma_addr_ptp;
1067 	u64 buf_cookie_misc;
1068 };
1069 
1070 /* HW RX descriptor for PPv2.2 */
1071 struct mvpp22_rx_desc {
1072 	u32 status;
1073 	u16 reserved1;
1074 	u16 data_size;
1075 	u32 reserved2;
1076 	u32 reserved3;
1077 	u64 buf_dma_addr_key_hash;
1078 	u64 buf_cookie_misc;
1079 };
1080 
1081 /* Opaque type used by the driver to manipulate the HW TX and RX
1082  * descriptors
1083  */
1084 struct mvpp2_tx_desc {
1085 	union {
1086 		struct mvpp21_tx_desc pp21;
1087 		struct mvpp22_tx_desc pp22;
1088 	};
1089 };
1090 
1091 struct mvpp2_rx_desc {
1092 	union {
1093 		struct mvpp21_rx_desc pp21;
1094 		struct mvpp22_rx_desc pp22;
1095 	};
1096 };
1097 
1098 /* Per-CPU Tx queue control */
1099 struct mvpp2_txq_pcpu {
1100 	int cpu;
1101 
1102 	/* Number of Tx DMA descriptors in the descriptor ring */
1103 	int size;
1104 
1105 	/* Number of currently used Tx DMA descriptor in the
1106 	 * descriptor ring
1107 	 */
1108 	int count;
1109 
1110 	/* Number of Tx DMA descriptors reserved for each CPU */
1111 	int reserved_num;
1112 
1113 	/* Index of last TX DMA descriptor that was inserted */
1114 	int txq_put_index;
1115 
1116 	/* Index of the TX DMA descriptor to be cleaned up */
1117 	int txq_get_index;
1118 };
1119 
1120 struct mvpp2_tx_queue {
1121 	/* Physical number of this Tx queue */
1122 	u8 id;
1123 
1124 	/* Logical number of this Tx queue */
1125 	u8 log_id;
1126 
1127 	/* Number of Tx DMA descriptors in the descriptor ring */
1128 	int size;
1129 
1130 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
1131 	int count;
1132 
1133 	/* Per-CPU control of physical Tx queues */
1134 	struct mvpp2_txq_pcpu __percpu *pcpu;
1135 
1136 	u32 done_pkts_coal;
1137 
1138 	/* Virtual address of thex Tx DMA descriptors array */
1139 	struct mvpp2_tx_desc *descs;
1140 
1141 	/* DMA address of the Tx DMA descriptors array */
1142 	dma_addr_t descs_dma;
1143 
1144 	/* Index of the last Tx DMA descriptor */
1145 	int last_desc;
1146 
1147 	/* Index of the next Tx DMA descriptor to process */
1148 	int next_desc_to_proc;
1149 };
1150 
1151 struct mvpp2_rx_queue {
1152 	/* RX queue number, in the range 0-31 for physical RXQs */
1153 	u8 id;
1154 
1155 	/* Num of rx descriptors in the rx descriptor ring */
1156 	int size;
1157 
1158 	u32 pkts_coal;
1159 	u32 time_coal;
1160 
1161 	/* Virtual address of the RX DMA descriptors array */
1162 	struct mvpp2_rx_desc *descs;
1163 
1164 	/* DMA address of the RX DMA descriptors array */
1165 	dma_addr_t descs_dma;
1166 
1167 	/* Index of the last RX DMA descriptor */
1168 	int last_desc;
1169 
1170 	/* Index of the next RX DMA descriptor to process */
1171 	int next_desc_to_proc;
1172 
1173 	/* ID of port to which physical RXQ is mapped */
1174 	int port;
1175 
1176 	/* Port's logic RXQ number to which physical RXQ is mapped */
1177 	int logic_rxq;
1178 };
1179 
1180 union mvpp2_prs_tcam_entry {
1181 	u32 word[MVPP2_PRS_TCAM_WORDS];
1182 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
1183 };
1184 
1185 union mvpp2_prs_sram_entry {
1186 	u32 word[MVPP2_PRS_SRAM_WORDS];
1187 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
1188 };
1189 
1190 struct mvpp2_prs_entry {
1191 	u32 index;
1192 	union mvpp2_prs_tcam_entry tcam;
1193 	union mvpp2_prs_sram_entry sram;
1194 };
1195 
1196 struct mvpp2_prs_shadow {
1197 	bool valid;
1198 	bool finish;
1199 
1200 	/* Lookup ID */
1201 	int lu;
1202 
1203 	/* User defined offset */
1204 	int udf;
1205 
1206 	/* Result info */
1207 	u32 ri;
1208 	u32 ri_mask;
1209 };
1210 
1211 struct mvpp2_cls_flow_entry {
1212 	u32 index;
1213 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1214 };
1215 
1216 struct mvpp2_cls_lookup_entry {
1217 	u32 lkpid;
1218 	u32 way;
1219 	u32 data;
1220 };
1221 
1222 struct mvpp2_bm_pool {
1223 	/* Pool number in the range 0-7 */
1224 	int id;
1225 	enum mvpp2_bm_type type;
1226 
1227 	/* Buffer Pointers Pool External (BPPE) size */
1228 	int size;
1229 	/* Number of buffers for this pool */
1230 	int buf_num;
1231 	/* Pool buffer size */
1232 	int buf_size;
1233 	/* Packet size */
1234 	int pkt_size;
1235 
1236 	/* BPPE virtual base address */
1237 	unsigned long *virt_addr;
1238 	/* BPPE DMA base address */
1239 	dma_addr_t dma_addr;
1240 
1241 	/* Ports using BM pool */
1242 	u32 port_map;
1243 };
1244 
1245 /* Static declaractions */
1246 
1247 /* Number of RXQs used by single port */
1248 static int rxq_number = MVPP2_DEFAULT_RXQ;
1249 /* Number of TXQs used by single port */
1250 static int txq_number = MVPP2_DEFAULT_TXQ;
1251 
1252 static int base_id;
1253 
1254 #define MVPP2_DRIVER_NAME "mvpp2"
1255 #define MVPP2_DRIVER_VERSION "1.0"
1256 
1257 /*
1258  * U-Boot internal data, mostly uncached buffers for descriptors and data
1259  */
1260 struct buffer_location {
1261 	struct mvpp2_tx_desc *aggr_tx_descs;
1262 	struct mvpp2_tx_desc *tx_descs;
1263 	struct mvpp2_rx_desc *rx_descs;
1264 	unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1265 	unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1266 	int first_rxq;
1267 };
1268 
1269 /*
1270  * All 4 interfaces use the same global buffer, since only one interface
1271  * can be enabled at once
1272  */
1273 static struct buffer_location buffer_loc;
1274 
1275 /*
1276  * Page table entries are set to 1MB, or multiples of 1MB
1277  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1278  */
1279 #define BD_SPACE	(1 << 20)
1280 
1281 /* Utility/helper methods */
1282 
1283 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1284 {
1285 	writel(data, priv->base + offset);
1286 }
1287 
1288 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1289 {
1290 	return readl(priv->base + offset);
1291 }
1292 
1293 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1294 				      struct mvpp2_tx_desc *tx_desc,
1295 				      dma_addr_t dma_addr)
1296 {
1297 	if (port->priv->hw_version == MVPP21) {
1298 		tx_desc->pp21.buf_dma_addr = dma_addr;
1299 	} else {
1300 		u64 val = (u64)dma_addr;
1301 
1302 		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1303 		tx_desc->pp22.buf_dma_addr_ptp |= val;
1304 	}
1305 }
1306 
1307 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1308 				  struct mvpp2_tx_desc *tx_desc,
1309 				  size_t size)
1310 {
1311 	if (port->priv->hw_version == MVPP21)
1312 		tx_desc->pp21.data_size = size;
1313 	else
1314 		tx_desc->pp22.data_size = size;
1315 }
1316 
1317 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1318 				 struct mvpp2_tx_desc *tx_desc,
1319 				 unsigned int txq)
1320 {
1321 	if (port->priv->hw_version == MVPP21)
1322 		tx_desc->pp21.phys_txq = txq;
1323 	else
1324 		tx_desc->pp22.phys_txq = txq;
1325 }
1326 
1327 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1328 				 struct mvpp2_tx_desc *tx_desc,
1329 				 unsigned int command)
1330 {
1331 	if (port->priv->hw_version == MVPP21)
1332 		tx_desc->pp21.command = command;
1333 	else
1334 		tx_desc->pp22.command = command;
1335 }
1336 
1337 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1338 				    struct mvpp2_tx_desc *tx_desc,
1339 				    unsigned int offset)
1340 {
1341 	if (port->priv->hw_version == MVPP21)
1342 		tx_desc->pp21.packet_offset = offset;
1343 	else
1344 		tx_desc->pp22.packet_offset = offset;
1345 }
1346 
1347 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1348 					    struct mvpp2_rx_desc *rx_desc)
1349 {
1350 	if (port->priv->hw_version == MVPP21)
1351 		return rx_desc->pp21.buf_dma_addr;
1352 	else
1353 		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1354 }
1355 
1356 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1357 					     struct mvpp2_rx_desc *rx_desc)
1358 {
1359 	if (port->priv->hw_version == MVPP21)
1360 		return rx_desc->pp21.buf_cookie;
1361 	else
1362 		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1363 }
1364 
1365 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1366 				    struct mvpp2_rx_desc *rx_desc)
1367 {
1368 	if (port->priv->hw_version == MVPP21)
1369 		return rx_desc->pp21.data_size;
1370 	else
1371 		return rx_desc->pp22.data_size;
1372 }
1373 
1374 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1375 				   struct mvpp2_rx_desc *rx_desc)
1376 {
1377 	if (port->priv->hw_version == MVPP21)
1378 		return rx_desc->pp21.status;
1379 	else
1380 		return rx_desc->pp22.status;
1381 }
1382 
1383 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1384 {
1385 	txq_pcpu->txq_get_index++;
1386 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1387 		txq_pcpu->txq_get_index = 0;
1388 }
1389 
1390 /* Get number of physical egress port */
1391 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1392 {
1393 	return MVPP2_MAX_TCONT + port->id;
1394 }
1395 
1396 /* Get number of physical TXQ */
1397 static inline int mvpp2_txq_phys(int port, int txq)
1398 {
1399 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1400 }
1401 
1402 /* Parser configuration routines */
1403 
1404 /* Update parser tcam and sram hw entries */
1405 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1406 {
1407 	int i;
1408 
1409 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1410 		return -EINVAL;
1411 
1412 	/* Clear entry invalidation bit */
1413 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1414 
1415 	/* Write tcam index - indirect access */
1416 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1417 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1418 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1419 
1420 	/* Write sram index - indirect access */
1421 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1422 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1423 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1424 
1425 	return 0;
1426 }
1427 
1428 /* Read tcam entry from hw */
1429 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1430 {
1431 	int i;
1432 
1433 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1434 		return -EINVAL;
1435 
1436 	/* Write tcam index - indirect access */
1437 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1438 
1439 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1440 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1441 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1442 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1443 
1444 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1445 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1446 
1447 	/* Write sram index - indirect access */
1448 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1449 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1450 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1451 
1452 	return 0;
1453 }
1454 
1455 /* Invalidate tcam hw entry */
1456 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1457 {
1458 	/* Write index - indirect access */
1459 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1460 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1461 		    MVPP2_PRS_TCAM_INV_MASK);
1462 }
1463 
1464 /* Enable shadow table entry and set its lookup ID */
1465 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1466 {
1467 	priv->prs_shadow[index].valid = true;
1468 	priv->prs_shadow[index].lu = lu;
1469 }
1470 
1471 /* Update ri fields in shadow table entry */
1472 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1473 				    unsigned int ri, unsigned int ri_mask)
1474 {
1475 	priv->prs_shadow[index].ri_mask = ri_mask;
1476 	priv->prs_shadow[index].ri = ri;
1477 }
1478 
1479 /* Update lookup field in tcam sw entry */
1480 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1481 {
1482 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1483 
1484 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1485 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1486 }
1487 
1488 /* Update mask for single port in tcam sw entry */
1489 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1490 				    unsigned int port, bool add)
1491 {
1492 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1493 
1494 	if (add)
1495 		pe->tcam.byte[enable_off] &= ~(1 << port);
1496 	else
1497 		pe->tcam.byte[enable_off] |= 1 << port;
1498 }
1499 
1500 /* Update port map in tcam sw entry */
1501 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1502 					unsigned int ports)
1503 {
1504 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1505 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1506 
1507 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1508 	pe->tcam.byte[enable_off] &= ~port_mask;
1509 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1510 }
1511 
1512 /* Obtain port map from tcam sw entry */
1513 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1514 {
1515 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1516 
1517 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1518 }
1519 
1520 /* Set byte of data and its enable bits in tcam sw entry */
1521 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1522 					 unsigned int offs, unsigned char byte,
1523 					 unsigned char enable)
1524 {
1525 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1526 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1527 }
1528 
1529 /* Get byte of data and its enable bits from tcam sw entry */
1530 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1531 					 unsigned int offs, unsigned char *byte,
1532 					 unsigned char *enable)
1533 {
1534 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1535 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1536 }
1537 
1538 /* Set ethertype in tcam sw entry */
1539 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1540 				  unsigned short ethertype)
1541 {
1542 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1543 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1544 }
1545 
1546 /* Set bits in sram sw entry */
1547 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1548 				    int val)
1549 {
1550 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1551 }
1552 
1553 /* Clear bits in sram sw entry */
1554 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1555 				      int val)
1556 {
1557 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1558 }
1559 
1560 /* Update ri bits in sram sw entry */
1561 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1562 				     unsigned int bits, unsigned int mask)
1563 {
1564 	unsigned int i;
1565 
1566 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1567 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1568 
1569 		if (!(mask & BIT(i)))
1570 			continue;
1571 
1572 		if (bits & BIT(i))
1573 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1574 		else
1575 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1576 
1577 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1578 	}
1579 }
1580 
1581 /* Update ai bits in sram sw entry */
1582 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1583 				     unsigned int bits, unsigned int mask)
1584 {
1585 	unsigned int i;
1586 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1587 
1588 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1589 
1590 		if (!(mask & BIT(i)))
1591 			continue;
1592 
1593 		if (bits & BIT(i))
1594 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1595 		else
1596 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1597 
1598 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1599 	}
1600 }
1601 
1602 /* Read ai bits from sram sw entry */
1603 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1604 {
1605 	u8 bits;
1606 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1607 	int ai_en_off = ai_off + 1;
1608 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1609 
1610 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1611 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1612 
1613 	return bits;
1614 }
1615 
1616 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1617  * lookup interation
1618  */
1619 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1620 				       unsigned int lu)
1621 {
1622 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1623 
1624 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1625 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1626 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1627 }
1628 
1629 /* In the sram sw entry set sign and value of the next lookup offset
1630  * and the offset value generated to the classifier
1631  */
1632 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1633 				     unsigned int op)
1634 {
1635 	/* Set sign */
1636 	if (shift < 0) {
1637 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1638 		shift = 0 - shift;
1639 	} else {
1640 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1641 	}
1642 
1643 	/* Set value */
1644 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1645 							   (unsigned char)shift;
1646 
1647 	/* Reset and set operation */
1648 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1649 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1650 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1651 
1652 	/* Set base offset as current */
1653 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1654 }
1655 
1656 /* In the sram sw entry set sign and value of the user defined offset
1657  * generated to the classifier
1658  */
1659 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1660 				      unsigned int type, int offset,
1661 				      unsigned int op)
1662 {
1663 	/* Set sign */
1664 	if (offset < 0) {
1665 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1666 		offset = 0 - offset;
1667 	} else {
1668 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1669 	}
1670 
1671 	/* Set value */
1672 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1673 				  MVPP2_PRS_SRAM_UDF_MASK);
1674 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1675 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1676 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1677 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1678 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1679 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1680 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1681 
1682 	/* Set offset type */
1683 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1684 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1685 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1686 
1687 	/* Set offset operation */
1688 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1689 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1690 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1691 
1692 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1693 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1694 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1695 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1696 
1697 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1698 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1699 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1700 
1701 	/* Set base offset as current */
1702 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1703 }
1704 
1705 /* Find parser flow entry */
1706 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1707 {
1708 	struct mvpp2_prs_entry *pe;
1709 	int tid;
1710 
1711 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1712 	if (!pe)
1713 		return NULL;
1714 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1715 
1716 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1717 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1718 		u8 bits;
1719 
1720 		if (!priv->prs_shadow[tid].valid ||
1721 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1722 			continue;
1723 
1724 		pe->index = tid;
1725 		mvpp2_prs_hw_read(priv, pe);
1726 		bits = mvpp2_prs_sram_ai_get(pe);
1727 
1728 		/* Sram store classification lookup ID in AI bits [5:0] */
1729 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1730 			return pe;
1731 	}
1732 	kfree(pe);
1733 
1734 	return NULL;
1735 }
1736 
1737 /* Return first free tcam index, seeking from start to end */
1738 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1739 				     unsigned char end)
1740 {
1741 	int tid;
1742 
1743 	if (start > end)
1744 		swap(start, end);
1745 
1746 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1747 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1748 
