xref: /openbmc/u-boot/drivers/net/mvpp2.c (revision 9c21d06c)
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 /* Some linux -> U-Boot compatibility stuff */
37 #define netdev_err(dev, fmt, args...)		\
38 	printf(fmt, ##args)
39 #define netdev_warn(dev, fmt, args...)		\
40 	printf(fmt, ##args)
41 #define netdev_info(dev, fmt, args...)		\
42 	printf(fmt, ##args)
43 #define netdev_dbg(dev, fmt, args...)		\
44 	printf(fmt, ##args)
45 
46 #define ETH_ALEN	6		/* Octets in one ethernet addr	*/
47 
48 #define __verify_pcpu_ptr(ptr)						\
49 do {									\
50 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
51 	(void)__vpp_verify;						\
52 } while (0)
53 
54 #define VERIFY_PERCPU_PTR(__p)						\
55 ({									\
56 	__verify_pcpu_ptr(__p);						\
57 	(typeof(*(__p)) __kernel __force *)(__p);			\
58 })
59 
60 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61 #define smp_processor_id()	0
62 #define num_present_cpus()	1
63 #define for_each_present_cpu(cpu)			\
64 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
65 
66 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67 
68 #define CONFIG_NR_CPUS		1
69 #define ETH_HLEN		ETHER_HDR_SIZE	/* Total octets in header */
70 
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP			(2 + ETH_HLEN + 4 + 32)
73 #define MTU			1500
74 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75 
76 #define MVPP2_SMI_TIMEOUT			10000
77 
78 /* RX Fifo Registers */
79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
81 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
82 #define MVPP2_RX_FIFO_INIT_REG			0x64
83 
84 /* RX DMA Top Registers */
85 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
86 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
87 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
88 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
89 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
90 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
91 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
92 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
93 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
94 #define     MVPP2_RXQ_POOL_SHORT_MASK		0x700000
95 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
96 #define     MVPP2_RXQ_POOL_LONG_MASK		0x7000000
97 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
98 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
99 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
100 
101 /* Parser Registers */
102 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
103 #define     MVPP2_PRS_PORT_LU_MAX		0xf
104 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
105 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
106 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
107 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
108 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
109 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
110 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
111 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
112 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
113 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
114 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
115 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
116 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
117 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
118 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
119 
120 /* Classifier Registers */
121 #define MVPP2_CLS_MODE_REG			0x1800
122 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
123 #define MVPP2_CLS_PORT_WAY_REG			0x1810
124 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
125 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
126 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
127 #define MVPP2_CLS_LKP_TBL_REG			0x1818
128 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
129 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
130 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
131 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
132 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
133 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
134 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
135 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
136 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
137 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
138 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
139 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
140 
141 /* Descriptor Manager Top Registers */
142 #define MVPP2_RXQ_NUM_REG			0x2040
143 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
144 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
145 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
146 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
147 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
148 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
149 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
150 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
151 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
152 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
153 #define MVPP2_RXQ_THRESH_REG			0x204c
154 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
155 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
156 #define MVPP2_RXQ_INDEX_REG			0x2050
157 #define MVPP2_TXQ_NUM_REG			0x2080
158 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
159 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
160 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
161 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
162 #define MVPP2_TXQ_THRESH_REG			0x2094
163 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
164 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
165 #define MVPP2_TXQ_INDEX_REG			0x2098
166 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
167 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
168 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
169 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
170 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
171 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
172 #define MVPP2_TXQ_PENDING_REG			0x20a0
173 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
174 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
175 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
176 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
177 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
178 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
179 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
180 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
181 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
182 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
183 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
184 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
185 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
186 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
187 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
188 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
189 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
190 
191 /* MBUS bridge registers */
192 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
193 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
194 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
195 #define MVPP2_BASE_ADDR_ENABLE			0x4060
196 
197 /* Interrupt Cause and Mask registers */
198 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
199 #define MVPP2_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
200 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
201 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
202 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
203 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
204 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
205 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
206 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
207 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
208 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
209 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
210 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
211 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
212 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
213 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
214 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
215 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
216 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
217 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
218 
219 /* Buffer Manager registers */
220 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
221 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
222 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
223 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
224 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
225 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
226 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
227 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
228 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
229 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
230 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
231 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
232 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
233 #define     MVPP2_BM_START_MASK			BIT(0)
234 #define     MVPP2_BM_STOP_MASK			BIT(1)
235 #define     MVPP2_BM_STATE_MASK			BIT(4)
236 #define     MVPP2_BM_LOW_THRESH_OFFS		8
237 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
238 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
239 						MVPP2_BM_LOW_THRESH_OFFS)
240 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
241 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
242 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
243 						MVPP2_BM_HIGH_THRESH_OFFS)
244 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
245 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
246 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
247 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
248 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
249 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
250 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
251 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
252 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
253 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
254 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
255 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
256 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
257 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
258 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
259 #define MVPP2_BM_MC_RLS_REG			0x64c4
260 #define     MVPP2_BM_MC_ID_MASK			0xfff
261 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
262 
263 /* TX Scheduler registers */
264 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
265 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
266 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
267 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
268 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
269 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
270 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
271 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
272 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
273 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
274 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
275 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
276 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
277 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
278 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
279 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
280 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
281 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
282 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
283 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
284 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
285 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
286 
287 /* TX general registers */
288 #define MVPP2_TX_SNOOP_REG			0x8800
289 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
290 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
291 
292 /* LMS registers */
293 #define MVPP2_SRC_ADDR_MIDDLE			0x24
294 #define MVPP2_SRC_ADDR_HIGH			0x28
295 #define MVPP2_PHY_AN_CFG0_REG			0x34
296 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
297 #define MVPP2_MIB_COUNTERS_BASE(port)		(0x1000 + ((port) >> 1) * \
298 						0x400 + (port) * 0x400)
299 #define     MVPP2_MIB_LATE_COLLISION		0x7c
300 #define MVPP2_ISR_SUM_MASK_REG			0x220c
301 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
302 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT		0x27
303 
304 /* Per-port registers */
305 #define MVPP2_GMAC_CTRL_0_REG			0x0
306 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
307 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
308 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
309 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
310 #define MVPP2_GMAC_CTRL_1_REG			0x4
311 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
312 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
313 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
314 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
315 #define      MVPP2_GMAC_SA_LOW_OFFS		7
316 #define MVPP2_GMAC_CTRL_2_REG			0x8
317 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
318 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
319 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
320 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
321 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
322 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
323 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
324 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
325 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
326 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
327 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
328 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
329 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
330 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
331 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
332 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
333 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
334 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
335 
336 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
337 
338 /* Descriptor ring Macros */
339 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
340 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
341 
342 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
343 #define MVPP2_SMI				0x0054
344 #define     MVPP2_PHY_REG_MASK			0x1f
345 /* SMI register fields */
346 #define     MVPP2_SMI_DATA_OFFS			0	/* Data */
347 #define     MVPP2_SMI_DATA_MASK			(0xffff << MVPP2_SMI_DATA_OFFS)
348 #define     MVPP2_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
349 #define     MVPP2_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
350 #define     MVPP2_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
351 #define     MVPP2_SMI_OPCODE_READ		(1 << MVPP2_SMI_OPCODE_OFFS)
352 #define     MVPP2_SMI_READ_VALID		(1 << 27)	/* Read Valid */
353 #define     MVPP2_SMI_BUSY			(1 << 28)	/* Busy */
354 
355 #define     MVPP2_PHY_ADDR_MASK			0x1f
356 #define     MVPP2_PHY_REG_MASK			0x1f
357 
358 /* Various constants */
359 
360 /* Coalescing */
361 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
362 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
363 #define MVPP2_RX_COAL_PKTS		32
364 #define MVPP2_RX_COAL_USEC		100
365 
366 /* The two bytes Marvell header. Either contains a special value used
367  * by Marvell switches when a specific hardware mode is enabled (not
368  * supported by this driver) or is filled automatically by zeroes on
369  * the RX side. Those two bytes being at the front of the Ethernet
370  * header, they allow to have the IP header aligned on a 4 bytes
371  * boundary automatically: the hardware skips those two bytes on its
372  * own.