1749 	for (tid = start; tid <= end; tid++) {
1750 		if (!priv->prs_shadow[tid].valid)
1751 			return tid;
1752 	}
1753 
1754 	return -EINVAL;
1755 }
1756 
1757 /* Enable/disable dropping all mac da's */
1758 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1759 {
1760 	struct mvpp2_prs_entry pe;
1761 
1762 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1763 		/* Entry exist - update port only */
1764 		pe.index = MVPP2_PE_DROP_ALL;
1765 		mvpp2_prs_hw_read(priv, &pe);
1766 	} else {
1767 		/* Entry doesn't exist - create new */
1768 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1769 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1770 		pe.index = MVPP2_PE_DROP_ALL;
1771 
1772 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1773 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1774 					 MVPP2_PRS_RI_DROP_MASK);
1775 
1776 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1777 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1778 
1779 		/* Update shadow table */
1780 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1781 
1782 		/* Mask all ports */
1783 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1784 	}
1785 
1786 	/* Update port mask */
1787 	mvpp2_prs_tcam_port_set(&pe, port, add);
1788 
1789 	mvpp2_prs_hw_write(priv, &pe);
1790 }
1791 
1792 /* Set port to promiscuous mode */
1793 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1794 {
1795 	struct mvpp2_prs_entry pe;
1796 
1797 	/* Promiscuous mode - Accept unknown packets */
1798 
1799 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1800 		/* Entry exist - update port only */
1801 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1802 		mvpp2_prs_hw_read(priv, &pe);
1803 	} else {
1804 		/* Entry doesn't exist - create new */
1805 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1806 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1807 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1808 
1809 		/* Continue - set next lookup */
1810 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1811 
1812 		/* Set result info bits */
1813 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1814 					 MVPP2_PRS_RI_L2_CAST_MASK);
1815 
1816 		/* Shift to ethertype */
1817 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1818 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1819 
1820 		/* Mask all ports */
1821 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1822 
1823 		/* Update shadow table */
1824 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1825 	}
1826 
1827 	/* Update port mask */
1828 	mvpp2_prs_tcam_port_set(&pe, port, add);
1829 
1830 	mvpp2_prs_hw_write(priv, &pe);
1831 }
1832 
1833 /* Accept multicast */
1834 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1835 				    bool add)
1836 {
1837 	struct mvpp2_prs_entry pe;
1838 	unsigned char da_mc;
1839 
1840 	/* Ethernet multicast address first byte is
1841 	 * 0x01 for IPv4 and 0x33 for IPv6
1842 	 */
1843 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1844 
1845 	if (priv->prs_shadow[index].valid) {
1846 		/* Entry exist - update port only */
1847 		pe.index = index;
1848 		mvpp2_prs_hw_read(priv, &pe);
1849 	} else {
1850 		/* Entry doesn't exist - create new */
1851 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1852 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1853 		pe.index = index;
1854 
1855 		/* Continue - set next lookup */
1856 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1857 
1858 		/* Set result info bits */
1859 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1860 					 MVPP2_PRS_RI_L2_CAST_MASK);
1861 
1862 		/* Update tcam entry data first byte */
1863 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1864 
1865 		/* Shift to ethertype */
1866 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1867 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1868 
1869 		/* Mask all ports */
1870 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1871 
1872 		/* Update shadow table */
1873 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1874 	}
1875 
1876 	/* Update port mask */
1877 	mvpp2_prs_tcam_port_set(&pe, port, add);
1878 
1879 	mvpp2_prs_hw_write(priv, &pe);
1880 }
1881 
1882 /* Parser per-port initialization */
1883 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1884 				   int lu_max, int offset)
1885 {
1886 	u32 val;
1887 
1888 	/* Set lookup ID */
1889 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1890 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1891 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1892 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1893 
1894 	/* Set maximum number of loops for packet received from port */
1895 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1896 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1897 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1898 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1899 
1900 	/* Set initial offset for packet header extraction for the first
1901 	 * searching loop
1902 	 */
1903 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1904 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1905 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1906 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1907 }
1908 
1909 /* Default flow entries initialization for all ports */
1910 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1911 {
1912 	struct mvpp2_prs_entry pe;
1913 	int port;
1914 
1915 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1916 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1917 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1918 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1919 
1920 		/* Mask all ports */
1921 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1922 
1923 		/* Set flow ID*/
1924 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1925 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1926 
1927 		/* Update shadow table and hw entry */
1928 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1929 		mvpp2_prs_hw_write(priv, &pe);
1930 	}
1931 }
1932 
1933 /* Set default entry for Marvell Header field */
1934 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1935 {
1936 	struct mvpp2_prs_entry pe;
1937 
1938 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1939 
1940 	pe.index = MVPP2_PE_MH_DEFAULT;
1941 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1942 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1943 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1944 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1945 
1946 	/* Unmask all ports */
1947 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1948 
1949 	/* Update shadow table and hw entry */
1950 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1951 	mvpp2_prs_hw_write(priv, &pe);
1952 }
1953 
1954 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1955  * multicast MAC addresses
1956  */
1957 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1958 {
1959 	struct mvpp2_prs_entry pe;
1960 
1961 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1962 
1963 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1964 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1965 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1966 
1967 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1968 				 MVPP2_PRS_RI_DROP_MASK);
1969 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1970 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1971 
1972 	/* Unmask all ports */
1973 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1974 
1975 	/* Update shadow table and hw entry */
1976 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1977 	mvpp2_prs_hw_write(priv, &pe);
1978 
1979 	/* place holders only - no ports */
1980 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1981 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1982 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1983 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1984 }
1985 
1986 /* Match basic ethertypes */
1987 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1988 {
1989 	struct mvpp2_prs_entry pe;
1990 	int tid;
1991 
1992 	/* Ethertype: PPPoE */
1993 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1994 					MVPP2_PE_LAST_FREE_TID);
1995 	if (tid < 0)
1996 		return tid;
1997 
1998 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1999 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2000 	pe.index = tid;
2001 
2002 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2003 
2004 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2005 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2006 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2007 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2008 				 MVPP2_PRS_RI_PPPOE_MASK);
2009 
2010 	/* Update shadow table and hw entry */
2011 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2012 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2013 	priv->prs_shadow[pe.index].finish = false;
2014 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2015 				MVPP2_PRS_RI_PPPOE_MASK);
2016 	mvpp2_prs_hw_write(priv, &pe);
2017 
2018 	/* Ethertype: ARP */
2019 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2020 					MVPP2_PE_LAST_FREE_TID);
2021 	if (tid < 0)
2022 		return tid;
2023 
2024 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2025 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2026 	pe.index = tid;
2027 
2028 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2029 
2030 	/* Generate flow in the next iteration*/
2031 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2032 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2033 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2034 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2035 	/* Set L3 offset */
2036 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2037 				  MVPP2_ETH_TYPE_LEN,
2038 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2039 
2040 	/* Update shadow table and hw entry */
2041 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2042 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2043 	priv->prs_shadow[pe.index].finish = true;
2044 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2045 				MVPP2_PRS_RI_L3_PROTO_MASK);
2046 	mvpp2_prs_hw_write(priv, &pe);
2047 
2048 	/* Ethertype: LBTD */
2049 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2050 					MVPP2_PE_LAST_FREE_TID);
2051 	if (tid < 0)
2052 		return tid;
2053 
2054 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2055 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2056 	pe.index = tid;
2057 
2058 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2059 
2060 	/* Generate flow in the next iteration*/
2061 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2062 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2063 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2064 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2065 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2066 				 MVPP2_PRS_RI_UDF3_MASK);
2067 	/* Set L3 offset */
2068 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2069 				  MVPP2_ETH_TYPE_LEN,
2070 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2071 
2072 	/* Update shadow table and hw entry */
2073 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2074 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2075 	priv->prs_shadow[pe.index].finish = true;
2076 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2077 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2078 				MVPP2_PRS_RI_CPU_CODE_MASK |
2079 				MVPP2_PRS_RI_UDF3_MASK);
2080 	mvpp2_prs_hw_write(priv, &pe);
2081 
2082 	/* Ethertype: IPv4 without options */
2083 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2084 					MVPP2_PE_LAST_FREE_TID);
2085 	if (tid < 0)
2086 		return tid;
2087 
2088 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2089 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2090 	pe.index = tid;
2091 
2092 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2093 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2094 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2095 				     MVPP2_PRS_IPV4_HEAD_MASK |
2096 				     MVPP2_PRS_IPV4_IHL_MASK);
2097 
2098 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2099 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2100 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2101 	/* Skip eth_type + 4 bytes of IP header */
2102 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2103 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2104 	/* Set L3 offset */
2105 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2106 				  MVPP2_ETH_TYPE_LEN,
2107 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2108 
2109 	/* Update shadow table and hw entry */
2110 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2111 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2112 	priv->prs_shadow[pe.index].finish = false;
2113 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2114 				MVPP2_PRS_RI_L3_PROTO_MASK);
2115 	mvpp2_prs_hw_write(priv, &pe);
2116 
2117 	/* Ethertype: IPv4 with options */
2118 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2119 					MVPP2_PE_LAST_FREE_TID);
2120 	if (tid < 0)
2121 		return tid;
2122 
2123 	pe.index = tid;
2124 
2125 	/* Clear tcam data before updating */
2126 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2127 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2128 
2129 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2130 				     MVPP2_PRS_IPV4_HEAD,
2131 				     MVPP2_PRS_IPV4_HEAD_MASK);
2132 
2133 	/* Clear ri before updating */
2134 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2135 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2136 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2137 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2138 
2139 	/* Update shadow table and hw entry */
2140 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2141 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2142 	priv->prs_shadow[pe.index].finish = false;
2143 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2144 				MVPP2_PRS_RI_L3_PROTO_MASK);
2145 	mvpp2_prs_hw_write(priv, &pe);
2146 
2147 	/* Ethertype: IPv6 without options */
2148 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2149 					MVPP2_PE_LAST_FREE_TID);
2150 	if (tid < 0)
2151 		return tid;
2152 
2153 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2154 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2155 	pe.index = tid;
2156 
2157 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2158 
2159 	/* Skip DIP of IPV6 header */
2160 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2161 				 MVPP2_MAX_L3_ADDR_SIZE,
2162 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2163 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2164 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2165 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2166 	/* Set L3 offset */
2167 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2168 				  MVPP2_ETH_TYPE_LEN,
2169 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2170 
2171 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2172 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2173 	priv->prs_shadow[pe.index].finish = false;
2174 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2175 				MVPP2_PRS_RI_L3_PROTO_MASK);
2176 	mvpp2_prs_hw_write(priv, &pe);
2177 
2178 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2179 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2180 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2181 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2182 
2183 	/* Unmask all ports */
2184 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2185 
2186 	/* Generate flow in the next iteration*/
2187 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2188 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2189 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2190 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2191 	/* Set L3 offset even it's unknown L3 */
2192 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2193 				  MVPP2_ETH_TYPE_LEN,
2194 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2195 
2196 	/* Update shadow table and hw entry */
2197 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2198 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2199 	priv->prs_shadow[pe.index].finish = true;
2200 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2201 				MVPP2_PRS_RI_L3_PROTO_MASK);
2202 	mvpp2_prs_hw_write(priv, &pe);
2203 
2204 	return 0;
2205 }
2206 
2207 /* Parser default initialization */
2208 static int mvpp2_prs_default_init(struct udevice *dev,
2209 				  struct mvpp2 *priv)
2210 {
2211 	int err, index, i;
2212 
2213 	/* Enable tcam table */
2214 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2215 
2216 	/* Clear all tcam and sram entries */
2217 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2218 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2219 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2220 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2221 
2222 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2223 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2224 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2225 	}
2226 
2227 	/* Invalidate all tcam entries */
2228 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2229 		mvpp2_prs_hw_inv(priv, index);
2230 
2231 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2232 					sizeof(struct mvpp2_prs_shadow),
2233 					GFP_KERNEL);
2234 	if (!priv->prs_shadow)
2235 		return -ENOMEM;
2236 
2237 	/* Always start from lookup = 0 */
2238 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2239 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2240 				       MVPP2_PRS_PORT_LU_MAX, 0);
2241 
2242 	mvpp2_prs_def_flow_init(priv);
2243 
2244 	mvpp2_prs_mh_init(priv);
2245 
2246 	mvpp2_prs_mac_init(priv);
2247 
2248 	err = mvpp2_prs_etype_init(priv);
2249 	if (err)
2250 		return err;
2251 
2252 	return 0;
2253 }
2254 
2255 /* Compare MAC DA with tcam entry data */
2256 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2257 				       const u8 *da, unsigned char *mask)
2258 {
2259 	unsigned char tcam_byte, tcam_mask;
2260 	int index;
2261 
2262 	for (index = 0; index < ETH_ALEN; index++) {
2263 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2264 		if (tcam_mask != mask[index])
2265 			return false;
2266 
2267 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2268 			return false;
2269 	}
2270 
2271 	return true;
2272 }
2273 
2274 /* Find tcam entry with matched pair <MAC DA, port> */
2275 static struct mvpp2_prs_entry *
2276 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2277 			    unsigned char *mask, int udf_type)
2278 {
2279 	struct mvpp2_prs_entry *pe;
2280 	int tid;
2281 
2282 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2283 	if (!pe)
2284 		return NULL;
2285 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2286 
2287 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2288 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2289 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2290 		unsigned int entry_pmap;
2291 
2292 		if (!priv->prs_shadow[tid].valid ||
2293 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2294 		    (priv->prs_shadow[tid].udf != udf_type))
2295 			continue;
2296 
2297 		pe->index = tid;
2298 		mvpp2_prs_hw_read(priv, pe);
2299 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2300 
2301 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2302 		    entry_pmap == pmap)
2303 			return pe;
2304 	}
2305 	kfree(pe);
2306 
2307 	return NULL;
2308 }
2309 
2310 /* Update parser's mac da entry */
2311 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2312 				   const u8 *da, bool add)
2313 {
2314 	struct mvpp2_prs_entry *pe;
2315 	unsigned int pmap, len, ri;
2316 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2317 	int tid;
2318 
2319 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2320 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2321 					 MVPP2_PRS_UDF_MAC_DEF);
2322 
2323 	/* No such entry */
2324 	if (!pe) {
2325 		if (!add)
2326 			return 0;
2327 
2328 		/* Create new TCAM entry */
2329 		/* Find first range mac entry*/
2330 		for (tid = MVPP2_PE_FIRST_FREE_TID;
2331 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2332 			if (priv->prs_shadow[tid].valid &&
2333 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2334 			    (priv->prs_shadow[tid].udf ==
2335 						       MVPP2_PRS_UDF_MAC_RANGE))
2336 				break;
2337 
2338 		/* Go through the all entries from first to last */
2339 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2340 						tid - 1);
2341 		if (tid < 0)
2342 			return tid;
2343 
2344 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2345 		if (!pe)
2346 			return -1;
2347 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2348 		pe->index = tid;
2349 
2350 		/* Mask all ports */
2351 		mvpp2_prs_tcam_port_map_set(pe, 0);
2352 	}
2353 
2354 	/* Update port mask */
2355 	mvpp2_prs_tcam_port_set(pe, port, add);
2356 
2357 	/* Invalidate the entry if no ports are left enabled */
2358 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2359 	if (pmap == 0) {
2360 		if (add) {
2361 			kfree(pe);
2362 			return -1;
2363 		}
2364 		mvpp2_prs_hw_inv(priv, pe->index);
2365 		priv->prs_shadow[pe->index].valid = false;
2366 		kfree(pe);
2367 		return 0;
2368 	}
2369 
2370 	/* Continue - set next lookup */
2371 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2372 
2373 	/* Set match on DA */
2374 	len = ETH_ALEN;
2375 	while (len--)
2376 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2377 
2378 	/* Set result info bits */
2379 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2380 
2381 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2382 				 MVPP2_PRS_RI_MAC_ME_MASK);
2383 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2384 				MVPP2_PRS_RI_MAC_ME_MASK);
2385 
2386 	/* Shift to ethertype */
2387 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2388 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2389 
2390 	/* Update shadow table and hw entry */
2391 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2392 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2393 	mvpp2_prs_hw_write(priv, pe);
2394 
2395 	kfree(pe);
2396 
2397 	return 0;
2398 }
2399 
2400 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2401 {
2402 	int err;
2403 
2404 	/* Remove old parser entry */
2405 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2406 				      false);
2407 	if (err)
2408 		return err;
2409 
2410 	/* Add new parser entry */
2411 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2412 	if (err)
2413 		return err;
2414 
2415 	/* Set addr in the device */
2416 	memcpy(port->dev_addr, da, ETH_ALEN);
2417 
2418 	return 0;
2419 }
2420 
2421 /* Set prs flow for the port */
2422 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2423 {
2424 	struct mvpp2_prs_entry *pe;
2425 	int tid;
2426 
2427 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2428 
2429 	/* Such entry not exist */
2430 	if (!pe) {
2431 		/* Go through the all entires from last to first */
2432 		tid = mvpp2_prs_tcam_first_free(port->priv,
2433 						MVPP2_PE_LAST_FREE_TID,
2434 					       MVPP2_PE_FIRST_FREE_TID);
2435 		if (tid < 0)
2436 			return tid;
2437 
2438 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2439 		if (!pe)
2440 			return -ENOMEM;
2441 
2442 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2443 		pe->index = tid;
2444 
2445 		/* Set flow ID*/
2446 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2447 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2448 
2449 		/* Update shadow table */
2450 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2451 	}
2452 
2453 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2454 	mvpp2_prs_hw_write(port->priv, pe);
2455 	kfree(pe);
2456 
2457 	return 0;
2458 }
2459 
2460 /* Classifier configuration routines */
2461 
2462 /* Update classification flow table registers */
2463 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2464 				 struct mvpp2_cls_flow_entry *fe)
2465 {
2466 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2467 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2468 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2469 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2470 }
2471 
2472 /* Update classification lookup table register */
2473 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2474 				   struct mvpp2_cls_lookup_entry *le)
2475 {
2476 	u32 val;
2477 
2478 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2479 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2480 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2481 }
2482 
2483 /* Classifier default initialization */
2484 static void mvpp2_cls_init(struct mvpp2 *priv)
2485 {
2486 	struct mvpp2_cls_lookup_entry le;
2487 	struct mvpp2_cls_flow_entry fe;
2488 	int index;
2489 
2490 	/* Enable classifier */
2491 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2492 
2493 	/* Clear classifier flow table */
2494 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2495 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2496 		fe.index = index;
2497 		mvpp2_cls_flow_write(priv, &fe);
2498 	}
2499 
2500 	/* Clear classifier lookup table */
2501 	le.data = 0;
2502 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2503 		le.lkpid = index;
2504 		le.way = 0;
2505 		mvpp2_cls_lookup_write(priv, &le);
2506 
2507 		le.way = 1;
2508 		mvpp2_cls_lookup_write(priv, &le);
2509 	}
2510 }
2511 
2512 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2513 {
2514 	struct mvpp2_cls_lookup_entry le;
2515 	u32 val;
2516 
2517 	/* Set way for the port */
2518 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2519 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2520 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2521 
2522 	/* Pick the entry to be accessed in lookup ID decoding table
2523 	 * according to the way and lkpid.
2524 	 */
2525 	le.lkpid = port->id;
2526 	le.way = 0;
2527 	le.data = 0;
2528 
2529 	/* Set initial CPU queue for receiving packets */
2530 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2531 	le.data |= port->first_rxq;
2532 
2533 	/* Disable classification engines */
2534 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2535 
2536 	/* Update lookup ID table entry */
2537 	mvpp2_cls_lookup_write(port->priv, &le);
2538 }
2539 
2540 /* Set CPU queue number for oversize packets */
2541 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2542 {
2543 	u32 val;
2544 
2545 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2546 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2547 
2548 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2549 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2550 
2551 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2552 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2553 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2554 }
2555 
2556 /* Buffer Manager configuration routines */
2557 
2558 /* Create pool */
2559 static int mvpp2_bm_pool_create(struct udevice *dev,
2560 				struct mvpp2 *priv,
2561 				struct mvpp2_bm_pool *bm_pool, int size)
2562 {
2563 	u32 val;
2564 
2565 	/* Number of buffer pointers must be a multiple of 16, as per
2566 	 * hardware constraints
2567 	 */
2568 	if (!IS_ALIGNED(size, 16))
2569 		return -EINVAL;
2570 
2571 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2572 	bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2573 	if (!bm_pool->virt_addr)
2574 		return -ENOMEM;
2575 
2576 	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2577 			MVPP2_BM_POOL_PTR_ALIGN)) {
2578 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2579 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2580 		return -ENOMEM;
2581 	}
2582 
2583 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2584 		    lower_32_bits(bm_pool->dma_addr));
2585 	if (priv->hw_version == MVPP22)
2586 		mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
2587 			    (upper_32_bits(bm_pool->dma_addr) &
2588 			    MVPP22_BM_POOL_BASE_HIGH_MASK));
2589 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2590 
2591 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2592 	val |= MVPP2_BM_START_MASK;
2593 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2594 
2595 	bm_pool->type = MVPP2_BM_FREE;
2596 	bm_pool->size = size;
2597 	bm_pool->pkt_size = 0;
2598 	bm_pool->buf_num = 0;
2599 
2600 	return 0;
2601 }
2602 
2603 /* Set pool buffer size */
2604 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2605 				      struct mvpp2_bm_pool *bm_pool,
2606 				      int buf_size)
2607 {
2608 	u32 val;
2609 
2610 	bm_pool->buf_size = buf_size;
2611 
2612 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2613 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2614 }
2615 
2616 /* Free all buffers from the pool */
2617 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2618 			       struct mvpp2_bm_pool *bm_pool)
2619 {
2620 	int i;
2621 
2622 	for (i = 0; i < bm_pool->buf_num; i++) {
2623 		/* Allocate buffer back from the buffer manager */
2624 		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2625 	}
2626 
2627 	bm_pool->buf_num = 0;
2628 }
2629 
2630 /* Cleanup pool */
2631 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2632 				 struct mvpp2 *priv,
2633 				 struct mvpp2_bm_pool *bm_pool)
2634 {
2635 	u32 val;
2636 
2637 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2638 	if (bm_pool->buf_num) {
2639 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2640 		return 0;
2641 	}
2642 
2643 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2644 	val |= MVPP2_BM_STOP_MASK;
2645 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2646 
2647 	return 0;
2648 }
2649 
2650 static int mvpp2_bm_pools_init(struct udevice *dev,
2651 			       struct mvpp2 *priv)
2652 {
2653 	int i, err, size;
2654 	struct mvpp2_bm_pool *bm_pool;
2655 
2656 	/* Create all pools with maximum size */
2657 	size = MVPP2_BM_POOL_SIZE_MAX;
2658 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2659 		bm_pool = &priv->bm_pools[i];
2660 		bm_pool->id = i;
2661 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2662 		if (err)
2663 			goto err_unroll_pools;
2664 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
2665 	}
2666 	return 0;
2667 
2668 err_unroll_pools:
2669 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2670 	for (i = i - 1; i >= 0; i--)
2671 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2672 	return err;
2673 }
2674 
2675 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2676 {
2677 	int i, err;
2678 
2679 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2680 		/* Mask BM all interrupts */
2681 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2682 		/* Clear BM cause register */
2683 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2684 	}
2685 
2686 	/* Allocate and initialize BM pools */
2687 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2688 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2689 	if (!priv->bm_pools)
2690 		return -ENOMEM;
2691 
2692 	err = mvpp2_bm_pools_init(dev, priv);
2693 	if (err < 0)
2694 		return err;
2695 	return 0;
2696 }
2697 
2698 /* Attach long pool to rxq */
2699 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2700 				    int lrxq, int long_pool)
2701 {
2702 	u32 val, mask;
2703 	int prxq;
2704 
2705 	/* Get queue physical ID */
2706 	prxq = port->rxqs[lrxq]->id;
2707 
2708 	if (port->priv->hw_version == MVPP21)
2709 		mask = MVPP21_RXQ_POOL_LONG_MASK;
2710 	else
2711 		mask = MVPP22_RXQ_POOL_LONG_MASK;
2712 
2713 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2714 	val &= ~mask;
2715 	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2716 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2717 }
2718 
2719 /* Set pool number in a BM cookie */
2720 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2721 {
2722 	u32 bm;
2723 
2724 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2725 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2726 
2727 	return bm;
2728 }
2729 
2730 /* Get pool number from a BM cookie */
2731 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2732 {
2733 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2734 }
2735 
2736 /* Release buffer to BM */
2737 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2738 				     dma_addr_t buf_dma_addr,
2739 				     unsigned long buf_phys_addr)
2740 {
2741 	if (port->priv->hw_version == MVPP22) {
2742 		u32 val = 0;
2743 
2744 		if (sizeof(dma_addr_t) == 8)
2745 			val |= upper_32_bits(buf_dma_addr) &
2746 				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2747 
2748 		if (sizeof(phys_addr_t) == 8)
2749 			val |= (upper_32_bits(buf_phys_addr)
2750 				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2751 				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2752 
2753 		mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2754 	}
2755 
2756 	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2757 	 * returned in the "cookie" field of the RX
2758 	 * descriptor. Instead of storing the virtual address, we
2759 	 * store the physical address
2760 	 */
2761 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2762 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2763 }
2764 
2765 /* Refill BM pool */
2766 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2767 			      dma_addr_t dma_addr,
2768 			      phys_addr_t phys_addr)
2769 {
2770 	int pool = mvpp2_bm_cookie_pool_get(bm);
2771 
2772 	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2773 }
2774 
2775 /* Allocate buffers for the pool */
2776 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2777 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2778 {
2779 	int i;
2780 
2781 	if (buf_num < 0 ||
2782 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2783 		netdev_err(port->dev,
2784 			   "cannot allocate %d buffers for pool %d\n",
2785 			   buf_num, bm_pool->id);
2786 		return 0;
2787 	}
2788 
2789 	for (i = 0; i < buf_num; i++) {
2790 		mvpp2_bm_pool_put(port, bm_pool->id,
2791 				  (dma_addr_t)buffer_loc.rx_buffer[i],
2792 				  (unsigned long)buffer_loc.rx_buffer[i]);
2793 
2794 	}
2795 
2796 	/* Update BM driver with number of buffers added to pool */
2797 	bm_pool->buf_num += i;
2798 
2799 	return i;
2800 }
2801 
2802 /* Notify the driver that BM pool is being used as specific type and return the
2803  * pool pointer on success
2804  */
2805 static struct mvpp2_bm_pool *
2806 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2807 		  int pkt_size)
2808 {
2809 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2810 	int num;
2811 
2812 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2813 		netdev_err(port->dev, "mixing pool types is forbidden\n");
2814 		return NULL;
2815 	}
2816 
2817 	if (new_pool->type == MVPP2_BM_FREE)
2818 		new_pool->type = type;
2819 
2820 	/* Allocate buffers in case BM pool is used as long pool, but packet
2821 	 * size doesn't match MTU or BM pool hasn't being used yet
2822 	 */
2823 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2824 	    (new_pool->pkt_size == 0)) {
2825 		int pkts_num;
2826 
2827 		/* Set default buffer number or free all the buffers in case
2828 		 * the pool is not empty
2829 		 */
2830 		pkts_num = new_pool->buf_num;
2831 		if (pkts_num == 0)
2832 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2833 				   MVPP2_BM_LONG_BUF_NUM :
2834 				   MVPP2_BM_SHORT_BUF_NUM;
2835 		else
2836 			mvpp2_bm_bufs_free(NULL,
2837 					   port->priv, new_pool);
2838 
2839 		new_pool->pkt_size = pkt_size;
2840 
2841 		/* Allocate buffers for this pool */
2842 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2843 		if (num != pkts_num) {
2844 			dev_err(dev, "pool %d: %d of %d allocated\n",
2845 				new_pool->id, num, pkts_num);
2846 			return NULL;
2847 		}
2848 	}
2849 
2850 	return new_pool;
2851 }
2852 
2853 /* Initialize pools for swf */
2854 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2855 {
2856 	int rxq;
2857 
2858 	if (!port->pool_long) {
2859 		port->pool_long =
2860 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2861 					 MVPP2_BM_SWF_LONG,
2862 					 port->pkt_size);
2863 		if (!port->pool_long)
2864 			return -ENOMEM;
2865 
2866 		port->pool_long->port_map |= (1 << port->id);
2867 
2868 		for (rxq = 0; rxq < rxq_number; rxq++)
2869 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 /* Port configuration routines */
2876 
2877 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2878 {
2879 	u32 val;
2880 
2881 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2882 
2883 	switch (port->phy_interface) {
2884 	case PHY_INTERFACE_MODE_SGMII:
2885 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2886 		break;
2887 	case PHY_INTERFACE_MODE_RGMII:
2888 	case PHY_INTERFACE_MODE_RGMII_ID:
2889 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2890 	default:
2891 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2892 	}
2893 
2894 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2895 }
2896 
2897 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2898 {
2899 	u32 val;
2900 
2901 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2902 	val |= MVPP2_GMAC_FC_ADV_EN;
2903 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2904 }
2905 
2906 static void mvpp2_port_enable(struct mvpp2_port *port)
2907 {
2908 	u32 val;
2909 
2910 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2911 	val |= MVPP2_GMAC_PORT_EN_MASK;
2912 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2913 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2914 }
2915 
2916 static void mvpp2_port_disable(struct mvpp2_port *port)
2917 {
2918 	u32 val;
2919 
2920 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2921 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2922 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2923 }
2924 
2925 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2926 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2927 {
2928 	u32 val;
2929 
2930 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2931 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2932 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2933 }
2934 
2935 /* Configure loopback port */
2936 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2937 {
2938 	u32 val;
2939 
2940 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2941 
2942 	if (port->speed == 1000)
2943 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2944 	else
2945 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2946 
2947 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2948 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2949 	else
2950 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2951 
2952 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2953 }
2954 
2955 static void mvpp2_port_reset(struct mvpp2_port *port)
2956 {
2957 	u32 val;
2958 
2959 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2960 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2961 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2962 
2963 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2964 	       MVPP2_GMAC_PORT_RESET_MASK)
2965 		continue;
2966 }
2967 
2968 /* Change maximum receive size of the port */
2969 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2970 {
2971 	u32 val;
2972 
2973 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2974 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2975 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2976 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2977 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2978 }
2979 
2980 /* PPv2.2 GoP/GMAC config */
2981 
2982 /* Set the MAC to reset or exit from reset */
2983 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2984 {
2985 	u32 val;
2986 
2987 	/* read - modify - write */
2988 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2989 	if (reset)
2990 		val |= MVPP2_GMAC_PORT_RESET_MASK;
2991 	else
2992 		val &= ~MVPP2_GMAC_PORT_RESET_MASK;
2993 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2994 
2995 	return 0;
2996 }
2997 
2998 /*
2999  * gop_gpcs_mode_cfg
3000  *
3001  * Configure port to working with Gig PCS or don't.