373  */
374 #define MVPP2_MH_SIZE			2
375 #define MVPP2_ETH_TYPE_LEN		2
376 #define MVPP2_PPPOE_HDR_SIZE		8
377 #define MVPP2_VLAN_TAG_LEN		4
378 
379 /* Lbtd 802.3 type */
380 #define MVPP2_IP_LBDT_TYPE		0xfffa
381 
382 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
383 #define MVPP2_TX_CSUM_MAX_SIZE		9800
384 
385 /* Timeout constants */
386 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
387 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
388 
389 #define MVPP2_TX_MTU_MAX		0x7ffff
390 
391 /* Maximum number of T-CONTs of PON port */
392 #define MVPP2_MAX_TCONT			16
393 
394 /* Maximum number of supported ports */
395 #define MVPP2_MAX_PORTS			4
396 
397 /* Maximum number of TXQs used by single port */
398 #define MVPP2_MAX_TXQ			8
399 
400 /* Maximum number of RXQs used by single port */
401 #define MVPP2_MAX_RXQ			8
402 
403 /* Default number of TXQs in use */
404 #define MVPP2_DEFAULT_TXQ		1
405 
406 /* Dfault number of RXQs in use */
407 #define MVPP2_DEFAULT_RXQ		1
408 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
409 
410 /* Total number of RXQs available to all ports */
411 #define MVPP2_RXQ_TOTAL_NUM		(MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
412 
413 /* Max number of Rx descriptors */
414 #define MVPP2_MAX_RXD			16
415 
416 /* Max number of Tx descriptors */
417 #define MVPP2_MAX_TXD			16
418 
419 /* Amount of Tx descriptors that can be reserved at once by CPU */
420 #define MVPP2_CPU_DESC_CHUNK		64
421 
422 /* Max number of Tx descriptors in each aggregated queue */
423 #define MVPP2_AGGR_TXQ_SIZE		256
424 
425 /* Descriptor aligned size */
426 #define MVPP2_DESC_ALIGNED_SIZE		32
427 
428 /* Descriptor alignment mask */
429 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
430 
431 /* RX FIFO constants */
432 #define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
433 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
434 #define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80
435 
436 /* RX buffer constants */
437 #define MVPP2_SKB_SHINFO_SIZE \
438 	0
439 
440 #define MVPP2_RX_PKT_SIZE(mtu) \
441 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
442 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
443 
444 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
445 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
446 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
447 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
448 
449 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
450 
451 /* IPv6 max L3 address size */
452 #define MVPP2_MAX_L3_ADDR_SIZE		16
453 
454 /* Port flags */
455 #define MVPP2_F_LOOPBACK		BIT(0)
456 
457 /* Marvell tag types */
458 enum mvpp2_tag_type {
459 	MVPP2_TAG_TYPE_NONE = 0,
460 	MVPP2_TAG_TYPE_MH   = 1,
461 	MVPP2_TAG_TYPE_DSA  = 2,
462 	MVPP2_TAG_TYPE_EDSA = 3,
463 	MVPP2_TAG_TYPE_VLAN = 4,
464 	MVPP2_TAG_TYPE_LAST = 5
465 };
466 
467 /* Parser constants */
468 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
469 #define MVPP2_PRS_TCAM_WORDS		6
470 #define MVPP2_PRS_SRAM_WORDS		4
471 #define MVPP2_PRS_FLOW_ID_SIZE		64
472 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
473 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
474 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
475 #define MVPP2_PRS_IPV4_HEAD		0x40
476 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
477 #define MVPP2_PRS_IPV4_MC		0xe0
478 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
479 #define MVPP2_PRS_IPV4_BC_MASK		0xff
480 #define MVPP2_PRS_IPV4_IHL		0x5
481 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
482 #define MVPP2_PRS_IPV6_MC		0xff
483 #define MVPP2_PRS_IPV6_MC_MASK		0xff
484 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
485 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
486 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
487 #define MVPP2_PRS_DBL_VLANS_MAX		100
488 
489 /* Tcam structure:
490  * - lookup ID - 4 bits
491  * - port ID - 1 byte
492  * - additional information - 1 byte
493  * - header data - 8 bytes
494  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
495  */
496 #define MVPP2_PRS_AI_BITS			8
497 #define MVPP2_PRS_PORT_MASK			0xff
498 #define MVPP2_PRS_LU_MASK			0xf
499 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
500 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
501 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
502 					      (((offs) * 2) - ((offs) % 2)  + 2)
503 #define MVPP2_PRS_TCAM_AI_BYTE			16
504 #define MVPP2_PRS_TCAM_PORT_BYTE		17
505 #define MVPP2_PRS_TCAM_LU_BYTE			20
506 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
507 #define MVPP2_PRS_TCAM_INV_WORD			5
508 /* Tcam entries ID */
509 #define MVPP2_PE_DROP_ALL		0
510 #define MVPP2_PE_FIRST_FREE_TID		1
511 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
512 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
513 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
514 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
515 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
516 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
517 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
518 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
519 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
520 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
521 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
522 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
523 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
524 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
525 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
526 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
527 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
528 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
529 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
530 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
531 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
532 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
533 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
534 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
535 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
536 
537 /* Sram structure
538  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
539  */
540 #define MVPP2_PRS_SRAM_RI_OFFS			0
541 #define MVPP2_PRS_SRAM_RI_WORD			0
542 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
543 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
544 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
545 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
546 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
547 #define MVPP2_PRS_SRAM_UDF_OFFS			73
548 #define MVPP2_PRS_SRAM_UDF_BITS			8
549 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
550 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
551 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
552 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
553 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
554 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
555 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
556 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
557 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
558 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
559 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
560 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
561 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
562 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
563 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
564 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
565 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
566 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
567 #define MVPP2_PRS_SRAM_AI_OFFS			90
568 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
569 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
570 #define MVPP2_PRS_SRAM_AI_MASK			0xff
571 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
572 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
573 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
574 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
575 
576 /* Sram result info bits assignment */
577 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
578 #define MVPP2_PRS_RI_DSA_MASK			0x2
579 #define MVPP2_PRS_RI_VLAN_MASK			0xc
580 #define MVPP2_PRS_RI_VLAN_NONE			~(BIT(2) | BIT(3))
581 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
582 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
583 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
584 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
585 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
586 #define MVPP2_PRS_RI_L2_CAST_MASK		0x600
587 #define MVPP2_PRS_RI_L2_UCAST			~(BIT(9) | BIT(10))
588 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
589 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
590 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
591 #define MVPP2_PRS_RI_L3_PROTO_MASK		0x7000
592 #define MVPP2_PRS_RI_L3_UN			~(BIT(12) | BIT(13) | BIT(14))
593 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
594 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
595 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
596 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
597 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
598 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
599 #define MVPP2_PRS_RI_L3_ADDR_MASK		0x18000
600 #define MVPP2_PRS_RI_L3_UCAST			~(BIT(15) | BIT(16))
601 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
602 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
603 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
604 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
605 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
606 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
607 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
608 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
609 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
610 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
611 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
612 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
613 
614 /* Sram additional info bits assignment */
615 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
616 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
617 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
618 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
619 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
620 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
621 #define MVPP2_PRS_SINGLE_VLAN_AI		0
622 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
623 
624 /* DSA/EDSA type */
625 #define MVPP2_PRS_TAGGED		true
626 #define MVPP2_PRS_UNTAGGED		false
627 #define MVPP2_PRS_EDSA			true
628 #define MVPP2_PRS_DSA			false
629 
630 /* MAC entries, shadow udf */
631 enum mvpp2_prs_udf {
632 	MVPP2_PRS_UDF_MAC_DEF,
633 	MVPP2_PRS_UDF_MAC_RANGE,
634 	MVPP2_PRS_UDF_L2_DEF,
635 	MVPP2_PRS_UDF_L2_DEF_COPY,
636 	MVPP2_PRS_UDF_L2_USER,
637 };
638 
639 /* Lookup ID */
640 enum mvpp2_prs_lookup {
641 	MVPP2_PRS_LU_MH,
642 	MVPP2_PRS_LU_MAC,
643 	MVPP2_PRS_LU_DSA,
644 	MVPP2_PRS_LU_VLAN,
645 	MVPP2_PRS_LU_L2,
646 	MVPP2_PRS_LU_PPPOE,
647 	MVPP2_PRS_LU_IP4,
648 	MVPP2_PRS_LU_IP6,
649 	MVPP2_PRS_LU_FLOWS,
650 	MVPP2_PRS_LU_LAST,
651 };
652 
653 /* L3 cast enum */
654 enum mvpp2_prs_l3_cast {
655 	MVPP2_PRS_L3_UNI_CAST,
656 	MVPP2_PRS_L3_MULTI_CAST,
657 	MVPP2_PRS_L3_BROAD_CAST
658 };
659 
660 /* Classifier constants */
661 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
662 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
663 #define MVPP2_CLS_LKP_TBL_SIZE		64
664 
665 /* BM constants */
666 #define MVPP2_BM_POOLS_NUM		1
667 #define MVPP2_BM_LONG_BUF_NUM		16
668 #define MVPP2_BM_SHORT_BUF_NUM		16
669 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
670 #define MVPP2_BM_POOL_PTR_ALIGN		128
671 #define MVPP2_BM_SWF_LONG_POOL(port)	0
672 
673 /* BM cookie (32 bits) definition */
674 #define MVPP2_BM_COOKIE_POOL_OFFS	8
675 #define MVPP2_BM_COOKIE_CPU_OFFS	24
676 
677 /* BM short pool packet size
678  * These value assure that for SWF the total number
679  * of bytes allocated for each buffer will be 512
680  */
681 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
682 
683 enum mvpp2_bm_type {
684 	MVPP2_BM_FREE,
685 	MVPP2_BM_SWF_LONG,
686 	MVPP2_BM_SWF_SHORT
687 };
688 
689 /* Definitions */
690 
691 /* Shared Packet Processor resources */
692 struct mvpp2 {
693 	/* Shared registers' base addresses */
694 	void __iomem *base;
695 	void __iomem *lms_base;
696 
697 	/* List of pointers to port structures */
698 	struct mvpp2_port **port_list;
699 
700 	/* Aggregated TXQs */
701 	struct mvpp2_tx_queue *aggr_txqs;
702 
703 	/* BM pools */
704 	struct mvpp2_bm_pool *bm_pools;
705 
706 	/* PRS shadow table */
707 	struct mvpp2_prs_shadow *prs_shadow;
708 	/* PRS auxiliary table for double vlan entries control */