3002  */
3003 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3004 {
3005 	u32 val;
3006 
3007 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3008 	if (en)
3009 		val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3010 	else
3011 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3012 	/* enable / disable PCS on this port */
3013 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3014 
3015 	return 0;
3016 }
3017 
3018 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3019 {
3020 	u32 val;
3021 
3022 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3023 	if (en)
3024 		val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3025 	else
3026 		val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3027 	/* enable / disable PCS on this port */
3028 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3029 
3030 	return 0;
3031 }
3032 
3033 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3034 {
3035 	u32 val, thresh;
3036 
3037 	/*
3038 	 * Configure minimal level of the Tx FIFO before the lower part
3039 	 * starts to read a packet
3040 	 */
3041 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3042 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3043 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3044 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3045 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3046 
3047 	/* Disable bypass of sync module */
3048 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3049 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3050 	/* configure DP clock select according to mode */
3051 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3052 	/* configure QSGMII bypass according to mode */
3053 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3054 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3055 
3056 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3057 	/*
3058 	 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3059 	 * transceiver
3060 	 */
3061 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3062 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3063 
3064 	/* configure AN 0x9268 */
3065 	val = MVPP2_GMAC_EN_PCS_AN |
3066 		MVPP2_GMAC_AN_BYPASS_EN |
3067 		MVPP2_GMAC_CONFIG_MII_SPEED  |
3068 		MVPP2_GMAC_CONFIG_GMII_SPEED     |
3069 		MVPP2_GMAC_FC_ADV_EN    |
3070 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3071 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3072 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3073 }
3074 
3075 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3076 {
3077 	u32 val, thresh;
3078 
3079 	/*
3080 	 * Configure minimal level of the Tx FIFO before the lower part
3081 	 * starts to read a packet
3082 	 */
3083 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3084 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3085 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3086 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3087 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3088 
3089 	/* Disable bypass of sync module */
3090 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3091 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3092 	/* configure DP clock select according to mode */
3093 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3094 	/* configure QSGMII bypass according to mode */
3095 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3096 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3097 
3098 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3099 	/* configure GIG MAC to SGMII mode */
3100 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3101 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3102 
3103 	/* configure AN */
3104 	val = MVPP2_GMAC_EN_PCS_AN |
3105 		MVPP2_GMAC_AN_BYPASS_EN |
3106 		MVPP2_GMAC_AN_SPEED_EN  |
3107 		MVPP2_GMAC_EN_FC_AN     |
3108 		MVPP2_GMAC_AN_DUPLEX_EN |
3109 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3110 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3111 }
3112 
3113 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3114 {
3115 	u32 val, thresh;
3116 
3117 	/*
3118 	 * Configure minimal level of the Tx FIFO before the lower part
3119 	 * starts to read a packet
3120 	 */
3121 	thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3122 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3123 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3124 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3125 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3126 
3127 	/* Disable bypass of sync module */
3128 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3129 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3130 	/* configure DP clock select according to mode */
3131 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3132 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3133 	val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3134 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3135 
3136 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3137 	/* configure GIG MAC to SGMII mode */
3138 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3139 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3140 
3141 	/* configure AN 0xb8e8 */
3142 	val = MVPP2_GMAC_AN_BYPASS_EN |
3143 		MVPP2_GMAC_AN_SPEED_EN   |
3144 		MVPP2_GMAC_EN_FC_AN      |
3145 		MVPP2_GMAC_AN_DUPLEX_EN  |
3146 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3147 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3148 }
3149 
3150 /* Set the internal mux's to the required MAC in the GOP */
3151 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3152 {
3153 	u32 val;
3154 
3155 	/* Set TX FIFO thresholds */
3156 	switch (port->phy_interface) {
3157 	case PHY_INTERFACE_MODE_SGMII:
3158 		if (port->phy_speed == 2500)
3159 			gop_gmac_sgmii2_5_cfg(port);
3160 		else
3161 			gop_gmac_sgmii_cfg(port);
3162 		break;
3163 
3164 	case PHY_INTERFACE_MODE_RGMII:
3165 	case PHY_INTERFACE_MODE_RGMII_ID:
3166 		gop_gmac_rgmii_cfg(port);
3167 		break;
3168 
3169 	default:
3170 		return -1;
3171 	}
3172 
3173 	/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3174 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3175 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3176 	val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3177 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3178 
3179 	/* PeriodicXonEn disable */
3180 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3181 	val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3182 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3183 
3184 	return 0;
3185 }
3186 
3187 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3188 {
3189 	u32 val;
3190 
3191 	/* relevant only for MAC0 (XLG0 and GMAC0) */
3192 	if (port->gop_id > 0)
3193 		return;
3194 
3195 	/* configure 1Gig MAC mode */
3196 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3197 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3198 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3199 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3200 }
3201 
3202 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3203 {
3204 	u32 val;
3205 
3206 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3207 	if (reset)
3208 		val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3209 	else
3210 		val |= MVPP2_GMAC_SGMII_MODE_MASK;
3211 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3212 
3213 	return 0;
3214 }
3215 
3216 /* Set the internal mux's to the required PCS in the PI */
3217 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3218 {
3219 	u32 val;
3220 	int lane;
3221 
3222 	switch (num_of_lanes) {
3223 	case 1:
3224 		lane = 0;
3225 		break;
3226 	case 2:
3227 		lane = 1;
3228 		break;
3229 	case 4:
3230 		lane = 2;
3231 		break;
3232 	default:
3233 		return -1;
3234 	}
3235 
3236 	/* configure XG MAC mode */
3237 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3238 	val &= ~MVPP22_XPCS_PCSMODE_MASK;
3239 	val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3240 	val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3241 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3242 
3243 	return 0;
3244 }
3245 
3246 static int gop_mpcs_mode(struct mvpp2_port *port)
3247 {
3248 	u32 val;
3249 
3250 	/* configure PCS40G COMMON CONTROL */
3251 	val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3252 	val &= ~FORWARD_ERROR_CORRECTION_MASK;
3253 	writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3254 
3255 	/* configure PCS CLOCK RESET */
3256 	val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3257 	val &= ~CLK_DIVISION_RATIO_MASK;
3258 	val |= 1 << CLK_DIVISION_RATIO_OFFS;
3259 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3260 
3261 	val &= ~CLK_DIV_PHASE_SET_MASK;
3262 	val |= MAC_CLK_RESET_MASK;
3263 	val |= RX_SD_CLK_RESET_MASK;
3264 	val |= TX_SD_CLK_RESET_MASK;
3265 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3266 
3267 	return 0;
3268 }
3269 
3270 /* Set the internal mux's to the required MAC in the GOP */
3271 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3272 {
3273 	u32 val;
3274 
3275 	/* configure 10G MAC mode */
3276 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3277 	val |= MVPP22_XLG_RX_FC_EN;
3278 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3279 
3280 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3281 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3282 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3283 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3284 
3285 	/* read - modify - write */
3286 	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3287 	val &= ~MVPP22_XLG_MODE_DMA_1G;
3288 	val |= MVPP22_XLG_FORWARD_PFC_EN;
3289 	val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3290 	val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3291 	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3292 
3293 	/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3294 	val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3295 	val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3296 	val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3297 	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3298 
3299 	/* unmask link change interrupt */
3300 	val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3301 	val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3302 	val |= 1; /* unmask summary bit */
3303 	writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3304 
3305 	return 0;
3306 }
3307 
3308 /* Set PCS to reset or exit from reset */
3309 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3310 {
3311 	u32 val;
3312 
3313 	/* read - modify - write */
3314 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3315 	if (reset)
3316 		val &= ~MVPP22_XPCS_PCSRESET;
3317 	else
3318 		val |= MVPP22_XPCS_PCSRESET;
3319 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3320 
3321 	return 0;
3322 }
3323 
3324 /* Set the MAC to reset or exit from reset */
3325 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3326 {
3327 	u32 val;
3328 
3329 	/* read - modify - write */
3330 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3331 	if (reset)
3332 		val &= ~MVPP22_XLG_MAC_RESETN;
3333 	else
3334 		val |= MVPP22_XLG_MAC_RESETN;
3335 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3336 
3337 	return 0;
3338 }
3339 
3340 /*
3341  * gop_port_init
3342  *
3343  * Init physical port. Configures the port mode and all it's elements
3344  * accordingly.
3345  * Does not verify that the selected mode/port number is valid at the
3346  * core level.
3347  */
3348 static int gop_port_init(struct mvpp2_port *port)
3349 {
3350 	int mac_num = port->gop_id;
3351 	int num_of_act_lanes;
3352 
3353 	if (mac_num >= MVPP22_GOP_MAC_NUM) {
3354 		netdev_err(NULL, "%s: illegal port number %d", __func__,
3355 			   mac_num);
3356 		return -1;
3357 	}
3358 
3359 	switch (port->phy_interface) {
3360 	case PHY_INTERFACE_MODE_RGMII:
3361 	case PHY_INTERFACE_MODE_RGMII_ID:
3362 		gop_gmac_reset(port, 1);
3363 
3364 		/* configure PCS */
3365 		gop_gpcs_mode_cfg(port, 0);
3366 		gop_bypass_clk_cfg(port, 1);
3367 
3368 		/* configure MAC */
3369 		gop_gmac_mode_cfg(port);
3370 		/* pcs unreset */
3371 		gop_gpcs_reset(port, 0);
3372 
3373 		/* mac unreset */
3374 		gop_gmac_reset(port, 0);
3375 		break;
3376 
3377 	case PHY_INTERFACE_MODE_SGMII:
3378 		/* configure PCS */
3379 		gop_gpcs_mode_cfg(port, 1);
3380 
3381 		/* configure MAC */
3382 		gop_gmac_mode_cfg(port);
3383 		/* select proper Mac mode */
3384 		gop_xlg_2_gig_mac_cfg(port);
3385 
3386 		/* pcs unreset */
3387 		gop_gpcs_reset(port, 0);
3388 		/* mac unreset */
3389 		gop_gmac_reset(port, 0);
3390 		break;
3391 
3392 	case PHY_INTERFACE_MODE_SFI:
3393 		num_of_act_lanes = 2;
3394 		mac_num = 0;
3395 		/* configure PCS */
3396 		gop_xpcs_mode(port, num_of_act_lanes);
3397 		gop_mpcs_mode(port);
3398 		/* configure MAC */
3399 		gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3400 
3401 		/* pcs unreset */
3402 		gop_xpcs_reset(port, 0);
3403 
3404 		/* mac unreset */
3405 		gop_xlg_mac_reset(port, 0);
3406 		break;
3407 
3408 	default:
3409 		netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3410 			   __func__, port->phy_interface);
3411 		return -1;
3412 	}
3413 
3414 	return 0;
3415 }
3416 
3417 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3418 {
3419 	u32 val;
3420 
3421 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3422 	if (enable) {
3423 		/* Enable port and MIB counters update */
3424 		val |= MVPP22_XLG_PORT_EN;
3425 		val &= ~MVPP22_XLG_MIBCNT_DIS;
3426 	} else {
3427 		/* Disable port */
3428 		val &= ~MVPP22_XLG_PORT_EN;
3429 	}
3430 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3431 }
3432 
3433 static void gop_port_enable(struct mvpp2_port *port, int enable)
3434 {
3435 	switch (port->phy_interface) {
3436 	case PHY_INTERFACE_MODE_RGMII:
3437 	case PHY_INTERFACE_MODE_RGMII_ID:
3438 	case PHY_INTERFACE_MODE_SGMII:
3439 		if (enable)
3440 			mvpp2_port_enable(port);
3441 		else
3442 			mvpp2_port_disable(port);
3443 		break;
3444 
3445 	case PHY_INTERFACE_MODE_SFI:
3446 		gop_xlg_mac_port_enable(port, enable);
3447 
3448 		break;
3449 	default:
3450 		netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3451 			   port->phy_interface);
3452 		return;
3453 	}
3454 }
3455 
3456 /* RFU1 functions */
3457 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3458 {
3459 	return readl(priv->rfu1_base + offset);
3460 }
3461 
3462 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3463 {
3464 	writel(data, priv->rfu1_base + offset);
3465 }
3466 
3467 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3468 {
3469 	u32 val = 0;
3470 
3471 	if (gop_id == 2) {
3472 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3473 			val |= MV_NETC_GE_MAC2_SGMII;
3474 	}
3475 
3476 	if (gop_id == 3) {
3477 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3478 			val |= MV_NETC_GE_MAC3_SGMII;
3479 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3480 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3481 			val |= MV_NETC_GE_MAC3_RGMII;
3482 	}
3483 
3484 	return val;
3485 }
3486 
3487 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3488 {
3489 	u32 reg;
3490 
3491 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3492 	reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3493 
3494 	val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3495 	val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3496 
3497 	reg |= val;
3498 
3499 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3500 }
3501 
3502 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3503 {
3504 	u32 reg;
3505 
3506 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3507 	reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3508 
3509 	val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3510 	val &= NETC_GBE_PORT1_MII_MODE_MASK;
3511 
3512 	reg |= val;
3513 
3514 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3515 }
3516 
3517 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3518 {
3519 	u32 reg;
3520 
3521 	reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3522 	reg &= ~NETC_GOP_SOFT_RESET_MASK;
3523 
3524 	val <<= NETC_GOP_SOFT_RESET_OFFS;
3525 	val &= NETC_GOP_SOFT_RESET_MASK;
3526 
3527 	reg |= val;
3528 
3529 	gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3530 }
3531 
3532 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3533 {
3534 	u32 reg;
3535 
3536 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3537 	reg &= ~NETC_CLK_DIV_PHASE_MASK;
3538 
3539 	val <<= NETC_CLK_DIV_PHASE_OFFS;
3540 	val &= NETC_CLK_DIV_PHASE_MASK;
3541 
3542 	reg |= val;
3543 
3544 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3545 }
3546 
3547 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3548 {
3549 	u32 reg;
3550 
3551 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3552 	reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3553 
3554 	val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3555 	val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3556 
3557 	reg |= val;
3558 
3559 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3560 }
3561 
3562 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3563 					   u32 val)
3564 {
3565 	u32 reg, mask, offset;
3566 
3567 	if (gop_id == 2) {
3568 		mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3569 		offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3570 	} else {
3571 		mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3572 		offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3573 	}
3574 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3575 	reg &= ~mask;
3576 
3577 	val <<= offset;
3578 	val &= mask;
3579 
3580 	reg |= val;
3581 
3582 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3583 }
3584 
3585 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3586 {
3587 	u32 reg;
3588 
3589 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3590 	reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3591 
3592 	val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3593 	val &= NETC_BUS_WIDTH_SELECT_MASK;
3594 
3595 	reg |= val;
3596 
3597 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3598 }
3599 
3600 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3601 {
3602 	u32 reg;
3603 
3604 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3605 	reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3606 
3607 	val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3608 	val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3609 
3610 	reg |= val;
3611 
3612 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3613 }
3614 
3615 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3616 				  enum mv_netc_phase phase)
3617 {
3618 	switch (phase) {
3619 	case MV_NETC_FIRST_PHASE:
3620 		/* Set Bus Width to HB mode = 1 */
3621 		gop_netc_bus_width_select(priv, 1);
3622 		/* Select RGMII mode */
3623 		gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3624 		break;
3625 
3626 	case MV_NETC_SECOND_PHASE:
3627 		/* De-assert the relevant port HB reset */
3628 		gop_netc_port_rf_reset(priv, gop_id, 1);
3629 		break;
3630 	}
3631 }
3632 
3633 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3634 				  enum mv_netc_phase phase)
3635 {
3636 	switch (phase) {
3637 	case MV_NETC_FIRST_PHASE:
3638 		/* Set Bus Width to HB mode = 1 */
3639 		gop_netc_bus_width_select(priv, 1);
3640 		/* Select SGMII mode */
3641 		if (gop_id >= 1) {
3642 			gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3643 						       MV_NETC_GBE_SGMII);
3644 		}
3645 
3646 		/* Configure the sample stages */
3647 		gop_netc_sample_stages_timing(priv, 0);
3648 		/* Configure the ComPhy Selector */
3649 		/* gop_netc_com_phy_selector_config(netComplex); */
3650 		break;
3651 
3652 	case MV_NETC_SECOND_PHASE:
3653 		/* De-assert the relevant port HB reset */
3654 		gop_netc_port_rf_reset(priv, gop_id, 1);
3655 		break;
3656 	}
3657 }
3658 
3659 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3660 {
3661 	u32 c = priv->netc_config;
3662 
3663 	if (c & MV_NETC_GE_MAC2_SGMII)
3664 		gop_netc_mac_to_sgmii(priv, 2, phase);
3665 	else
3666 		gop_netc_mac_to_xgmii(priv, 2, phase);
3667 
3668 	if (c & MV_NETC_GE_MAC3_SGMII) {
3669 		gop_netc_mac_to_sgmii(priv, 3, phase);
3670 	} else {
3671 		gop_netc_mac_to_xgmii(priv, 3, phase);
3672 		if (c & MV_NETC_GE_MAC3_RGMII)
3673 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3674 		else
3675 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3676 	}
3677 
3678 	/* Activate gop ports 0, 2, 3 */
3679 	gop_netc_active_port(priv, 0, 1);
3680 	gop_netc_active_port(priv, 2, 1);
3681 	gop_netc_active_port(priv, 3, 1);
3682 
3683 	if (phase == MV_NETC_SECOND_PHASE) {
3684 		/* Enable the GOP internal clock logic */
3685 		gop_netc_gop_clock_logic_set(priv, 1);
3686 		/* De-assert GOP unit reset */
3687 		gop_netc_gop_reset(priv, 1);
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 /* Set defaults to the MVPP2 port */
3694 static void mvpp2_defaults_set(struct mvpp2_port *port)
3695 {
3696 	int tx_port_num, val, queue, ptxq, lrxq;
3697 
3698 	if (port->priv->hw_version == MVPP21) {
3699 		/* Configure port to loopback if needed */
3700 		if (port->flags & MVPP2_F_LOOPBACK)
3701 			mvpp2_port_loopback_set(port);
3702 
3703 		/* Update TX FIFO MIN Threshold */
3704 		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3705 		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3706 		/* Min. TX threshold must be less than minimal packet length */
3707 		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3708 		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3709 	}
3710 
3711 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3712 	tx_port_num = mvpp2_egress_port(port);
3713 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3714 		    tx_port_num);
3715 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3716 
3717 	/* Close bandwidth for all queues */
3718 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3719 		ptxq = mvpp2_txq_phys(port->id, queue);
3720 		mvpp2_write(port->priv,
3721 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3722 	}
3723 
3724 	/* Set refill period to 1 usec, refill tokens
3725 	 * and bucket size to maximum
3726 	 */
3727 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3728 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3729 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3730 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3731 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3732 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3733 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3734 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3735 
3736 	/* Set MaximumLowLatencyPacketSize value to 256 */
3737 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3738 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3739 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3740 
3741 	/* Enable Rx cache snoop */
3742 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3743 		queue = port->rxqs[lrxq]->id;
3744 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3745 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3746 			   MVPP2_SNOOP_BUF_HDR_MASK;
3747 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3748 	}
3749 }
3750 
3751 /* Enable/disable receiving packets */
3752 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3753 {
3754 	u32 val;
3755 	int lrxq, queue;
3756 
3757 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3758 		queue = port->rxqs[lrxq]->id;
3759 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3760 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3761 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3762 	}
3763 }
3764 
3765 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3766 {
3767 	u32 val;
3768 	int lrxq, queue;
3769 
3770 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3771 		queue = port->rxqs[lrxq]->id;
3772 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3773 		val |= MVPP2_RXQ_DISABLE_MASK;
3774 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3775 	}
3776 }
3777 
3778 /* Enable transmit via physical egress queue
3779  * - HW starts take descriptors from DRAM
3780  */
3781 static void mvpp2_egress_enable(struct mvpp2_port *port)
3782 {
3783 	u32 qmap;
3784 	int queue;
3785 	int tx_port_num = mvpp2_egress_port(port);
3786 
3787 	/* Enable all initialized TXs. */
3788 	qmap = 0;
3789 	for (queue = 0; queue < txq_number; queue++) {
3790 		struct mvpp2_tx_queue *txq = port->txqs[queue];
3791 
3792 		if (txq->descs != NULL)
3793 			qmap |= (1 << queue);
3794 	}
3795 
3796 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3797 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3798 }
3799 
3800 /* Disable transmit via physical egress queue
3801  * - HW doesn't take descriptors from DRAM
3802  */
3803 static void mvpp2_egress_disable(struct mvpp2_port *port)
3804 {
3805 	u32 reg_data;
3806 	int delay;
3807 	int tx_port_num = mvpp2_egress_port(port);
3808 
3809 	/* Issue stop command for active channels only */
3810 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3811 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3812 		    MVPP2_TXP_SCHED_ENQ_MASK;
3813 	if (reg_data != 0)
3814 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3815 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3816 
3817 	/* Wait for all Tx activity to terminate. */
3818 	delay = 0;
3819 	do {
3820 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3821 			netdev_warn(port->dev,
3822 				    "Tx stop timed out, status=0x%08x\n",
3823 				    reg_data);
3824 			break;
3825 		}
3826 		mdelay(1);
3827 		delay++;
3828 
3829 		/* Check port TX Command register that all
3830 		 * Tx queues are stopped
3831 		 */
3832 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3833 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3834 }
3835 
3836 /* Rx descriptors helper methods */
3837 
3838 /* Get number of Rx descriptors occupied by received packets */
3839 static inline int
3840 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3841 {
3842 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3843 
3844 	return val & MVPP2_RXQ_OCCUPIED_MASK;
3845 }
3846 
3847 /* Update Rx queue status with the number of occupied and available
3848  * Rx descriptor slots.
3849  */
3850 static inline void
3851 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3852 			int used_count, int free_count)
3853 {
3854 	/* Decrement the number of used descriptors and increment count
3855 	 * increment the number of free descriptors.
3856 	 */
3857 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3858 
3859 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3860 }
3861 
3862 /* Get pointer to next RX descriptor to be processed by SW */
3863 static inline struct mvpp2_rx_desc *
3864 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3865 {
3866 	int rx_desc = rxq->next_desc_to_proc;
3867 
3868 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3869 	prefetch(rxq->descs + rxq->next_desc_to_proc);
3870 	return rxq->descs + rx_desc;
3871 }
3872 
3873 /* Set rx queue offset */
3874 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3875 				 int prxq, int offset)
3876 {
3877 	u32 val;
3878 
3879 	/* Convert offset from bytes to units of 32 bytes */
3880 	offset = offset >> 5;
3881 
3882 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3883 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3884 
3885 	/* Offset is in */
3886 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3887 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
3888 
3889 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3890 }
3891 
3892 /* Obtain BM cookie information from descriptor */
3893 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3894 				 struct mvpp2_rx_desc *rx_desc)
3895 {
3896 	int cpu = smp_processor_id();
3897 	int pool;
3898 
3899 	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3900 		MVPP2_RXD_BM_POOL_ID_MASK) >>
3901 		MVPP2_RXD_BM_POOL_ID_OFFS;
3902 
3903 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3904 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3905 }
3906 
3907 /* Tx descriptors helper methods */
3908 
3909 /* Get number of Tx descriptors waiting to be transmitted by HW */
3910 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3911 				       struct mvpp2_tx_queue *txq)
3912 {
3913 	u32 val;
3914 
3915 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3916 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3917 
3918 	return val & MVPP2_TXQ_PENDING_MASK;
3919 }
3920 
3921 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3922 static struct mvpp2_tx_desc *
3923 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3924 {
3925 	int tx_desc = txq->next_desc_to_proc;
3926 
3927 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3928 	return txq->descs + tx_desc;
3929 }
3930 
3931 /* Update HW with number of aggregated Tx descriptors to be sent */
3932 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3933 {
3934 	/* aggregated access - relevant TXQ number is written in TX desc */
3935 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3936 }
3937 
3938 /* Get number of sent descriptors and decrement counter.
3939  * The number of sent descriptors is returned.