709 	bool *prs_double_vlans;
710 
711 	/* Tclk value */
712 	u32 tclk;
713 
714 	struct mii_dev *bus;
715 };
716 
717 struct mvpp2_pcpu_stats {
718 	u64	rx_packets;
719 	u64	rx_bytes;
720 	u64	tx_packets;
721 	u64	tx_bytes;
722 };
723 
724 struct mvpp2_port {
725 	u8 id;
726 
727 	int irq;
728 
729 	struct mvpp2 *priv;
730 
731 	/* Per-port registers' base address */
732 	void __iomem *base;
733 
734 	struct mvpp2_rx_queue **rxqs;
735 	struct mvpp2_tx_queue **txqs;
736 
737 	int pkt_size;
738 
739 	u32 pending_cause_rx;
740 
741 	/* Per-CPU port control */
742 	struct mvpp2_port_pcpu __percpu *pcpu;
743 
744 	/* Flags */
745 	unsigned long flags;
746 
747 	u16 tx_ring_size;
748 	u16 rx_ring_size;
749 	struct mvpp2_pcpu_stats __percpu *stats;
750 
751 	struct phy_device *phy_dev;
752 	phy_interface_t phy_interface;
753 	int phy_node;
754 	int phyaddr;
755 	int init;
756 	unsigned int link;
757 	unsigned int duplex;
758 	unsigned int speed;
759 
760 	struct mvpp2_bm_pool *pool_long;
761 	struct mvpp2_bm_pool *pool_short;
762 
763 	/* Index of first port's physical RXQ */
764 	u8 first_rxq;
765 
766 	u8 dev_addr[ETH_ALEN];
767 };
768 
769 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
770  * layout of the transmit and reception DMA descriptors, and their
771  * layout is therefore defined by the hardware design
772  */
773 
774 #define MVPP2_TXD_L3_OFF_SHIFT		0
775 #define MVPP2_TXD_IP_HLEN_SHIFT		8
776 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
777 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
778 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
779 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
780 #define MVPP2_TXD_L4_UDP		BIT(24)
781 #define MVPP2_TXD_L3_IP6		BIT(26)
782 #define MVPP2_TXD_L_DESC		BIT(28)
783 #define MVPP2_TXD_F_DESC		BIT(29)
784 
785 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
786 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
787 #define MVPP2_RXD_ERR_CRC		0x0
788 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
789 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
790 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
791 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
792 #define MVPP2_RXD_HWF_SYNC		BIT(21)
793 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
794 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
795 #define MVPP2_RXD_L4_TCP		BIT(25)
796 #define MVPP2_RXD_L4_UDP		BIT(26)
797 #define MVPP2_RXD_L3_IP4		BIT(28)
798 #define MVPP2_RXD_L3_IP6		BIT(30)
799 #define MVPP2_RXD_BUF_HDR		BIT(31)
800 
801 struct mvpp2_tx_desc {
802 	u32 command;		/* Options used by HW for packet transmitting.*/
803 	u8  packet_offset;	/* the offset from the buffer beginning	*/
804 	u8  phys_txq;		/* destination queue ID			*/
805 	u16 data_size;		/* data size of transmitted packet in bytes */
806 	u32 buf_phys_addr;	/* physical addr of transmitted buffer	*/
807 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
808 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
809 	u32 reserved2;		/* reserved (for future use)		*/
810 };
811 
812 struct mvpp2_rx_desc {
813 	u32 status;		/* info about received packet		*/
814 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
815 	u16 data_size;		/* size of received packet in bytes	*/
816 	u32 buf_phys_addr;	/* physical address of the buffer	*/
817 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
818 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
819 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
820 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
821 	u8  reserved5;
822 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
823 	u32 reserved7;		/* flow_id (for future use, PnC) */
824 	u32 reserved8;
825 };
826 
827 /* Per-CPU Tx queue control */
828 struct mvpp2_txq_pcpu {
829 	int cpu;
830 
831 	/* Number of Tx DMA descriptors in the descriptor ring */
832 	int size;
833 
834 	/* Number of currently used Tx DMA descriptor in the
835 	 * descriptor ring
836 	 */
837 	int count;
838 
839 	/* Number of Tx DMA descriptors reserved for each CPU */
840 	int reserved_num;
841 
842 	/* Index of last TX DMA descriptor that was inserted */
843 	int txq_put_index;
844 
845 	/* Index of the TX DMA descriptor to be cleaned up */
846 	int txq_get_index;
847 };
848 
849 struct mvpp2_tx_queue {
850 	/* Physical number of this Tx queue */
851 	u8 id;
852 
853 	/* Logical number of this Tx queue */
854 	u8 log_id;
855 
856 	/* Number of Tx DMA descriptors in the descriptor ring */
857 	int size;
858 
859 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
860 	int count;
861 
862 	/* Per-CPU control of physical Tx queues */
863 	struct mvpp2_txq_pcpu __percpu *pcpu;
864 
865 	u32 done_pkts_coal;
866 
867 	/* Virtual address of thex Tx DMA descriptors array */
868 	struct mvpp2_tx_desc *descs;
869 
870 	/* DMA address of the Tx DMA descriptors array */
871 	dma_addr_t descs_phys;
872 
873 	/* Index of the last Tx DMA descriptor */
874 	int last_desc;
875 
876 	/* Index of the next Tx DMA descriptor to process */
877 	int next_desc_to_proc;
878 };
879 
880 struct mvpp2_rx_queue {
881 	/* RX queue number, in the range 0-31 for physical RXQs */
882 	u8 id;
883 
884 	/* Num of rx descriptors in the rx descriptor ring */
885 	int size;
886 
887 	u32 pkts_coal;
888 	u32 time_coal;
889 
890 	/* Virtual address of the RX DMA descriptors array */
891 	struct mvpp2_rx_desc *descs;
892 
893 	/* DMA address of the RX DMA descriptors array */
894 	dma_addr_t descs_phys;
895 
896 	/* Index of the last RX DMA descriptor */
897 	int last_desc;
898 
899 	/* Index of the next RX DMA descriptor to process */
900 	int next_desc_to_proc;
901 
902 	/* ID of port to which physical RXQ is mapped */
903 	int port;
904 
905 	/* Port's logic RXQ number to which physical RXQ is mapped */
906 	int logic_rxq;
907 };
908 
909 union mvpp2_prs_tcam_entry {
910 	u32 word[MVPP2_PRS_TCAM_WORDS];
911 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
912 };
913 
914 union mvpp2_prs_sram_entry {
915 	u32 word[MVPP2_PRS_SRAM_WORDS];
916 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
917 };
918 
919 struct mvpp2_prs_entry {
920 	u32 index;
921 	union mvpp2_prs_tcam_entry tcam;
922 	union mvpp2_prs_sram_entry sram;
923 };
924 
925 struct mvpp2_prs_shadow {
926 	bool valid;
927 	bool finish;
928 
929 	/* Lookup ID */
930 	int lu;
931 
932 	/* User defined offset */
933 	int udf;
934 
935 	/* Result info */
936 	u32 ri;
937 	u32 ri_mask;
938 };
939 
940 struct mvpp2_cls_flow_entry {
941 	u32 index;
942 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
943 };
944 
945 struct mvpp2_cls_lookup_entry {
946 	u32 lkpid;
947 	u32 way;
948 	u32 data;
949 };
950 
951 struct mvpp2_bm_pool {
952 	/* Pool number in the range 0-7 */
953 	int id;
954 	enum mvpp2_bm_type type;
955 
956 	/* Buffer Pointers Pool External (BPPE) size */
957 	int size;
958 	/* Number of buffers for this pool */
959 	int buf_num;
960 	/* Pool buffer size */
961 	int buf_size;
962 	/* Packet size */
963 	int pkt_size;
964 
965 	/* BPPE virtual base address */
966 	u32 *virt_addr;
967 	/* BPPE physical base address */
968 	dma_addr_t phys_addr;
969 
970 	/* Ports using BM pool */
971 	u32 port_map;
972 
973 	/* Occupied buffers indicator */
974 	int in_use_thresh;
975 };
976 
977 struct mvpp2_buff_hdr {
978 	u32 next_buff_phys_addr;
979 	u32 next_buff_virt_addr;
980 	u16 byte_count;
981 	u16 info;
982 	u8  reserved1;		/* bm_qset (for future use, BM)		*/
983 };
984 
985 /* Buffer header info bits */
986 #define MVPP2_B_HDR_INFO_MC_ID_MASK	0xfff
987 #define MVPP2_B_HDR_INFO_MC_ID(info)	((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
988 #define MVPP2_B_HDR_INFO_LAST_OFFS	12
989 #define MVPP2_B_HDR_INFO_LAST_MASK	BIT(12)
990 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
991 	   ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
992 
993 /* Static declaractions */
994 
995 /* Number of RXQs used by single port */
996 static int rxq_number = MVPP2_DEFAULT_RXQ;
997 /* Number of TXQs used by single port */
998 static int txq_number = MVPP2_DEFAULT_TXQ;
999 
1000 #define MVPP2_DRIVER_NAME "mvpp2"
1001 #define MVPP2_DRIVER_VERSION "1.0"
1002 
1003 /*
1004  * U-Boot internal data, mostly uncached buffers for descriptors and data
1005  */
1006 struct buffer_location {
1007 	struct mvpp2_tx_desc *aggr_tx_descs;
1008 	struct mvpp2_tx_desc *tx_descs;
1009 	struct mvpp2_rx_desc *rx_descs;
1010 	u32 *bm_pool[MVPP2_BM_POOLS_NUM];
1011 	u32 *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1012 	int first_rxq;
1013 };
1014 
1015 /*
1016  * All 4 interfaces use the same global buffer, since only one interface
1017  * can be enabled at once
1018  */
1019 static struct buffer_location buffer_loc;
1020 
1021 /*
1022  * Page table entries are set to 1MB, or multiples of 1MB
1023  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1024  */
1025 #define BD_SPACE	(1 << 20)
1026 
1027 /* Utility/helper methods */
1028 
1029 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1030 {
1031 	writel(data, priv->base + offset);
1032 }
1033 
1034 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1035 {
1036 	return readl(priv->base + offset);
1037 }
1038 
1039 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1040 {
1041 	txq_pcpu->txq_get_index++;
1042 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1043 		txq_pcpu->txq_get_index = 0;
1044 }
1045 
1046 /* Get number of physical egress port */
1047 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1048 {
1049 	return MVPP2_MAX_TCONT + port->id;
1050 }
1051 
1052 /* Get number of physical TXQ */
1053 static inline int mvpp2_txq_phys(int port, int txq)
1054 {
1055 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1056 }
1057 
1058 /* Parser configuration routines */
1059 
1060 /* Update parser tcam and sram hw entries */
1061 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1062 {
1063 	int i;
1064 
1065 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1066 		return -EINVAL;
1067 
1068 	/* Clear entry invalidation bit */
1069 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1070 
1071 	/* Write tcam index - indirect access */
1072 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1073 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1074 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1075 
1076 	/* Write sram index - indirect access */
1077 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1078 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1079 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1080 
1081 	return 0;
1082 }
1083 
1084 /* Read tcam entry from hw */
1085 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1086 {
1087 	int i;
1088 
1089 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1090 		return -EINVAL;
1091 
1092 	/* Write tcam index - indirect access */
1093 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1094 
1095 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1096 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1097 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1098 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1099 
1100 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1101 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1102 
1103 	/* Write sram index - indirect access */
1104 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1105 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1106 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1107 
1108 	return 0;
1109 }
1110 
1111 /* Invalidate tcam hw entry */
1112 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1113 {
1114 	/* Write index - indirect access */
1115 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1116 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1117 		    MVPP2_PRS_TCAM_INV_MASK);
1118 }
1119 
1120 /* Enable shadow table entry and set its lookup ID */
1121 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1122 {
1123 	priv->prs_shadow[index].valid = true;
1124 	priv->prs_shadow[index].lu = lu;
1125 }
1126 
1127 /* Update ri fields in shadow table entry */
1128 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1129 				    unsigned int ri, unsigned int ri_mask)
1130 {
1131 	priv->prs_shadow[index].ri_mask = ri_mask;
1132 	priv->prs_shadow[index].ri = ri;
1133 }
1134 
1135 /* Update lookup field in tcam sw entry */
1136 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1137 {
1138 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1139 
1140 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1141 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1142 }
1143 
1144 /* Update mask for single port in tcam sw entry */
1145 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1146 				    unsigned int port, bool add)
1147 {
1148 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1149 
1150 	if (add)
1151 		pe->tcam.byte[enable_off] &= ~(1 << port);
1152 	else
1153 		pe->tcam.byte[enable_off] |= 1 << port;
1154 }
1155 
1156 /* Update port map in tcam sw entry */
1157 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1158 					unsigned int ports)
1159 {
1160 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1161 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1162 
1163 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1164 	pe->tcam.byte[enable_off] &= ~port_mask;
1165 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1166 }
1167 
1168 /* Obtain port map from tcam sw entry */
1169 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1170 {
1171 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1172 
1173 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1174 }
1175 
1176 /* Set byte of data and its enable bits in tcam sw entry */
1177 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1178 					 unsigned int offs, unsigned char byte,
1179 					 unsigned char enable)
1180 {
1181 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1182 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1183 }
1184 
1185 /* Get byte of data and its enable bits from tcam sw entry */
1186 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1187 					 unsigned int offs, unsigned char *byte,
1188 					 unsigned char *enable)
1189 {
1190 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1191 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1192 }
1193 
1194 /* Set ethertype in tcam sw entry */
1195 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1196 				  unsigned short ethertype)
1197 {
1198 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1199 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1200 }
1201 
1202 /* Set bits in sram sw entry */
1203 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1204 				    int val)
1205 {
1206 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1207 }
1208 
1209 /* Clear bits in sram sw entry */
1210 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1211 				      int val)
1212 {
1213 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1214 }
1215 
1216 /* Update ri bits in sram sw entry */
1217 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1218 				     unsigned int bits, unsigned int mask)
1219 {
1220 	unsigned int i;
1221 
1222 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1223 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1224 
1225 		if (!(mask & BIT(i)))
1226 			continue;
1227 
1228 		if (bits & BIT(i))
1229 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1230 		else
1231 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1232 
1233 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1234 	}
1235 }
1236 
1237 /* Update ai bits in sram sw entry */
1238 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1239 				     unsigned int bits, unsigned int mask)
1240 {
1241 	unsigned int i;
1242 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1243 
1244 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1245 
1246 		if (!(mask & BIT(i)))
1247 			continue;
1248 
1249 		if (bits & BIT(i))
1250 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1251 		else
1252 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1253 
1254 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1255 	}
1256 }
1257 
1258 /* Read ai bits from sram sw entry */
1259 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1260 {
1261 	u8 bits;
1262 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1263 	int ai_en_off = ai_off + 1;
1264 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1265 
1266 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1267 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1268 
1269 	return bits;
1270 }
1271 
1272 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1273  * lookup interation
1274  */
1275 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1276 				       unsigned int lu)
1277 {
1278 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1279 
1280 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1281 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1282 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1283 }
1284 
1285 /* In the sram sw entry set sign and value of the next lookup offset
1286  * and the offset value generated to the classifier
1287  */
1288 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1289 				     unsigned int op)
1290 {
1291 	/* Set sign */
1292 	if (shift < 0) {
1293 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1294 		shift = 0 - shift;
1295 	} else {
1296 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1297 	}
1298 
1299 	/* Set value */
1300 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1301 							   (unsigned char)shift;
1302 
1303 	/* Reset and set operation */
1304 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1305 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1306 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1307 
1308 	/* Set base offset as current */
1309 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1310 }
1311 
1312 /* In the sram sw entry set sign and value of the user defined offset
1313  * generated to the classifier
1314  */
1315 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1316 				      unsigned int type, int offset,
1317 				      unsigned int op)
1318 {
1319 	/* Set sign */
1320 	if (offset < 0) {
1321 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1322 		offset = 0 - offset;
1323 	} else {
1324 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1325 	}
1326 
1327 	/* Set value */
1328 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1329 				  MVPP2_PRS_SRAM_UDF_MASK);
1330 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1331 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1332 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1333 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1334 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1335 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1336 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1337 
1338 	/* Set offset type */
1339 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1340 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1341 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1342 
1343 	/* Set offset operation */
1344 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1345 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1346 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1347 
1348 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1349 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1350 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1351 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1352 
1353 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1354 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1355 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1356 
1357 	/* Set base offset as current */
1358 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1359 }
1360 
1361 /* Find parser flow entry */
1362 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1363 {
1364 	struct mvpp2_prs_entry *pe;
1365 	int tid;
1366 
1367 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1368 	if (!pe)
1369 		return NULL;
1370 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1371 
1372 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1373 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1374 		u8 bits;
1375 
1376 		if (!priv->prs_shadow[tid].valid ||
1377 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1378 			continue;
1379 
1380 		pe->index = tid;
1381 		mvpp2_prs_hw_read(priv, pe);
1382 		bits = mvpp2_prs_sram_ai_get(pe);
1383 
1384 		/* Sram store classification lookup ID in AI bits [5:0] */
1385 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1386 			return pe;
1387 	}
1388 	kfree(pe);
1389 
1390 	return NULL;
1391 }
1392 
1393 /* Return first free tcam index, seeking from start to end */
1394 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1395 				     unsigned char end)
1396 {
1397 	int tid;
1398 
1399 	if (start > end)
1400 		swap(start, end);
1401 
1402 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1403 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1404 
1405 	for (tid = start; tid <= end; tid++) {
1406 		if (!priv->prs_shadow[tid].valid)
1407 			return tid;
1408 	}
1409 
1410 	return -EINVAL;
1411 }
1412 
1413 /* Enable/disable dropping all mac da's */
1414 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1415 {
1416 	struct mvpp2_prs_entry pe;
1417 
1418 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1419 		/* Entry exist - update port only */
1420 		pe.index = MVPP2_PE_DROP_ALL;
1421 		mvpp2_prs_hw_read(priv, &pe);
1422 	} else {
1423 		/* Entry doesn't exist - create new */
1424 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1425 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1426 		pe.index = MVPP2_PE_DROP_ALL;
1427 
1428 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1429 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1430 					 MVPP2_PRS_RI_DROP_MASK);
1431 
1432 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1433 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1434 
1435 		/* Update shadow table */
1436 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1437 
1438 		/* Mask all ports */
1439 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1440 	}
1441 
1442 	/* Update port mask */
1443 	mvpp2_prs_tcam_port_set(&pe, port, add);
1444 
1445 	mvpp2_prs_hw_write(priv, &pe);
1446 }
1447 
1448 /* Set port to promiscuous mode */
1449 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1450 {
1451 	struct mvpp2_prs_entry pe;
1452 
1453 	/* Promiscuous mode - Accept unknown packets */
1454 
1455 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1456 		/* Entry exist - update port only */
1457 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1458 		mvpp2_prs_hw_read(priv, &pe);
1459 	} else {
1460 		/* Entry doesn't exist - create new */
1461 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1462 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1463 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1464 
1465 		/* Continue - set next lookup */
1466 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1467 
1468 		/* Set result info bits */
1469 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1470 					 MVPP2_PRS_RI_L2_CAST_MASK);
1471 
1472 		/* Shift to ethertype */
1473 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1474 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1475 
1476 		/* Mask all ports */
1477 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1478 
1479 		/* Update shadow table */
1480 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1481 	}
1482 
1483 	/* Update port mask */
1484 	mvpp2_prs_tcam_port_set(&pe, port, add);
1485 
1486 	mvpp2_prs_hw_write(priv, &pe);
1487 }
1488 
1489 /* Accept multicast */
1490 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1491 				    bool add)
1492 {
1493 	struct mvpp2_prs_entry pe;
1494 	unsigned char da_mc;
1495 
1496 	/* Ethernet multicast address first byte is
1497 	 * 0x01 for IPv4 and 0x33 for IPv6
1498 	 */
1499 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1500 
1501 	if (priv->prs_shadow[index].valid) {
1502 		/* Entry exist - update port only */
1503 		pe.index = index;
1504 		mvpp2_prs_hw_read(priv, &pe);
1505 	} else {
1506 		/* Entry doesn't exist - create new */
1507 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1508 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1509 		pe.index = index;
1510 
1511 		/* Continue - set next lookup */
1512 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1513 
1514 		/* Set result info bits */
1515 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1516 					 MVPP2_PRS_RI_L2_CAST_MASK);
1517 
1518 		/* Update tcam entry data first byte */
1519 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1520 
1521 		/* Shift to ethertype */
1522 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1523 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1524 
1525 		/* Mask all ports */
1526 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1527 
1528 		/* Update shadow table */
1529 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1530 	}
1531 
1532 	/* Update port mask */
1533 	mvpp2_prs_tcam_port_set(&pe, port, add);
1534 
1535 	mvpp2_prs_hw_write(priv, &pe);
1536 }
1537 
1538 /* Parser per-port initialization */
1539 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1540 				   int lu_max, int offset)
1541 {
1542 	u32 val;
1543 
1544 	/* Set lookup ID */
1545 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1546 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1547 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1548 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1549 
1550 	/* Set maximum number of loops for packet received from port */
1551 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1552 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1553 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1554 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1555 
1556 	/* Set initial offset for packet header extraction for the first