3940  * Per-CPU access
3941  */
3942 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3943 					   struct mvpp2_tx_queue *txq)
3944 {
3945 	u32 val;
3946 
3947 	/* Reading status reg resets transmitted descriptor counter */
3948 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3949 
3950 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3951 		MVPP2_TRANSMITTED_COUNT_OFFSET;
3952 }
3953 
3954 static void mvpp2_txq_sent_counter_clear(void *arg)
3955 {
3956 	struct mvpp2_port *port = arg;
3957 	int queue;
3958 
3959 	for (queue = 0; queue < txq_number; queue++) {
3960 		int id = port->txqs[queue]->id;
3961 
3962 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3963 	}
3964 }
3965 
3966 /* Set max sizes for Tx queues */
3967 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3968 {
3969 	u32	val, size, mtu;
3970 	int	txq, tx_port_num;
3971 
3972 	mtu = port->pkt_size * 8;
3973 	if (mtu > MVPP2_TXP_MTU_MAX)
3974 		mtu = MVPP2_TXP_MTU_MAX;
3975 
3976 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3977 	mtu = 3 * mtu;
3978 
3979 	/* Indirect access to registers */
3980 	tx_port_num = mvpp2_egress_port(port);
3981 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3982 
3983 	/* Set MTU */
3984 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3985 	val &= ~MVPP2_TXP_MTU_MAX;
3986 	val |= mtu;
3987 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
3988 
3989 	/* TXP token size and all TXQs token size must be larger that MTU */
3990 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
3991 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
3992 	if (size < mtu) {
3993 		size = mtu;
3994 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
3995 		val |= size;
3996 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3997 	}
3998 
3999 	for (txq = 0; txq < txq_number; txq++) {
4000 		val = mvpp2_read(port->priv,
4001 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4002 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4003 
4004 		if (size < mtu) {
4005 			size = mtu;
4006 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4007 			val |= size;
4008 			mvpp2_write(port->priv,
4009 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4010 				    val);
4011 		}
4012 	}
4013 }
4014 
4015 /* Free Tx queue skbuffs */
4016 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4017 				struct mvpp2_tx_queue *txq,
4018 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4019 {
4020 	int i;
4021 
4022 	for (i = 0; i < num; i++)
4023 		mvpp2_txq_inc_get(txq_pcpu);
4024 }
4025 
4026 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4027 							u32 cause)
4028 {
4029 	int queue = fls(cause) - 1;
4030 
4031 	return port->rxqs[queue];
4032 }
4033 
4034 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4035 							u32 cause)
4036 {
4037 	int queue = fls(cause) - 1;
4038 
4039 	return port->txqs[queue];
4040 }
4041 
4042 /* Rx/Tx queue initialization/cleanup methods */
4043 
4044 /* Allocate and initialize descriptors for aggr TXQ */
4045 static int mvpp2_aggr_txq_init(struct udevice *dev,
4046 			       struct mvpp2_tx_queue *aggr_txq,
4047 			       int desc_num, int cpu,
4048 			       struct mvpp2 *priv)
4049 {
4050 	u32 txq_dma;
4051 
4052 	/* Allocate memory for TX descriptors */
4053 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
4054 	aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4055 	if (!aggr_txq->descs)
4056 		return -ENOMEM;
4057 
4058 	/* Make sure descriptor address is cache line size aligned  */
4059 	BUG_ON(aggr_txq->descs !=
4060 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4061 
4062 	aggr_txq->last_desc = aggr_txq->size - 1;
4063 
4064 	/* Aggr TXQ no reset WA */
4065 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4066 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4067 
4068 	/* Set Tx descriptors queue starting address indirect
4069 	 * access
4070 	 */
4071 	if (priv->hw_version == MVPP21)
4072 		txq_dma = aggr_txq->descs_dma;
4073 	else
4074 		txq_dma = aggr_txq->descs_dma >>
4075 			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4076 
4077 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4078 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4079 
4080 	return 0;
4081 }
4082 
4083 /* Create a specified Rx queue */
4084 static int mvpp2_rxq_init(struct mvpp2_port *port,
4085 			  struct mvpp2_rx_queue *rxq)
4086 
4087 {
4088 	u32 rxq_dma;
4089 
4090 	rxq->size = port->rx_ring_size;
4091 
4092 	/* Allocate memory for RX descriptors */
4093 	rxq->descs = buffer_loc.rx_descs;
4094 	rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4095 	if (!rxq->descs)
4096 		return -ENOMEM;
4097 
4098 	BUG_ON(rxq->descs !=
4099 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4100 
4101 	rxq->last_desc = rxq->size - 1;
4102 
4103 	/* Zero occupied and non-occupied counters - direct access */
4104 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4105 
4106 	/* Set Rx descriptors queue starting address - indirect access */
4107 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4108 	if (port->priv->hw_version == MVPP21)
4109 		rxq_dma = rxq->descs_dma;
4110 	else
4111 		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4112 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4113 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4114 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4115 
4116 	/* Set Offset */
4117 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4118 
4119 	/* Add number of descriptors ready for receiving packets */
4120 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4121 
4122 	return 0;
4123 }
4124 
4125 /* Push packets received by the RXQ to BM pool */
4126 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4127 				struct mvpp2_rx_queue *rxq)
4128 {
4129 	int rx_received, i;
4130 
4131 	rx_received = mvpp2_rxq_received(port, rxq->id);
4132 	if (!rx_received)
4133 		return;
4134 
4135 	for (i = 0; i < rx_received; i++) {
4136 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4137 		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4138 
4139 		mvpp2_pool_refill(port, bm,
4140 				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4141 				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4142 	}
4143 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4144 }
4145 
4146 /* Cleanup Rx queue */
4147 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4148 			     struct mvpp2_rx_queue *rxq)
4149 {
4150 	mvpp2_rxq_drop_pkts(port, rxq);
4151 
4152 	rxq->descs             = NULL;
4153 	rxq->last_desc         = 0;
4154 	rxq->next_desc_to_proc = 0;
4155 	rxq->descs_dma         = 0;
4156 
4157 	/* Clear Rx descriptors queue starting address and size;
4158 	 * free descriptor number
4159 	 */
4160 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4161 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4162 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4163 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4164 }
4165 
4166 /* Create and initialize a Tx queue */
4167 static int mvpp2_txq_init(struct mvpp2_port *port,
4168 			  struct mvpp2_tx_queue *txq)
4169 {
4170 	u32 val;
4171 	int cpu, desc, desc_per_txq, tx_port_num;
4172 	struct mvpp2_txq_pcpu *txq_pcpu;
4173 
4174 	txq->size = port->tx_ring_size;
4175 
4176 	/* Allocate memory for Tx descriptors */
4177 	txq->descs = buffer_loc.tx_descs;
4178 	txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4179 	if (!txq->descs)
4180 		return -ENOMEM;
4181 
4182 	/* Make sure descriptor address is cache line size aligned  */
4183 	BUG_ON(txq->descs !=
4184 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4185 
4186 	txq->last_desc = txq->size - 1;
4187 
4188 	/* Set Tx descriptors queue starting address - indirect access */
4189 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4190 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4191 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4192 					     MVPP2_TXQ_DESC_SIZE_MASK);
4193 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4194 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4195 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4196 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4197 	val &= ~MVPP2_TXQ_PENDING_MASK;
4198 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4199 
4200 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4201 	 * for each existing TXQ.
4202 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4203 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4204 	 */
4205 	desc_per_txq = 16;
4206 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4207 	       (txq->log_id * desc_per_txq);
4208 
4209 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4210 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4211 		    MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4212 
4213 	/* WRR / EJP configuration - indirect access */
4214 	tx_port_num = mvpp2_egress_port(port);
4215 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4216 
4217 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4218 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4219 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4220 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4221 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4222 
4223 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4224 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4225 		    val);
4226 
4227 	for_each_present_cpu(cpu) {
4228 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4229 		txq_pcpu->size = txq->size;
4230 	}
4231 
4232 	return 0;
4233 }
4234 
4235 /* Free allocated TXQ resources */
4236 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4237 			     struct mvpp2_tx_queue *txq)
4238 {
4239 	txq->descs             = NULL;
4240 	txq->last_desc         = 0;
4241 	txq->next_desc_to_proc = 0;
4242 	txq->descs_dma         = 0;
4243 
4244 	/* Set minimum bandwidth for disabled TXQs */
4245 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4246 
4247 	/* Set Tx descriptors queue starting address and size */
4248 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4249 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4250 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4251 }
4252 
4253 /* Cleanup Tx ports */
4254 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4255 {
4256 	struct mvpp2_txq_pcpu *txq_pcpu;
4257 	int delay, pending, cpu;
4258 	u32 val;
4259 
4260 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4261 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4262 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4263 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4264 
4265 	/* The napi queue has been stopped so wait for all packets
4266 	 * to be transmitted.
4267 	 */
4268 	delay = 0;
4269 	do {
4270 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4271 			netdev_warn(port->dev,
4272 				    "port %d: cleaning queue %d timed out\n",
4273 				    port->id, txq->log_id);
4274 			break;
4275 		}
4276 		mdelay(1);
4277 		delay++;
4278 
4279 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4280 	} while (pending);
4281 
4282 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4283 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4284 
4285 	for_each_present_cpu(cpu) {
4286 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4287 
4288 		/* Release all packets */
4289 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4290 
4291 		/* Reset queue */
4292 		txq_pcpu->count = 0;
4293 		txq_pcpu->txq_put_index = 0;
4294 		txq_pcpu->txq_get_index = 0;
4295 	}
4296 }
4297 
4298 /* Cleanup all Tx queues */
4299 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4300 {
4301 	struct mvpp2_tx_queue *txq;
4302 	int queue;
4303 	u32 val;
4304 
4305 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4306 
4307 	/* Reset Tx ports and delete Tx queues */
4308 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4309 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4310 
4311 	for (queue = 0; queue < txq_number; queue++) {
4312 		txq = port->txqs[queue];
4313 		mvpp2_txq_clean(port, txq);
4314 		mvpp2_txq_deinit(port, txq);
4315 	}
4316 
4317 	mvpp2_txq_sent_counter_clear(port);
4318 
4319 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4320 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4321 }
4322 
4323 /* Cleanup all Rx queues */
4324 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4325 {
4326 	int queue;
4327 
4328 	for (queue = 0; queue < rxq_number; queue++)
4329 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4330 }
4331 
4332 /* Init all Rx queues for port */
4333 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4334 {
4335 	int queue, err;
4336 
4337 	for (queue = 0; queue < rxq_number; queue++) {
4338 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4339 		if (err)
4340 			goto err_cleanup;
4341 	}
4342 	return 0;
4343 
4344 err_cleanup:
4345 	mvpp2_cleanup_rxqs(port);
4346 	return err;
4347 }
4348 
4349 /* Init all tx queues for port */
4350 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4351 {
4352 	struct mvpp2_tx_queue *txq;
4353 	int queue, err;
4354 
4355 	for (queue = 0; queue < txq_number; queue++) {
4356 		txq = port->txqs[queue];
4357 		err = mvpp2_txq_init(port, txq);
4358 		if (err)
4359 			goto err_cleanup;
4360 	}
4361 
4362 	mvpp2_txq_sent_counter_clear(port);
4363 	return 0;
4364 
4365 err_cleanup:
4366 	mvpp2_cleanup_txqs(port);
4367 	return err;
4368 }
4369 
4370 /* Adjust link */
4371 static void mvpp2_link_event(struct mvpp2_port *port)
4372 {
4373 	struct phy_device *phydev = port->phy_dev;
4374 	int status_change = 0;
4375 	u32 val;
4376 
4377 	if (phydev->link) {
4378 		if ((port->speed != phydev->speed) ||
4379 		    (port->duplex != phydev->duplex)) {
4380 			u32 val;
4381 
4382 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4383 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4384 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4385 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4386 				 MVPP2_GMAC_AN_SPEED_EN |
4387 				 MVPP2_GMAC_AN_DUPLEX_EN);
4388 
4389 			if (phydev->duplex)
4390 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4391 
4392 			if (phydev->speed == SPEED_1000)
4393 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4394 			else if (phydev->speed == SPEED_100)
4395 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4396 
4397 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4398 
4399 			port->duplex = phydev->duplex;
4400 			port->speed  = phydev->speed;
4401 		}
4402 	}
4403 
4404 	if (phydev->link != port->link) {
4405 		if (!phydev->link) {
4406 			port->duplex = -1;
4407 			port->speed = 0;
4408 		}
4409 
4410 		port->link = phydev->link;
4411 		status_change = 1;
4412 	}
4413 
4414 	if (status_change) {
4415 		if (phydev->link) {
4416 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4417 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4418 				MVPP2_GMAC_FORCE_LINK_DOWN);
4419 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4420 			mvpp2_egress_enable(port);
4421 			mvpp2_ingress_enable(port);
4422 		} else {
4423 			mvpp2_ingress_disable(port);
4424 			mvpp2_egress_disable(port);
4425 		}
4426 	}
4427 }
4428 
4429 /* Main RX/TX processing routines */
4430 
4431 /* Display more error info */
4432 static void mvpp2_rx_error(struct mvpp2_port *port,
4433 			   struct mvpp2_rx_desc *rx_desc)
4434 {
4435 	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4436 	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4437 
4438 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4439 	case MVPP2_RXD_ERR_CRC:
4440 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4441 			   status, sz);
4442 		break;
4443 	case MVPP2_RXD_ERR_OVERRUN:
4444 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4445 			   status, sz);
4446 		break;
4447 	case MVPP2_RXD_ERR_RESOURCE:
4448 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4449 			   status, sz);
4450 		break;
4451 	}
4452 }
4453 
4454 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4455 static int mvpp2_rx_refill(struct mvpp2_port *port,
4456 			   struct mvpp2_bm_pool *bm_pool,
4457 			   u32 bm, dma_addr_t dma_addr)
4458 {
4459 	mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4460 	return 0;
4461 }
4462 
4463 /* Set hw internals when starting port */
4464 static void mvpp2_start_dev(struct mvpp2_port *port)
4465 {
4466 	switch (port->phy_interface) {
4467 	case PHY_INTERFACE_MODE_RGMII:
4468 	case PHY_INTERFACE_MODE_RGMII_ID:
4469 	case PHY_INTERFACE_MODE_SGMII:
4470 		mvpp2_gmac_max_rx_size_set(port);
4471 	default:
4472 		break;
4473 	}
4474 
4475 	mvpp2_txp_max_tx_size_set(port);
4476 
4477 	if (port->priv->hw_version == MVPP21)
4478 		mvpp2_port_enable(port);
4479 	else
4480 		gop_port_enable(port, 1);
4481 }
4482 
4483 /* Set hw internals when stopping port */
4484 static void mvpp2_stop_dev(struct mvpp2_port *port)
4485 {
4486 	/* Stop new packets from arriving to RXQs */
4487 	mvpp2_ingress_disable(port);
4488 
4489 	mvpp2_egress_disable(port);
4490 
4491 	if (port->priv->hw_version == MVPP21)
4492 		mvpp2_port_disable(port);
4493 	else
4494 		gop_port_enable(port, 0);
4495 }
4496 
4497 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4498 {
4499 	struct phy_device *phy_dev;
4500 
4501 	if (!port->init || port->link == 0) {
4502 		phy_dev = phy_connect(port->bus, port->phyaddr, dev,
4503 				      port->phy_interface);
4504 		port->phy_dev = phy_dev;
4505 		if (!phy_dev) {
4506 			netdev_err(port->dev, "cannot connect to phy\n");
4507 			return -ENODEV;
4508 		}
4509 		phy_dev->supported &= PHY_GBIT_FEATURES;
4510 		phy_dev->advertising = phy_dev->supported;
4511 
4512 		port->phy_dev = phy_dev;
4513 		port->link    = 0;
4514 		port->duplex  = 0;
4515 		port->speed   = 0;
4516 
4517 		phy_config(phy_dev);
4518 		phy_startup(phy_dev);
4519 		if (!phy_dev->link) {
4520 			printf("%s: No link\n", phy_dev->dev->name);
4521 			return -1;
4522 		}
4523 
4524 		port->init = 1;
4525 	} else {
4526 		mvpp2_egress_enable(port);
4527 		mvpp2_ingress_enable(port);
4528 	}
4529 
4530 	return 0;
4531 }
4532 
4533 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4534 {
4535 	unsigned char mac_bcast[ETH_ALEN] = {
4536 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4537 	int err;
4538 
4539 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4540 	if (err) {
4541 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4542 		return err;
4543 	}
4544 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4545 				      port->dev_addr, true);
4546 	if (err) {
4547 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4548 		return err;
4549 	}
4550 	err = mvpp2_prs_def_flow(port);
4551 	if (err) {
4552 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4553 		return err;
4554 	}
4555 
4556 	/* Allocate the Rx/Tx queues */
4557 	err = mvpp2_setup_rxqs(port);
4558 	if (err) {
4559 		netdev_err(port->dev, "cannot allocate Rx queues\n");
4560 		return err;
4561 	}
4562 
4563 	err = mvpp2_setup_txqs(port);
4564 	if (err) {
4565 		netdev_err(port->dev, "cannot allocate Tx queues\n");
4566 		return err;
4567 	}
4568 
4569 	if (port->phy_node) {
4570 		err = mvpp2_phy_connect(dev, port);
4571 		if (err < 0)
4572 			return err;
4573 
4574 		mvpp2_link_event(port);
4575 	} else {
4576 		mvpp2_egress_enable(port);
4577 		mvpp2_ingress_enable(port);
4578 	}
4579 
4580 	mvpp2_start_dev(port);
4581 
4582 	return 0;
4583 }
4584 
4585 /* No Device ops here in U-Boot */
4586 
4587 /* Driver initialization */
4588 
4589 static void mvpp2_port_power_up(struct mvpp2_port *port)
4590 {
4591 	struct mvpp2 *priv = port->priv;
4592 
4593 	/* On PPv2.2 the GoP / interface configuration has already been done */
4594 	if (priv->hw_version == MVPP21)
4595 		mvpp2_port_mii_set(port);
4596 	mvpp2_port_periodic_xon_disable(port);
4597 	if (priv->hw_version == MVPP21)
4598 		mvpp2_port_fc_adv_enable(port);
4599 	mvpp2_port_reset(port);
4600 }
4601 
4602 /* Initialize port HW */
4603 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4604 {
4605 	struct mvpp2 *priv = port->priv;
4606 	struct mvpp2_txq_pcpu *txq_pcpu;
4607 	int queue, cpu, err;
4608 
4609 	if (port->first_rxq + rxq_number >
4610 	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
4611 		return -EINVAL;
4612 
4613 	/* Disable port */
4614 	mvpp2_egress_disable(port);
4615 	if (priv->hw_version == MVPP21)
4616 		mvpp2_port_disable(port);
4617 	else
4618 		gop_port_enable(port, 0);
4619 
4620 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4621 				  GFP_KERNEL);
4622 	if (!port->txqs)
4623 		return -ENOMEM;
4624 
4625 	/* Associate physical Tx queues to this port and initialize.