1557 	 * searching loop
1558 	 */
1559 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1560 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1561 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1562 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1563 }
1564 
1565 /* Default flow entries initialization for all ports */
1566 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1567 {
1568 	struct mvpp2_prs_entry pe;
1569 	int port;
1570 
1571 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1572 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1573 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1574 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1575 
1576 		/* Mask all ports */
1577 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1578 
1579 		/* Set flow ID*/
1580 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1581 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1582 
1583 		/* Update shadow table and hw entry */
1584 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1585 		mvpp2_prs_hw_write(priv, &pe);
1586 	}
1587 }
1588 
1589 /* Set default entry for Marvell Header field */
1590 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1591 {
1592 	struct mvpp2_prs_entry pe;
1593 
1594 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1595 
1596 	pe.index = MVPP2_PE_MH_DEFAULT;
1597 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1598 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1599 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1600 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1601 
1602 	/* Unmask all ports */
1603 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1604 
1605 	/* Update shadow table and hw entry */
1606 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1607 	mvpp2_prs_hw_write(priv, &pe);
1608 }
1609 
1610 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1611  * multicast MAC addresses
1612  */
1613 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1614 {
1615 	struct mvpp2_prs_entry pe;
1616 
1617 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1618 
1619 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1620 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1621 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1622 
1623 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1624 				 MVPP2_PRS_RI_DROP_MASK);
1625 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1626 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1627 
1628 	/* Unmask all ports */
1629 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1630 
1631 	/* Update shadow table and hw entry */
1632 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1633 	mvpp2_prs_hw_write(priv, &pe);
1634 
1635 	/* place holders only - no ports */
1636 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1637 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1638 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1639 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1640 }
1641 
1642 /* Match basic ethertypes */
1643 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1644 {
1645 	struct mvpp2_prs_entry pe;
1646 	int tid;
1647 
1648 	/* Ethertype: PPPoE */
1649 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1650 					MVPP2_PE_LAST_FREE_TID);
1651 	if (tid < 0)
1652 		return tid;
1653 
1654 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1655 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1656 	pe.index = tid;
1657 
1658 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
1659 
1660 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
1661 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1662 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
1663 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
1664 				 MVPP2_PRS_RI_PPPOE_MASK);
1665 
1666 	/* Update shadow table and hw entry */
1667 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1668 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1669 	priv->prs_shadow[pe.index].finish = false;
1670 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
1671 				MVPP2_PRS_RI_PPPOE_MASK);
1672 	mvpp2_prs_hw_write(priv, &pe);
1673 
1674 	/* Ethertype: ARP */
1675 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1676 					MVPP2_PE_LAST_FREE_TID);
1677 	if (tid < 0)
1678 		return tid;
1679 
1680 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1681 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1682 	pe.index = tid;
1683 
1684 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
1685 
1686 	/* Generate flow in the next iteration*/
1687 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1688 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1689 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
1690 				 MVPP2_PRS_RI_L3_PROTO_MASK);
1691 	/* Set L3 offset */
1692 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1693 				  MVPP2_ETH_TYPE_LEN,
1694 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1695 
1696 	/* Update shadow table and hw entry */
1697 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1698 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1699 	priv->prs_shadow[pe.index].finish = true;
1700 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
1701 				MVPP2_PRS_RI_L3_PROTO_MASK);
1702 	mvpp2_prs_hw_write(priv, &pe);
1703 
1704 	/* Ethertype: LBTD */
1705 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1706 					MVPP2_PE_LAST_FREE_TID);
1707 	if (tid < 0)
1708 		return tid;
1709 
1710 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1711 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1712 	pe.index = tid;
1713 
1714 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
1715 
1716 	/* Generate flow in the next iteration*/
1717 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1718 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1719 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1720 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1721 				 MVPP2_PRS_RI_CPU_CODE_MASK |
1722 				 MVPP2_PRS_RI_UDF3_MASK);
1723 	/* Set L3 offset */
1724 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1725 				  MVPP2_ETH_TYPE_LEN,
1726 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1727 
1728 	/* Update shadow table and hw entry */
1729 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1730 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1731 	priv->prs_shadow[pe.index].finish = true;
1732 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
1733 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
1734 				MVPP2_PRS_RI_CPU_CODE_MASK |
1735 				MVPP2_PRS_RI_UDF3_MASK);
1736 	mvpp2_prs_hw_write(priv, &pe);
1737 
1738 	/* Ethertype: IPv4 without options */
1739 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1740 					MVPP2_PE_LAST_FREE_TID);
1741 	if (tid < 0)
1742 		return tid;
1743 
1744 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1745 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1746 	pe.index = tid;
1747 
1748 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
1749 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1750 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
1751 				     MVPP2_PRS_IPV4_HEAD_MASK |
1752 				     MVPP2_PRS_IPV4_IHL_MASK);
1753 
1754 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1755 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
1756 				 MVPP2_PRS_RI_L3_PROTO_MASK);
1757 	/* Skip eth_type + 4 bytes of IP header */
1758 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
1759 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1760 	/* Set L3 offset */
1761 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1762 				  MVPP2_ETH_TYPE_LEN,
1763 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1764 
1765 	/* Update shadow table and hw entry */
1766 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1767 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1768 	priv->prs_shadow[pe.index].finish = false;
1769 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
1770 				MVPP2_PRS_RI_L3_PROTO_MASK);
1771 	mvpp2_prs_hw_write(priv, &pe);
1772 
1773 	/* Ethertype: IPv4 with options */
1774 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1775 					MVPP2_PE_LAST_FREE_TID);
1776 	if (tid < 0)
1777 		return tid;
1778 
1779 	pe.index = tid;
1780 
1781 	/* Clear tcam data before updating */
1782 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
1783 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
1784 
1785 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
1786 				     MVPP2_PRS_IPV4_HEAD,
1787 				     MVPP2_PRS_IPV4_HEAD_MASK);
1788 
1789 	/* Clear ri before updating */
1790 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1791 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1792 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
1793 				 MVPP2_PRS_RI_L3_PROTO_MASK);
1794 
1795 	/* Update shadow table and hw entry */
1796 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1797 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1798 	priv->prs_shadow[pe.index].finish = false;
1799 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
1800 				MVPP2_PRS_RI_L3_PROTO_MASK);
1801 	mvpp2_prs_hw_write(priv, &pe);
1802 
1803 	/* Ethertype: IPv6 without options */
1804 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1805 					MVPP2_PE_LAST_FREE_TID);
1806 	if (tid < 0)
1807 		return tid;
1808 
1809 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1810 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1811 	pe.index = tid;
1812 
1813 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
1814 
1815 	/* Skip DIP of IPV6 header */
1816 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
1817 				 MVPP2_MAX_L3_ADDR_SIZE,
1818 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1819 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
1820 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
1821 				 MVPP2_PRS_RI_L3_PROTO_MASK);
1822 	/* Set L3 offset */
1823 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1824 				  MVPP2_ETH_TYPE_LEN,
1825 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1826 
1827 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1828 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1829 	priv->prs_shadow[pe.index].finish = false;
1830 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
1831 				MVPP2_PRS_RI_L3_PROTO_MASK);
1832 	mvpp2_prs_hw_write(priv, &pe);
1833 
1834 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
1835 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1836 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
1837 	pe.index = MVPP2_PE_ETH_TYPE_UN;
1838 
1839 	/* Unmask all ports */
1840 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1841 
1842 	/* Generate flow in the next iteration*/
1843 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1844 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1845 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
1846 				 MVPP2_PRS_RI_L3_PROTO_MASK);
1847 	/* Set L3 offset even it's unknown L3 */
1848 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
1849 				  MVPP2_ETH_TYPE_LEN,
1850 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1851 
1852 	/* Update shadow table and hw entry */
1853 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
1854 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
1855 	priv->prs_shadow[pe.index].finish = true;
1856 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
1857 				MVPP2_PRS_RI_L3_PROTO_MASK);
1858 	mvpp2_prs_hw_write(priv, &pe);
1859 
1860 	return 0;
1861 }
1862 
1863 /* Parser default initialization */
1864 static int mvpp2_prs_default_init(struct udevice *dev,
1865 				  struct mvpp2 *priv)
1866 {
1867 	int err, index, i;
1868 
1869 	/* Enable tcam table */
1870 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
1871 
1872 	/* Clear all tcam and sram entries */
1873 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
1874 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1875 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1876 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
1877 
1878 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
1879 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1880 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
1881 	}
1882 
1883 	/* Invalidate all tcam entries */
1884 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
1885 		mvpp2_prs_hw_inv(priv, index);
1886 
1887 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
1888 					sizeof(struct mvpp2_prs_shadow),
1889 					GFP_KERNEL);
1890 	if (!priv->prs_shadow)
1891 		return -ENOMEM;
1892 
1893 	/* Always start from lookup = 0 */
1894 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
1895 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
1896 				       MVPP2_PRS_PORT_LU_MAX, 0);
1897 
1898 	mvpp2_prs_def_flow_init(priv);
1899 
1900 	mvpp2_prs_mh_init(priv);
1901 
1902 	mvpp2_prs_mac_init(priv);
1903 
1904 	err = mvpp2_prs_etype_init(priv);
1905 	if (err)
1906 		return err;
1907 
1908 	return 0;
1909 }
1910 
1911 /* Compare MAC DA with tcam entry data */
1912 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
1913 				       const u8 *da, unsigned char *mask)
1914 {
1915 	unsigned char tcam_byte, tcam_mask;
1916 	int index;
1917 
1918 	for (index = 0; index < ETH_ALEN; index++) {
1919 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
1920 		if (tcam_mask != mask[index])
1921 			return false;
1922 
1923 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
1924 			return false;
1925 	}
1926 
1927 	return true;
1928 }
1929 
1930 /* Find tcam entry with matched pair <MAC DA, port> */
1931 static struct mvpp2_prs_entry *
1932 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
1933 			    unsigned char *mask, int udf_type)
1934 {
1935 	struct mvpp2_prs_entry *pe;
1936 	int tid;
1937 
1938 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1939 	if (!pe)
1940 		return NULL;
1941 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
1942 
1943 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
1944 	for (tid = MVPP2_PE_FIRST_FREE_TID;
1945 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1946 		unsigned int entry_pmap;
1947 
1948 		if (!priv->prs_shadow[tid].valid ||
1949 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
1950 		    (priv->prs_shadow[tid].udf != udf_type))
1951 			continue;
1952 
1953 		pe->index = tid;
1954 		mvpp2_prs_hw_read(priv, pe);
1955 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
1956 
1957 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
1958 		    entry_pmap == pmap)
1959 			return pe;
1960 	}
1961 	kfree(pe);
1962 
1963 	return NULL;
1964 }
1965 
1966 /* Update parser's mac da entry */
1967 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
1968 				   const u8 *da, bool add)
1969 {
1970 	struct mvpp2_prs_entry *pe;
1971 	unsigned int pmap, len, ri;
1972 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1973 	int tid;
1974 
1975 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
1976 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
1977 					 MVPP2_PRS_UDF_MAC_DEF);
1978 
1979 	/* No such entry */
1980 	if (!pe) {
1981 		if (!add)
1982 			return 0;
1983 
1984 		/* Create new TCAM entry */
1985 		/* Find first range mac entry*/
1986 		for (tid = MVPP2_PE_FIRST_FREE_TID;
1987 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
1988 			if (priv->prs_shadow[tid].valid &&
1989 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
1990 			    (priv->prs_shadow[tid].udf ==
1991 						       MVPP2_PRS_UDF_MAC_RANGE))
1992 				break;
1993 
1994 		/* Go through the all entries from first to last */
1995 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1996 						tid - 1);
1997 		if (tid < 0)
1998 			return tid;
1999 
2000 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2001 		if (!pe)
2002 			return -1;
2003 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2004 		pe->index = tid;
2005 
2006 		/* Mask all ports */
2007 		mvpp2_prs_tcam_port_map_set(pe, 0);
2008 	}
2009 
2010 	/* Update port mask */
2011 	mvpp2_prs_tcam_port_set(pe, port, add);
2012 
2013 	/* Invalidate the entry if no ports are left enabled */
2014 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2015 	if (pmap == 0) {
2016 		if (add) {
2017 			kfree(pe);
2018 			return -1;
2019 		}
2020 		mvpp2_prs_hw_inv(priv, pe->index);
2021 		priv->prs_shadow[pe->index].valid = false;
2022 		kfree(pe);
2023 		return 0;
2024 	}
2025 
2026 	/* Continue - set next lookup */
2027 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2028 
2029 	/* Set match on DA */
2030 	len = ETH_ALEN;
2031 	while (len--)
2032 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2033 
2034 	/* Set result info bits */
2035 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2036 
2037 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2038 				 MVPP2_PRS_RI_MAC_ME_MASK);
2039 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2040 				MVPP2_PRS_RI_MAC_ME_MASK);
2041 
2042 	/* Shift to ethertype */
2043 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2044 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2045 
2046 	/* Update shadow table and hw entry */
2047 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2048 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2049 	mvpp2_prs_hw_write(priv, pe);
2050 
2051 	kfree(pe);
2052 
2053 	return 0;
2054 }
2055 
2056 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2057 {
2058 	int err;
2059 
2060 	/* Remove old parser entry */
2061 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2062 				      false);
2063 	if (err)
2064 		return err;
2065 
2066 	/* Add new parser entry */
2067 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2068 	if (err)
2069 		return err;
2070 
2071 	/* Set addr in the device */
2072 	memcpy(port->dev_addr, da, ETH_ALEN);
2073 
2074 	return 0;
2075 }
2076 
2077 /* Set prs flow for the port */
2078 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2079 {
2080 	struct mvpp2_prs_entry *pe;
2081 	int tid;
2082 
2083 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2084 
2085 	/* Such entry not exist */
2086 	if (!pe) {
2087 		/* Go through the all entires from last to first */
2088 		tid = mvpp2_prs_tcam_first_free(port->priv,
2089 						MVPP2_PE_LAST_FREE_TID,
2090 					       MVPP2_PE_FIRST_FREE_TID);
2091 		if (tid < 0)
2092 			return tid;
2093 
2094 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2095 		if (!pe)
2096 			return -ENOMEM;
2097 
2098 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2099 		pe->index = tid;
2100 
2101 		/* Set flow ID*/
2102 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2103 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2104 
2105 		/* Update shadow table */
2106 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2107 	}
2108 
2109 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2110 	mvpp2_prs_hw_write(port->priv, pe);
2111 	kfree(pe);
2112 
2113 	return 0;
2114 }
2115 
2116 /* Classifier configuration routines */
2117 
2118 /* Update classification flow table registers */
2119 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2120 				 struct mvpp2_cls_flow_entry *fe)
2121 {
2122 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2123 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2124 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2125 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2126 }
2127 
2128 /* Update classification lookup table register */
2129 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2130 				   struct mvpp2_cls_lookup_entry *le)
2131 {
2132 	u32 val;
2133 
2134 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2135 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2136 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2137 }
2138 
2139 /* Classifier default initialization */
2140 static void mvpp2_cls_init(struct mvpp2 *priv)
2141 {
2142 	struct mvpp2_cls_lookup_entry le;
2143 	struct mvpp2_cls_flow_entry fe;
2144 	int index;
2145 
2146 	/* Enable classifier */
2147 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2148 
2149 	/* Clear classifier flow table */
2150 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2151 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2152 		fe.index = index;
2153 		mvpp2_cls_flow_write(priv, &fe);
2154 	}
2155 
2156 	/* Clear classifier lookup table */
2157 	le.data = 0;
2158 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2159 		le.lkpid = index;
2160 		le.way = 0;
2161 		mvpp2_cls_lookup_write(priv, &le);
2162 
2163 		le.way = 1;
2164 		mvpp2_cls_lookup_write(priv, &le);
2165 	}
2166 }
2167 
2168 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2169 {
2170 	struct mvpp2_cls_lookup_entry le;
2171 	u32 val;
2172 
2173 	/* Set way for the port */
2174 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2175 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2176 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2177 
2178 	/* Pick the entry to be accessed in lookup ID decoding table
2179 	 * according to the way and lkpid.
2180 	 */
2181 	le.lkpid = port->id;
2182 	le.way = 0;
2183 	le.data = 0;
2184 
2185 	/* Set initial CPU queue for receiving packets */
2186 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2187 	le.data |= port->first_rxq;
2188 
2189 	/* Disable classification engines */
2190 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2191 
2192 	/* Update lookup ID table entry */
2193 	mvpp2_cls_lookup_write(port->priv, &le);
2194 }
2195 
2196 /* Set CPU queue number for oversize packets */
2197 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2198 {
2199 	u32 val;
2200 
2201 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2202 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2203 
2204 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2205 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2206 
2207 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2208 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2209 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2210 }
2211 
2212 /* Buffer Manager configuration routines */
2213 
2214 /* Create pool */
2215 static int mvpp2_bm_pool_create(struct udevice *dev,
2216 				struct mvpp2 *priv,
2217 				struct mvpp2_bm_pool *bm_pool, int size)
2218 {
2219 	u32 val;
2220 
2221 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2222 	bm_pool->phys_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2223 	if (!bm_pool->virt_addr)
2224 		return -ENOMEM;
2225 
2226 	if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
2227 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2228 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2229 		return -ENOMEM;
2230 	}
2231 
2232 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2233 		    bm_pool->phys_addr);
2234 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2235 
2236 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2237 	val |= MVPP2_BM_START_MASK;
2238 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2239 
2240 	bm_pool->type = MVPP2_BM_FREE;
2241 	bm_pool->size = size;
2242 	bm_pool->pkt_size = 0;
2243 	bm_pool->buf_num = 0;
2244 
2245 	return 0;
2246 }
2247 
2248 /* Set pool buffer size */
2249 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2250 				      struct mvpp2_bm_pool *bm_pool,
2251 				      int buf_size)
2252 {
2253 	u32 val;
2254 
2255 	bm_pool->buf_size = buf_size;
2256 
2257 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2258 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2259 }
2260 
2261 /* Free all buffers from the pool */
2262 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2263 			       struct mvpp2_bm_pool *bm_pool)
2264 {
2265 	bm_pool->buf_num = 0;
2266 }
2267 
2268 /* Cleanup pool */
2269 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2270 				 struct mvpp2 *priv,
2271 				 struct mvpp2_bm_pool *bm_pool)
2272 {
2273 	u32 val;
2274 
2275 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2276 	if (bm_pool->buf_num) {
2277 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2278 		return 0;
2279 	}
2280 
2281 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2282 	val |= MVPP2_BM_STOP_MASK;
2283 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2284 
2285 	return 0;
2286 }
2287 
2288 static int mvpp2_bm_pools_init(struct udevice *dev,
2289 			       struct mvpp2 *priv)
2290 {
2291 	int i, err, size;
2292 	struct mvpp2_bm_pool *bm_pool;
2293 
2294 	/* Create all pools with maximum size */
2295 	size = MVPP2_BM_POOL_SIZE_MAX;
2296 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2297 		bm_pool = &priv->bm_pools[i];
2298 		bm_pool->id = i;
2299 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2300 		if (err)
2301 			goto err_unroll_pools;
2302 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2303 	}
2304 	return 0;
2305 
2306 err_unroll_pools:
2307 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2308 	for (i = i - 1; i >= 0; i--)
2309 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2310 	return err;
2311 }
2312 
2313 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2314 {
2315 	int i, err;
2316 
2317 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2318 		/* Mask BM all interrupts */
2319 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2320 		/* Clear BM cause register */
2321 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2322 	}
2323 
2324 	/* Allocate and initialize BM pools */
2325 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2326 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2327 	if (!priv->bm_pools)
2328 		return -ENOMEM;
2329 
2330 	err = mvpp2_bm_pools_init(dev, priv);
2331 	if (err < 0)
2332 		return err;
2333 	return 0;
2334 }
2335 
2336 /* Attach long pool to rxq */
2337 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2338 				    int lrxq, int long_pool)
2339 {
2340 	u32 val;
2341 	int prxq;
2342 
2343 	/* Get queue physical ID */
2344 	prxq = port->rxqs[lrxq]->id;
2345 
2346 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2347 	val &= ~MVPP2_RXQ_POOL_LONG_MASK;