4626 	 * The mapping is predefined.
4627 	 */
4628 	for (queue = 0; queue < txq_number; queue++) {
4629 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4630 		struct mvpp2_tx_queue *txq;
4631 
4632 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4633 		if (!txq)
4634 			return -ENOMEM;
4635 
4636 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4637 					 GFP_KERNEL);
4638 		if (!txq->pcpu)
4639 			return -ENOMEM;
4640 
4641 		txq->id = queue_phy_id;
4642 		txq->log_id = queue;
4643 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4644 		for_each_present_cpu(cpu) {
4645 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4646 			txq_pcpu->cpu = cpu;
4647 		}
4648 
4649 		port->txqs[queue] = txq;
4650 	}
4651 
4652 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4653 				  GFP_KERNEL);
4654 	if (!port->rxqs)
4655 		return -ENOMEM;
4656 
4657 	/* Allocate and initialize Rx queue for this port */
4658 	for (queue = 0; queue < rxq_number; queue++) {
4659 		struct mvpp2_rx_queue *rxq;
4660 
4661 		/* Map physical Rx queue to port's logical Rx queue */
4662 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4663 		if (!rxq)
4664 			return -ENOMEM;
4665 		/* Map this Rx queue to a physical queue */
4666 		rxq->id = port->first_rxq + queue;
4667 		rxq->port = port->id;
4668 		rxq->logic_rxq = queue;
4669 
4670 		port->rxqs[queue] = rxq;
4671 	}
4672 
4673 
4674 	/* Create Rx descriptor rings */
4675 	for (queue = 0; queue < rxq_number; queue++) {
4676 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4677 
4678 		rxq->size = port->rx_ring_size;
4679 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4680 		rxq->time_coal = MVPP2_RX_COAL_USEC;
4681 	}
4682 
4683 	mvpp2_ingress_disable(port);
4684 
4685 	/* Port default configuration */
4686 	mvpp2_defaults_set(port);
4687 
4688 	/* Port's classifier configuration */
4689 	mvpp2_cls_oversize_rxq_set(port);
4690 	mvpp2_cls_port_config(port);
4691 
4692 	/* Provide an initial Rx packet size */
4693 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4694 
4695 	/* Initialize pools for swf */
4696 	err = mvpp2_swf_bm_pool_init(port);
4697 	if (err)
4698 		return err;
4699 
4700 	return 0;
4701 }
4702 
4703 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4704 {
4705 	int port_node = dev_of_offset(dev);
4706 	const char *phy_mode_str;
4707 	int phy_node;
4708 	u32 id;
4709 	u32 phyaddr = 0;
4710 	int phy_mode = -1;
4711 
4712 	/* Default mdio_base from the same eth base */
4713 	if (port->priv->hw_version == MVPP21)
4714 		port->mdio_base = port->priv->lms_base + MVPP21_SMI;
4715 	else
4716 		port->mdio_base = port->priv->iface_base + MVPP22_SMI;
4717 
4718 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4719 
4720 	if (phy_node > 0) {
4721 		ofnode phy_ofnode;
4722 		fdt_addr_t phy_base;
4723 
4724 		phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4725 		if (phyaddr < 0) {
4726 			dev_err(&pdev->dev, "could not find phy address\n");
4727 			return -1;
4728 		}
4729 
4730 		phy_ofnode = ofnode_get_parent(offset_to_ofnode(phy_node));
4731 		phy_base = ofnode_get_addr(phy_ofnode);
4732 		port->mdio_base = (void *)phy_base;
4733 
4734 		if (port->mdio_base < 0) {
4735 			dev_err(&pdev->dev, "could not find mdio base address\n");
4736 			return -1;
4737 		}
4738 	} else {
4739 		phy_node = 0;
4740 	}
4741 
4742 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4743 	if (phy_mode_str)
4744 		phy_mode = phy_get_interface_by_name(phy_mode_str);
4745 	if (phy_mode == -1) {
4746 		dev_err(&pdev->dev, "incorrect phy mode\n");
4747 		return -EINVAL;
4748 	}
4749 
4750 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4751 	if (id == -1) {
4752 		dev_err(&pdev->dev, "missing port-id value\n");
4753 		return -EINVAL;
4754 	}
4755 
4756 #ifdef CONFIG_DM_GPIO
4757 	gpio_request_by_name(dev, "phy-reset-gpios", 0,
4758 			     &port->phy_reset_gpio, GPIOD_IS_OUT);
4759 	gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
4760 			     &port->phy_tx_disable_gpio, GPIOD_IS_OUT);
4761 #endif
4762 
4763 	/*
4764 	 * ToDo:
4765 	 * Not sure if this DT property "phy-speed" will get accepted, so
4766 	 * this might change later
4767 	 */
4768 	/* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4769 	port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4770 					 "phy-speed", 1000);
4771 
4772 	port->id = id;
4773 	if (port->priv->hw_version == MVPP21)
4774 		port->first_rxq = port->id * rxq_number;
4775 	else
4776 		port->first_rxq = port->id * port->priv->max_port_rxqs;
4777 	port->phy_node = phy_node;
4778 	port->phy_interface = phy_mode;
4779 	port->phyaddr = phyaddr;
4780 
4781 	return 0;
4782 }
4783 
4784 #ifdef CONFIG_DM_GPIO
4785 /* Port GPIO initialization */
4786 static void mvpp2_gpio_init(struct mvpp2_port *port)
4787 {
4788 	if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
4789 		dm_gpio_set_value(&port->phy_reset_gpio, 1);
4790 		mdelay(10);
4791 		dm_gpio_set_value(&port->phy_reset_gpio, 0);
4792 	}
4793 
4794 	if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
4795 		dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
4796 }
4797 #endif
4798 
4799 /* Ports initialization */
4800 static int mvpp2_port_probe(struct udevice *dev,
4801 			    struct mvpp2_port *port,
4802 			    int port_node,
4803 			    struct mvpp2 *priv)
4804 {
4805 	int err;
4806 
4807 	port->tx_ring_size = MVPP2_MAX_TXD;
4808 	port->rx_ring_size = MVPP2_MAX_RXD;
4809 
4810 	err = mvpp2_port_init(dev, port);
4811 	if (err < 0) {
4812 		dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4813 		return err;
4814 	}
4815 	mvpp2_port_power_up(port);
4816 
4817 #ifdef CONFIG_DM_GPIO
4818 	mvpp2_gpio_init(port);
4819 #endif
4820 
4821 	priv->port_list[port->id] = port;
4822 	priv->num_ports++;
4823 	return 0;
4824 }
4825 
4826 /* Initialize decoding windows */
4827 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4828 				    struct mvpp2 *priv)
4829 {
4830 	u32 win_enable;
4831 	int i;
4832 
4833 	for (i = 0; i < 6; i++) {
4834 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4835 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4836 
4837 		if (i < 4)
4838 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4839 	}
4840 
4841 	win_enable = 0;
4842 
4843 	for (i = 0; i < dram->num_cs; i++) {
4844 		const struct mbus_dram_window *cs = dram->cs + i;
4845 
4846 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
4847 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4848 			    dram->mbus_dram_target_id);
4849 
4850 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4851 			    (cs->size - 1) & 0xffff0000);
4852 
4853 		win_enable |= (1 << i);
4854 	}
4855 
4856 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4857 }
4858 
4859 /* Initialize Rx FIFO's */
4860 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4861 {
4862 	int port;
4863 
4864 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4865 		if (priv->hw_version == MVPP22) {
4866 			if (port == 0) {
4867 				mvpp2_write(priv,
4868 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4869 					    MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4870 				mvpp2_write(priv,
4871 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4872 					    MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4873 			} else if (port == 1) {
4874 				mvpp2_write(priv,
4875 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4876 					    MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4877 				mvpp2_write(priv,
4878 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4879 					    MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4880 			} else {
4881 				mvpp2_write(priv,
4882 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4883 					    MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4884 				mvpp2_write(priv,
4885 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4886 					    MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4887 			}
4888 		} else {
4889 			mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4890 				    MVPP21_RX_FIFO_PORT_DATA_SIZE);
4891 			mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4892 				    MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4893 		}
4894 	}
4895 
4896 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4897 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
4898 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4899 }
4900 
4901 /* Initialize Tx FIFO's */
4902 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4903 {
4904 	int port, val;
4905 
4906 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4907 		/* Port 0 supports 10KB TX FIFO */
4908 		if (port == 0) {
4909 			val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4910 				MVPP22_TX_FIFO_SIZE_MASK;
4911 		} else {
4912 			val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4913 				MVPP22_TX_FIFO_SIZE_MASK;
4914 		}
4915 		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4916 	}
4917 }
4918 
4919 static void mvpp2_axi_init(struct mvpp2 *priv)
4920 {
4921 	u32 val, rdval, wrval;
4922 
4923 	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4924 
4925 	/* AXI Bridge Configuration */
4926 
4927 	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4928 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4929 	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4930 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4931 
4932 	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4933 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4934 	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4935 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4936 
4937 	/* BM */
4938 	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4939 	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4940 
4941 	/* Descriptors */
4942 	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4943 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4944 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4945 	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4946 
4947 	/* Buffer Data */
4948 	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4949 	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4950 
4951 	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4952 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4953 	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4954 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4955 	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4956 	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4957 
4958 	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4959 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4960 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4961 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4962 
4963 	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4964 
4965 	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4966 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4967 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4968 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4969 
4970 	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4971 }
4972 
4973 /* Initialize network controller common part HW */
4974 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4975 {
4976 	const struct mbus_dram_target_info *dram_target_info;
4977 	int err, i;
4978 	u32 val;
4979 
4980 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
4981 	if ((rxq_number > priv->max_port_rxqs) ||
4982 	    (txq_number > MVPP2_MAX_TXQ)) {
4983 		dev_err(&pdev->dev, "invalid queue size parameter\n");
4984 		return -EINVAL;
4985 	}
4986 
4987 	if (priv->hw_version == MVPP22)
4988 		mvpp2_axi_init(priv);
4989 	else {
4990 		/* MBUS windows configuration */
4991 		dram_target_info = mvebu_mbus_dram_info();
4992 		if (dram_target_info)
4993 			mvpp2_conf_mbus_windows(dram_target_info, priv);
4994 	}
4995 
4996 	if (priv->hw_version == MVPP21) {
4997 		/* Disable HW PHY polling */
4998 		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4999 		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
5000 		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5001 	} else {
5002 		/* Enable HW PHY polling */
5003 		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5004 		val |= MVPP22_SMI_POLLING_EN;
5005 		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5006 	}
5007 
5008 	/* Allocate and initialize aggregated TXQs */
5009 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
5010 				       sizeof(struct mvpp2_tx_queue),
5011 				       GFP_KERNEL);
5012 	if (!priv->aggr_txqs)
5013 		return -ENOMEM;
5014 
5015 	for_each_present_cpu(i) {
5016 		priv->aggr_txqs[i].id = i;
5017 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
5018 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
5019 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
5020 		if (err < 0)
5021 			return err;
5022 	}
5023 
5024 	/* Rx Fifo Init */
5025 	mvpp2_rx_fifo_init(priv);
5026 
5027 	/* Tx Fifo Init */
5028 	if (priv->hw_version == MVPP22)
5029 		mvpp2_tx_fifo_init(priv);
5030 
5031 	if (priv->hw_version == MVPP21)
5032 		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5033 		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5034 
5035 	/* Allow cache snoop when transmiting packets */
5036 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5037 
5038 	/* Buffer Manager initialization */
5039 	err = mvpp2_bm_init(dev, priv);
5040 	if (err < 0)
5041 		return err;
5042 
5043 	/* Parser default initialization */
5044 	err = mvpp2_prs_default_init(dev, priv);
5045 	if (err < 0)
5046 		return err;
5047 
5048 	/* Classifier default initialization */
5049 	mvpp2_cls_init(priv);
5050 
5051 	return 0;
5052 }
5053 
5054 /* SMI / MDIO functions */
5055 
5056 static int smi_wait_ready(struct mvpp2_port *priv)
5057 {
5058 	u32 timeout = MVPP2_SMI_TIMEOUT;
5059 	u32 smi_reg;
5060 
5061 	/* wait till the SMI is not busy */
5062 	do {
5063 		/* read smi register */
5064 		smi_reg = readl(priv->mdio_base);
5065 		if (timeout-- == 0) {
5066 			printf("Error: SMI busy timeout\n");
5067 			return -EFAULT;
5068 		}
5069 	} while (smi_reg & MVPP2_SMI_BUSY);
5070 
5071 	return 0;
5072 }
5073 
5074 /*
5075  * mpp2_mdio_read - miiphy_read callback function.
5076  *
5077  * Returns 16bit phy register value, or 0xffff on error
5078  */
5079 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5080 {
5081 	struct mvpp2_port *priv = bus->priv;
5082 	u32 smi_reg;
5083 	u32 timeout;
5084 
5085 	/* check parameters */
5086 	if (addr > MVPP2_PHY_ADDR_MASK) {
5087 		printf("Error: Invalid PHY address %d\n", addr);
5088 		return -EFAULT;
5089 	}
5090 
5091 	if (reg > MVPP2_PHY_REG_MASK) {
5092 		printf("Err: Invalid register offset %d\n", reg);
5093 		return -EFAULT;
5094 	}
5095 
5096 	/* wait till the SMI is not busy */
5097 	if (smi_wait_ready(priv) < 0)
5098 		return -EFAULT;
5099 
5100 	/* fill the phy address and regiser offset and read opcode */
5101 	smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5102 		| (reg << MVPP2_SMI_REG_ADDR_OFFS)
5103 		| MVPP2_SMI_OPCODE_READ;
5104 
5105 	/* write the smi register */
5106 	writel(smi_reg, priv->mdio_base);
5107 
5108 	/* wait till read value is ready */
5109 	timeout = MVPP2_SMI_TIMEOUT;
5110 
5111 	do {
5112 		/* read smi register */
5113 		smi_reg = readl(priv->mdio_base);
5114 		if (timeout-- == 0) {
5115 			printf("Err: SMI read ready timeout\n");
5116 			return -EFAULT;
5117 		}
5118 	} while (!(smi_reg & MVPP2_SMI_READ_VALID));
5119 
5120 	/* Wait for the data to update in the SMI register */
5121 	for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5122 		;
5123 
5124 	return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5125 }
5126 
5127 /*
5128  * mpp2_mdio_write - miiphy_write callback function.