2348 	val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
2349 		    MVPP2_RXQ_POOL_LONG_MASK);
2350 
2351 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2352 }
2353 
2354 /* Set pool number in a BM cookie */
2355 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2356 {
2357 	u32 bm;
2358 
2359 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2360 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2361 
2362 	return bm;
2363 }
2364 
2365 /* Get pool number from a BM cookie */
2366 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
2367 {
2368 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2369 }
2370 
2371 /* Release buffer to BM */
2372 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2373 				     u32 buf_phys_addr, u32 buf_virt_addr)
2374 {
2375 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
2376 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
2377 }
2378 
2379 /* Refill BM pool */
2380 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2381 			      u32 phys_addr, u32 cookie)
2382 {
2383 	int pool = mvpp2_bm_cookie_pool_get(bm);
2384 
2385 	mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
2386 }
2387 
2388 /* Allocate buffers for the pool */
2389 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2390 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2391 {
2392 	int i;
2393 	u32 bm;
2394 
2395 	if (buf_num < 0 ||
2396 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2397 		netdev_err(port->dev,
2398 			   "cannot allocate %d buffers for pool %d\n",
2399 			   buf_num, bm_pool->id);
2400 		return 0;
2401 	}
2402 
2403 	bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
2404 	for (i = 0; i < buf_num; i++) {
2405 		mvpp2_pool_refill(port, bm, (u32)buffer_loc.rx_buffer[i],
2406 				  (u32)buffer_loc.rx_buffer[i]);
2407 	}
2408 
2409 	/* Update BM driver with number of buffers added to pool */
2410 	bm_pool->buf_num += i;
2411 	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
2412 
2413 	return i;
2414 }
2415 
2416 /* Notify the driver that BM pool is being used as specific type and return the
2417  * pool pointer on success
2418  */
2419 static struct mvpp2_bm_pool *
2420 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2421 		  int pkt_size)
2422 {
2423 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2424 	int num;
2425 
2426 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2427 		netdev_err(port->dev, "mixing pool types is forbidden\n");
2428 		return NULL;
2429 	}
2430 
2431 	if (new_pool->type == MVPP2_BM_FREE)
2432 		new_pool->type = type;
2433 
2434 	/* Allocate buffers in case BM pool is used as long pool, but packet
2435 	 * size doesn't match MTU or BM pool hasn't being used yet
2436 	 */
2437 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2438 	    (new_pool->pkt_size == 0)) {
2439 		int pkts_num;
2440 
2441 		/* Set default buffer number or free all the buffers in case
2442 		 * the pool is not empty
2443 		 */
2444 		pkts_num = new_pool->buf_num;
2445 		if (pkts_num == 0)
2446 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2447 				   MVPP2_BM_LONG_BUF_NUM :
2448 				   MVPP2_BM_SHORT_BUF_NUM;
2449 		else
2450 			mvpp2_bm_bufs_free(NULL,
2451 					   port->priv, new_pool);
2452 
2453 		new_pool->pkt_size = pkt_size;
2454 
2455 		/* Allocate buffers for this pool */
2456 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2457 		if (num != pkts_num) {
2458 			dev_err(dev, "pool %d: %d of %d allocated\n",
2459 				new_pool->id, num, pkts_num);
2460 			return NULL;
2461 		}
2462 	}
2463 
2464 	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2465 				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2466 
2467 	return new_pool;
2468 }
2469 
2470 /* Initialize pools for swf */
2471 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2472 {
2473 	int rxq;
2474 
2475 	if (!port->pool_long) {
2476 		port->pool_long =
2477 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2478 					 MVPP2_BM_SWF_LONG,
2479 					 port->pkt_size);
2480 		if (!port->pool_long)
2481 			return -ENOMEM;
2482 
2483 		port->pool_long->port_map |= (1 << port->id);
2484 
2485 		for (rxq = 0; rxq < rxq_number; rxq++)
2486 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 /* Port configuration routines */
2493 
2494 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2495 {
2496 	u32 val;
2497 
2498 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2499 
2500 	switch (port->phy_interface) {
2501 	case PHY_INTERFACE_MODE_SGMII:
2502 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2503 		break;
2504 	case PHY_INTERFACE_MODE_RGMII:
2505 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2506 	default:
2507 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2508 	}
2509 
2510 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2511 }
2512 
2513 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2514 {
2515 	u32 val;
2516 
2517 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2518 	val |= MVPP2_GMAC_FC_ADV_EN;
2519 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2520 }
2521 
2522 static void mvpp2_port_enable(struct mvpp2_port *port)
2523 {
2524 	u32 val;
2525 
2526 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2527 	val |= MVPP2_GMAC_PORT_EN_MASK;
2528 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2529 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2530 }
2531 
2532 static void mvpp2_port_disable(struct mvpp2_port *port)
2533 {
2534 	u32 val;
2535 
2536 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2537 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2538 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2539 }
2540 
2541 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2542 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2543 {
2544 	u32 val;
2545 
2546 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2547 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2548 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2549 }
2550 
2551 /* Configure loopback port */
2552 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2553 {
2554 	u32 val;
2555 
2556 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2557 
2558 	if (port->speed == 1000)
2559 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2560 	else
2561 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2562 
2563 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2564 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2565 	else
2566 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2567 
2568 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2569 }
2570 
2571 static void mvpp2_port_reset(struct mvpp2_port *port)
2572 {
2573 	u32 val;
2574 
2575 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2576 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2577 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2578 
2579 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2580 	       MVPP2_GMAC_PORT_RESET_MASK)
2581 		continue;
2582 }
2583 
2584 /* Change maximum receive size of the port */
2585 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2586 {
2587 	u32 val;
2588 
2589 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2590 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2591 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2592 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2593 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2594 }
2595 
2596 /* Set defaults to the MVPP2 port */
2597 static void mvpp2_defaults_set(struct mvpp2_port *port)
2598 {
2599 	int tx_port_num, val, queue, ptxq, lrxq;
2600 
2601 	/* Configure port to loopback if needed */
2602 	if (port->flags & MVPP2_F_LOOPBACK)
2603 		mvpp2_port_loopback_set(port);
2604 
2605 	/* Update TX FIFO MIN Threshold */
2606 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2607 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
2608 	/* Min. TX threshold must be less than minimal packet length */
2609 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
2610 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
2611 
2612 	/* Disable Legacy WRR, Disable EJP, Release from reset */
2613 	tx_port_num = mvpp2_egress_port(port);
2614 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
2615 		    tx_port_num);
2616 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
2617 
2618 	/* Close bandwidth for all queues */
2619 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
2620 		ptxq = mvpp2_txq_phys(port->id, queue);
2621 		mvpp2_write(port->priv,
2622 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
2623 	}
2624 
2625 	/* Set refill period to 1 usec, refill tokens
2626 	 * and bucket size to maximum
2627 	 */
2628 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
2629 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
2630 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
2631 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
2632 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
2633 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
2634 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
2635 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2636 
2637 	/* Set MaximumLowLatencyPacketSize value to 256 */
2638 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
2639 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
2640 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
2641 
2642 	/* Enable Rx cache snoop */
2643 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2644 		queue = port->rxqs[lrxq]->id;
2645 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2646 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
2647 			   MVPP2_SNOOP_BUF_HDR_MASK;
2648 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2649 	}
2650 }
2651 
2652 /* Enable/disable receiving packets */
2653 static void mvpp2_ingress_enable(struct mvpp2_port *port)
2654 {
2655 	u32 val;
2656 	int lrxq, queue;
2657 
2658 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2659 		queue = port->rxqs[lrxq]->id;
2660 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2661 		val &= ~MVPP2_RXQ_DISABLE_MASK;
2662 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2663 	}
2664 }
2665 
2666 static void mvpp2_ingress_disable(struct mvpp2_port *port)
2667 {
2668 	u32 val;
2669 	int lrxq, queue;
2670 
2671 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
2672 		queue = port->rxqs[lrxq]->id;
2673 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
2674 		val |= MVPP2_RXQ_DISABLE_MASK;
2675 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
2676 	}
2677 }
2678 
2679 /* Enable transmit via physical egress queue
2680  * - HW starts take descriptors from DRAM
2681  */
2682 static void mvpp2_egress_enable(struct mvpp2_port *port)
2683 {
2684 	u32 qmap;
2685 	int queue;
2686 	int tx_port_num = mvpp2_egress_port(port);
2687 
2688 	/* Enable all initialized TXs. */
2689 	qmap = 0;
2690 	for (queue = 0; queue < txq_number; queue++) {
2691 		struct mvpp2_tx_queue *txq = port->txqs[queue];
2692 
2693 		if (txq->descs != NULL)
2694 			qmap |= (1 << queue);
2695 	}
2696 
2697 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2698 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
2699 }
2700 
2701 /* Disable transmit via physical egress queue
2702  * - HW doesn't take descriptors from DRAM
2703  */
2704 static void mvpp2_egress_disable(struct mvpp2_port *port)
2705 {
2706 	u32 reg_data;
2707 	int delay;
2708 	int tx_port_num = mvpp2_egress_port(port);
2709 
2710 	/* Issue stop command for active channels only */
2711 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2712 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
2713 		    MVPP2_TXP_SCHED_ENQ_MASK;
2714 	if (reg_data != 0)
2715 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
2716 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
2717 
2718 	/* Wait for all Tx activity to terminate. */
2719 	delay = 0;
2720 	do {
2721 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
2722 			netdev_warn(port->dev,
2723 				    "Tx stop timed out, status=0x%08x\n",
2724 				    reg_data);
2725 			break;
2726 		}
2727 		mdelay(1);
2728 		delay++;
2729 
2730 		/* Check port TX Command register that all
2731 		 * Tx queues are stopped
2732 		 */
2733 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
2734 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
2735 }
2736 
2737 /* Rx descriptors helper methods */
2738 
2739 /* Get number of Rx descriptors occupied by received packets */
2740 static inline int
2741 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
2742 {
2743 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
2744 
2745 	return val & MVPP2_RXQ_OCCUPIED_MASK;
2746 }
2747 
2748 /* Update Rx queue status with the number of occupied and available
2749  * Rx descriptor slots.
2750  */
2751 static inline void
2752 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
2753 			int used_count, int free_count)
2754 {
2755 	/* Decrement the number of used descriptors and increment count
2756 	 * increment the number of free descriptors.