5129  *
5130  * Returns 0 if write succeed, -EINVAL on bad parameters
5131  * -ETIME on timeout
5132  */
5133 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5134 			   u16 value)
5135 {
5136 	struct mvpp2_port *priv = bus->priv;
5137 	u32 smi_reg;
5138 
5139 	/* check parameters */
5140 	if (addr > MVPP2_PHY_ADDR_MASK) {
5141 		printf("Error: Invalid PHY address %d\n", addr);
5142 		return -EFAULT;
5143 	}
5144 
5145 	if (reg > MVPP2_PHY_REG_MASK) {
5146 		printf("Err: Invalid register offset %d\n", reg);
5147 		return -EFAULT;
5148 	}
5149 
5150 	/* wait till the SMI is not busy */
5151 	if (smi_wait_ready(priv) < 0)
5152 		return -EFAULT;
5153 
5154 	/* fill the phy addr and reg offset and write opcode and data */
5155 	smi_reg = value << MVPP2_SMI_DATA_OFFS;
5156 	smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5157 		| (reg << MVPP2_SMI_REG_ADDR_OFFS);
5158 	smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5159 
5160 	/* write the smi register */
5161 	writel(smi_reg, priv->mdio_base);
5162 
5163 	return 0;
5164 }
5165 
5166 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5167 {
5168 	struct mvpp2_port *port = dev_get_priv(dev);
5169 	struct mvpp2_rx_desc *rx_desc;
5170 	struct mvpp2_bm_pool *bm_pool;
5171 	dma_addr_t dma_addr;
5172 	u32 bm, rx_status;
5173 	int pool, rx_bytes, err;
5174 	int rx_received;
5175 	struct mvpp2_rx_queue *rxq;
5176 	u8 *data;
5177 
5178 	/* Process RX packets */
5179 	rxq = port->rxqs[0];
5180 
5181 	/* Get number of received packets and clamp the to-do */
5182 	rx_received = mvpp2_rxq_received(port, rxq->id);
5183 
5184 	/* Return if no packets are received */
5185 	if (!rx_received)
5186 		return 0;
5187 
5188 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
5189 	rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5190 	rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5191 	rx_bytes -= MVPP2_MH_SIZE;
5192 	dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5193 
5194 	bm = mvpp2_bm_cookie_build(port, rx_desc);
5195 	pool = mvpp2_bm_cookie_pool_get(bm);
5196 	bm_pool = &port->priv->bm_pools[pool];
5197 
5198 	/* In case of an error, release the requested buffer pointer
5199 	 * to the Buffer Manager. This request process is controlled
5200 	 * by the hardware, and the information about the buffer is
5201 	 * comprised by the RX descriptor.
5202 	 */
5203 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5204 		mvpp2_rx_error(port, rx_desc);
5205 		/* Return the buffer to the pool */
5206 		mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5207 		return 0;
5208 	}
5209 
5210 	err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5211 	if (err) {
5212 		netdev_err(port->dev, "failed to refill BM pools\n");
5213 		return 0;
5214 	}
5215 
5216 	/* Update Rx queue management counters */
5217 	mb();
5218 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5219 
5220 	/* give packet to stack - skip on first n bytes */
5221 	data = (u8 *)dma_addr + 2 + 32;
5222 
5223 	if (rx_bytes <= 0)
5224 		return 0;
5225 
5226 	/*
5227 	 * No cache invalidation needed here, since the rx_buffer's are
5228 	 * located in a uncached memory region
5229 	 */
5230 	*packetp = data;
5231 
5232 	return rx_bytes;
5233 }
5234 
5235 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5236 {
5237 	struct mvpp2_port *port = dev_get_priv(dev);
5238 	struct mvpp2_tx_queue *txq, *aggr_txq;
5239 	struct mvpp2_tx_desc *tx_desc;
5240 	int tx_done;
5241 	int timeout;
5242 
5243 	txq = port->txqs[0];
5244 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5245 
5246 	/* Get a descriptor for the first part of the packet */
5247 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5248 	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5249 	mvpp2_txdesc_size_set(port, tx_desc, length);
5250 	mvpp2_txdesc_offset_set(port, tx_desc,
5251 				(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5252 	mvpp2_txdesc_dma_addr_set(port, tx_desc,
5253 				  (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5254 	/* First and Last descriptor */
5255 	mvpp2_txdesc_cmd_set(port, tx_desc,
5256 			     MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5257 			     | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5258 
5259 	/* Flush tx data */
5260 	flush_dcache_range((unsigned long)packet,
5261 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
5262 
5263 	/* Enable transmit */
5264 	mb();
5265 	mvpp2_aggr_txq_pend_desc_add(port, 1);
5266 
5267 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5268 
5269 	timeout = 0;
5270 	do {
5271 		if (timeout++ > 10000) {
5272 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
5273 			return 0;
5274 		}
5275 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5276 	} while (tx_done);
5277 
5278 	timeout = 0;
5279 	do {
5280 		if (timeout++ > 10000) {
5281 			printf("timeout: packet not sent\n");
5282 			return 0;
5283 		}
5284 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5285 	} while (!tx_done);
5286 
5287 	return 0;
5288 }
5289 
5290 static int mvpp2_start(struct udevice *dev)
5291 {
5292 	struct eth_pdata *pdata = dev_get_platdata(dev);
5293 	struct mvpp2_port *port = dev_get_priv(dev);
5294 
5295 	/* Load current MAC address */
5296 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5297 
5298 	/* Reconfigure parser accept the original MAC address */
5299 	mvpp2_prs_update_mac_da(port, port->dev_addr);
5300 
5301 	switch (port->phy_interface) {
5302 	case PHY_INTERFACE_MODE_RGMII:
5303 	case PHY_INTERFACE_MODE_RGMII_ID:
5304 	case PHY_INTERFACE_MODE_SGMII:
5305 		mvpp2_port_power_up(port);
5306 	default:
5307 		break;
5308 	}
5309 
5310 	mvpp2_open(dev, port);
5311 
5312 	return 0;
5313 }
5314 
5315 static void mvpp2_stop(struct udevice *dev)
5316 {
5317 	struct mvpp2_port *port = dev_get_priv(dev);
5318 
5319 	mvpp2_stop_dev(port);
5320 	mvpp2_cleanup_rxqs(port);
5321 	mvpp2_cleanup_txqs(port);
5322 }
5323 
5324 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port)
5325 {
5326 	writel(port->phyaddr, port->priv->iface_base +
5327 	       MVPP22_SMI_PHY_ADDR_REG(port->gop_id));
5328 
5329 	return 0;
5330 }
5331 
5332 static int mvpp2_base_probe(struct udevice *dev)
5333 {
5334 	struct mvpp2 *priv = dev_get_priv(dev);
5335 	void *bd_space;
5336 	u32 size = 0;
5337 	int i;
5338 
5339 	/* Save hw-version */
5340 	priv->hw_version = dev_get_driver_data(dev);
5341 
5342 	/*
5343 	 * U-Boot special buffer handling:
5344 	 *
5345 	 * Allocate buffer area for descs and rx_buffers. This is only
5346 	 * done once for all interfaces. As only one interface can
5347 	 * be active. Make this area DMA-safe by disabling the D-cache
5348 	 */
5349 
5350 	/* Align buffer area for descs and rx_buffers to 1MiB */
5351 	bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5352 	mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5353 					BD_SPACE, DCACHE_OFF);
5354 
5355 	buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5356 	size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5357 
5358 	buffer_loc.tx_descs =
5359 		(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5360 	size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5361 
5362 	buffer_loc.rx_descs =
5363 		(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5364 	size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5365 
5366 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5367 		buffer_loc.bm_pool[i] =
5368 			(unsigned long *)((unsigned long)bd_space + size);
5369 		if (priv->hw_version == MVPP21)
5370 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5371 		else
5372 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5373 	}
5374 
5375 	for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5376 		buffer_loc.rx_buffer[i] =
5377 			(unsigned long *)((unsigned long)bd_space + size);
5378 		size += RX_BUFFER_SIZE;
5379 	}
5380 
5381 	/* Clear the complete area so that all descriptors are cleared */
5382 	memset(bd_space, 0, size);
5383 
5384 	/* Save base addresses for later use */
5385 	priv->base = (void *)devfdt_get_addr_index(dev, 0);
5386 	if (IS_ERR(priv->base))
5387 		return PTR_ERR(priv->base);
5388 
5389 	if (priv->hw_version == MVPP21) {
5390 		priv->lms_base = (void *)devfdt_get_addr_index(dev, 1);
5391 		if (IS_ERR(priv->lms_base))
5392 			return PTR_ERR(priv->lms_base);
5393 	} else {
5394 		priv->iface_base = (void *)devfdt_get_addr_index(dev, 1);
5395 		if (IS_ERR(priv->iface_base))
5396 			return PTR_ERR(priv->iface_base);
5397 
5398 		/* Store common base addresses for all ports */
5399 		priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5400 		priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5401 		priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5402 	}
5403 
5404 	if (priv->hw_version == MVPP21)
5405 		priv->max_port_rxqs = 8;
5406 	else
5407 		priv->max_port_rxqs = 32;
5408 
5409 	return 0;
5410 }
5411 
5412 static int mvpp2_probe(struct udevice *dev)
5413 {
5414 	struct mvpp2_port *port = dev_get_priv(dev);
5415 	struct mvpp2 *priv = dev_get_priv(dev->parent);
5416 	struct mii_dev *bus;
5417 	int err;
5418 
5419 	/* Only call the probe function for the parent once */
5420 	if (!priv->probe_done)
5421 		err = mvpp2_base_probe(dev->parent);
5422 
5423 	port->priv = dev_get_priv(dev->parent);
5424 
5425 	/* Create and register the MDIO bus driver */
5426 	bus = mdio_alloc();
5427 	if (!bus) {
5428 		printf("Failed to allocate MDIO bus\n");
5429 		return -ENOMEM;
5430 	}
5431 
5432 	bus->read = mpp2_mdio_read;
5433 	bus->write = mpp2_mdio_write;
5434 	snprintf(bus->name, sizeof(bus->name), dev->name);
5435 	bus->priv = (void *)port;
5436 	port->bus = bus;
5437 
5438 	err = mdio_register(bus);
5439 	if (err)
5440 		return err;
5441 
5442 	err = phy_info_parse(dev, port);
5443 	if (err)
5444 		return err;
5445 
5446 	/*
5447 	 * We need the port specific io base addresses at this stage, since
5448 	 * gop_port_init() accesses these registers
5449 	 */
5450 	if (priv->hw_version == MVPP21) {
5451 		int priv_common_regs_num = 2;
5452 
5453 		port->base = (void __iomem *)devfdt_get_addr_index(
5454 			dev->parent, priv_common_regs_num + port->id);
5455 		if (IS_ERR(port->base))
5456 			return PTR_ERR(port->base);
5457 	} else {
5458 		port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5459 					      "gop-port-id", -1);
5460 		if (port->id == -1) {
5461 			dev_err(&pdev->dev, "missing gop-port-id value\n");
5462 			return -EINVAL;
5463 		}
5464 
5465 		port->base = priv->iface_base + MVPP22_PORT_BASE +
5466 			port->gop_id * MVPP22_PORT_OFFSET;
5467 
5468 		/* Set phy address of the port */
5469 		if(port->phy_node)
5470 			mvpp22_smi_phy_addr_cfg(port);
5471 
5472 		/* GoP Init */
5473 		gop_port_init(port);
5474 	}
5475 
5476 	if (!priv->probe_done) {
5477 		/* Initialize network controller */
5478 		err = mvpp2_init(dev, priv);
5479 		if (err < 0) {
5480 			dev_err(&pdev->dev, "failed to initialize controller\n");
5481 			return err;
5482 		}
5483 		priv->num_ports = 0;
5484 		priv->probe_done = 1;
5485 	}
5486 
5487 	err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5488 	if (err)
5489 		return err;
5490 
5491 	if (priv->hw_version == MVPP22) {
5492 		priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5493 							   port->phy_interface);
5494 
5495 		/* Netcomplex configurations for all ports */
5496 		gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5497 		gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5498 	}
5499 
5500 	return 0;
5501 }
5502 
5503 /*
5504  * Empty BM pool and stop its activity before the OS is started
5505  */
5506 static int mvpp2_remove(struct udevice *dev)
5507 {
5508 	struct mvpp2_port *port = dev_get_priv(dev);
5509 	struct mvpp2 *priv = port->priv;
5510 	int i;
5511 
5512 	priv->num_ports--;
5513 
5514 	if (priv->num_ports)
5515 		return 0;
5516 
5517 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5518 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5519 
5520 	return 0;
5521 }
5522 
5523 static const struct eth_ops mvpp2_ops = {
5524 	.start		= mvpp2_start,
5525 	.send		= mvpp2_send,
5526 	.recv		= mvpp2_recv,
5527 	.stop		= mvpp2_stop,
5528 };
5529 
5530 static struct driver mvpp2_driver = {
5531 	.name	= "mvpp2",
5532 	.id	= UCLASS_ETH,
5533 	.probe	= mvpp2_probe,
5534 	.remove = mvpp2_remove,
5535 	.ops	= &mvpp2_ops,
5536 	.priv_auto_alloc_size = sizeof(struct mvpp2_port),
5537 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5538 	.flags	= DM_FLAG_ACTIVE_DMA,
5539 };
5540 
5541 /*
5542  * Use a MISC device to bind the n instances (child nodes) of the
5543  * network base controller in UCLASS_ETH.
5544  */
5545 static int mvpp2_base_bind(struct udevice *parent)
5546 {
5547 	const void *blob = gd->fdt_blob;
5548 	int node = dev_of_offset(parent);
5549 	struct uclass_driver *drv;
5550 	struct udevice *dev;
5551 	struct eth_pdata *plat;
5552 	char *name;
5553 	int subnode;
5554 	u32 id;
5555 	int base_id_add;
5556 
5557 	/* Lookup eth driver */
5558 	drv = lists_uclass_lookup(UCLASS_ETH);
5559 	if (!drv) {
5560 		puts("Cannot find eth driver\n");
5561 		return -ENOENT;
5562 	}
5563 
5564 	base_id_add = base_id;
5565 
5566 	fdt_for_each_subnode(subnode, blob, node) {
5567 		/* Increment base_id for all subnodes, also the disabled ones */
5568 		base_id++;
5569 
5570 		/* Skip disabled ports */
5571 		if (!fdtdec_get_is_enabled(blob, subnode))
5572 			continue;
5573 
5574 		plat = calloc(1, sizeof(*plat));
5575 		if (!plat)
5576 			return -ENOMEM;
5577 
5578 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
5579 		id += base_id_add;
5580 
5581 		name = calloc(1, 16);
5582 		if (!name) {
5583 			free(plat);
5584 			return -ENOMEM;
5585 		}
5586 		sprintf(name, "mvpp2-%d", id);
5587 
5588 		/* Create child device UCLASS_ETH and bind it */
5589 		device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5590 		dev_set_of_offset(dev, subnode);
5591 	}
5592 
5593 	return 0;
5594 }
5595 
5596 static const struct udevice_id mvpp2_ids[] = {
5597 	{
5598 		.compatible = "marvell,armada-375-pp2",
5599 		.data = MVPP21,
5600 	},
5601 	{
5602 		.compatible = "marvell,armada-7k-pp22",
5603 		.data = MVPP22,
5604 	},
5605 	{ }
5606 };
5607 
5608 U_BOOT_DRIVER(mvpp2_base) = {
5609 	.name	= "mvpp2_base",
5610 	.id	= UCLASS_MISC,
5611 	.of_match = mvpp2_ids,
5612 	.bind	= mvpp2_base_bind,
5613 	.priv_auto_alloc_size = sizeof(struct mvpp2),
5614 };
5615