2757 	 */
2758 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
2759 
2760 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
2761 }
2762 
2763 /* Get pointer to next RX descriptor to be processed by SW */
2764 static inline struct mvpp2_rx_desc *
2765 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
2766 {
2767 	int rx_desc = rxq->next_desc_to_proc;
2768 
2769 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
2770 	prefetch(rxq->descs + rxq->next_desc_to_proc);
2771 	return rxq->descs + rx_desc;
2772 }
2773 
2774 /* Set rx queue offset */
2775 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
2776 				 int prxq, int offset)
2777 {
2778 	u32 val;
2779 
2780 	/* Convert offset from bytes to units of 32 bytes */
2781 	offset = offset >> 5;
2782 
2783 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2784 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
2785 
2786 	/* Offset is in */
2787 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
2788 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
2789 
2790 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2791 }
2792 
2793 /* Obtain BM cookie information from descriptor */
2794 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
2795 {
2796 	int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
2797 		   MVPP2_RXD_BM_POOL_ID_OFFS;
2798 	int cpu = smp_processor_id();
2799 
2800 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
2801 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
2802 }
2803 
2804 /* Tx descriptors helper methods */
2805 
2806 /* Get number of Tx descriptors waiting to be transmitted by HW */
2807 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
2808 				       struct mvpp2_tx_queue *txq)
2809 {
2810 	u32 val;
2811 
2812 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
2813 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
2814 
2815 	return val & MVPP2_TXQ_PENDING_MASK;
2816 }
2817 
2818 /* Get pointer to next Tx descriptor to be processed (send) by HW */
2819 static struct mvpp2_tx_desc *
2820 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
2821 {
2822 	int tx_desc = txq->next_desc_to_proc;
2823 
2824 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
2825 	return txq->descs + tx_desc;
2826 }
2827 
2828 /* Update HW with number of aggregated Tx descriptors to be sent */
2829 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
2830 {
2831 	/* aggregated access - relevant TXQ number is written in TX desc */
2832 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
2833 }
2834 
2835 /* Get number of sent descriptors and decrement counter.
2836  * The number of sent descriptors is returned.
2837  * Per-CPU access
2838  */
2839 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
2840 					   struct mvpp2_tx_queue *txq)
2841 {
2842 	u32 val;
2843 
2844 	/* Reading status reg resets transmitted descriptor counter */
2845 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
2846 
2847 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
2848 		MVPP2_TRANSMITTED_COUNT_OFFSET;
2849 }
2850 
2851 static void mvpp2_txq_sent_counter_clear(void *arg)
2852 {
2853 	struct mvpp2_port *port = arg;
2854 	int queue;
2855 
2856 	for (queue = 0; queue < txq_number; queue++) {
2857 		int id = port->txqs[queue]->id;
2858 
2859 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
2860 	}
2861 }
2862 
2863 /* Set max sizes for Tx queues */
2864 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
2865 {
2866 	u32	val, size, mtu;
2867 	int	txq, tx_port_num;
2868 
2869 	mtu = port->pkt_size * 8;
2870 	if (mtu > MVPP2_TXP_MTU_MAX)
2871 		mtu = MVPP2_TXP_MTU_MAX;
2872 
2873 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
2874 	mtu = 3 * mtu;
2875 
2876 	/* Indirect access to registers */
2877 	tx_port_num = mvpp2_egress_port(port);
2878 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
2879 
2880 	/* Set MTU */
2881 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
2882 	val &= ~MVPP2_TXP_MTU_MAX;
2883 	val |= mtu;
2884 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
2885 
2886 	/* TXP token size and all TXQs token size must be larger that MTU */
2887 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
2888 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
2889 	if (size < mtu) {
2890 		size = mtu;
2891 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
2892 		val |= size;
2893 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
2894 	}
2895 
2896 	for (txq = 0; txq < txq_number; txq++) {
2897 		val = mvpp2_read(port->priv,
2898 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
2899 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
2900 
2901 		if (size < mtu) {
2902 			size = mtu;
2903 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
2904 			val |= size;
2905 			mvpp2_write(port->priv,
2906 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
2907 				    val);
2908 		}
2909 	}
2910 }
2911 
2912 /* Free Tx queue skbuffs */
2913 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
2914 				struct mvpp2_tx_queue *txq,
2915 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
2916 {
2917 	int i;
2918 
2919 	for (i = 0; i < num; i++)
2920 		mvpp2_txq_inc_get(txq_pcpu);
2921 }
2922 
2923 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
2924 							u32 cause)
2925 {
2926 	int queue = fls(cause) - 1;
2927 
2928 	return port->rxqs[queue];
2929 }
2930 
2931 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
2932 							u32 cause)
2933 {
2934 	int queue = fls(cause) - 1;
2935 
2936 	return port->txqs[queue];
2937 }
2938 
2939 /* Rx/Tx queue initialization/cleanup methods */
2940 
2941 /* Allocate and initialize descriptors for aggr TXQ */
2942 static int mvpp2_aggr_txq_init(struct udevice *dev,
2943 			       struct mvpp2_tx_queue *aggr_txq,
2944 			       int desc_num, int cpu,
2945 			       struct mvpp2 *priv)
2946 {
2947 	/* Allocate memory for TX descriptors */
2948 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
2949 	aggr_txq->descs_phys = (dma_addr_t)buffer_loc.aggr_tx_descs;
2950 	if (!aggr_txq->descs)
2951 		return -ENOMEM;
2952 
2953 	/* Make sure descriptor address is cache line size aligned  */
2954 	BUG_ON(aggr_txq->descs !=
2955 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
2956 
2957 	aggr_txq->last_desc = aggr_txq->size - 1;
2958 
2959 	/* Aggr TXQ no reset WA */
2960 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
2961 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
2962 
2963 	/* Set Tx descriptors queue starting address */
2964 	/* indirect access */
2965 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
2966 		    aggr_txq->descs_phys);
2967 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
2968 
2969 	return 0;
2970 }
2971 
2972 /* Create a specified Rx queue */
2973 static int mvpp2_rxq_init(struct mvpp2_port *port,
2974 			  struct mvpp2_rx_queue *rxq)
2975 
2976 {
2977 	rxq->size = port->rx_ring_size;
2978 
2979 	/* Allocate memory for RX descriptors */
2980 	rxq->descs = buffer_loc.rx_descs;
2981 	rxq->descs_phys = (dma_addr_t)buffer_loc.rx_descs;
2982 	if (!rxq->descs)
2983 		return -ENOMEM;
2984 
2985 	BUG_ON(rxq->descs !=
2986 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
2987 
2988 	rxq->last_desc = rxq->size - 1;
2989 
2990 	/* Zero occupied and non-occupied counters - direct access */
2991 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
2992 
2993 	/* Set Rx descriptors queue starting address - indirect access */
2994 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
2995 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
2996 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
2997 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
2998 
2999 	/* Set Offset */
3000 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
3001 
3002 	/* Add number of descriptors ready for receiving packets */
3003 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
3004 
3005 	return 0;
3006 }
3007 
3008 /* Push packets received by the RXQ to BM pool */
3009 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
3010 				struct mvpp2_rx_queue *rxq)
3011 {
3012 	int rx_received, i;
3013 
3014 	rx_received = mvpp2_rxq_received(port, rxq->id);
3015 	if (!rx_received)
3016 		return;
3017 
3018 	for (i = 0; i < rx_received; i++) {
3019 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
3020 		u32 bm = mvpp2_bm_cookie_build(rx_desc);
3021 
3022 		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
3023 				  rx_desc->buf_cookie);
3024 	}
3025 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
3026 }
3027 
3028 /* Cleanup Rx queue */
3029 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
3030 			     struct mvpp2_rx_queue *rxq)
3031 {
3032 	mvpp2_rxq_drop_pkts(port, rxq);
3033 
3034 	rxq->descs             = NULL;
3035 	rxq->last_desc         = 0;
3036 	rxq->next_desc_to_proc = 0;
3037 	rxq->descs_phys        = 0;
3038 
3039 	/* Clear Rx descriptors queue starting address and size;
3040 	 * free descriptor number
3041 	 */
3042 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
3043 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
3044 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
3045 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
3046 }
3047 
3048 /* Create and initialize a Tx queue */
3049 static int mvpp2_txq_init(struct mvpp2_port *port,
3050 			  struct mvpp2_tx_queue *txq)
3051 {
3052 	u32 val;
3053 	int cpu, desc, desc_per_txq, tx_port_num;
3054 	struct mvpp2_txq_pcpu *txq_pcpu;
3055 
3056 	txq->size = port->tx_ring_size;
3057 
3058 	/* Allocate memory for Tx descriptors */
3059 	txq->descs = buffer_loc.tx_descs;
3060 	txq->descs_phys = (dma_addr_t)buffer_loc.tx_descs;
3061 	if (!txq->descs)
3062 		return -ENOMEM;
3063 
3064 	/* Make sure descriptor address is cache line size aligned  */
3065 	BUG_ON(txq->descs !=
3066 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
3067 
3068 	txq->last_desc = txq->size - 1;
3069 
3070 	/* Set Tx descriptors queue starting address - indirect access */
3071 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3072 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
3073 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
3074 					     MVPP2_TXQ_DESC_SIZE_MASK);
3075 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
3076 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
3077 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
3078 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3079 	val &= ~MVPP2_TXQ_PENDING_MASK;
3080 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
3081 
3082 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
3083 	 * for each existing TXQ.
3084 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
3085 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
3086 	 */
3087 	desc_per_txq = 16;
3088 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
3089 	       (txq->log_id * desc_per_txq);
3090 
3091 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
3092 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
3093 		    MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
3094 
3095 	/* WRR / EJP configuration - indirect access */
3096 	tx_port_num = mvpp2_egress_port(port);
3097 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3098 
3099 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
3100 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
3101 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
3102 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
3103 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
3104 
3105 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
3106 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
3107 		    val);
3108 
3109 	for_each_present_cpu(cpu) {
3110 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3111 		txq_pcpu->size = txq->size;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /* Free allocated TXQ resources */
3118 static void mvpp2_txq_deinit(struct mvpp2_port *port,
3119 			     struct mvpp2_tx_queue *txq)
3120 {
3121 	txq->descs             = NULL;
3122 	txq->last_desc         = 0;
3123 	txq->next_desc_to_proc = 0;
3124 	txq->descs_phys        = 0;
3125 
3126 	/* Set minimum bandwidth for disabled TXQs */
3127 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
3128 
3129 	/* Set Tx descriptors queue starting address and size */
3130 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3131 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
3132 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
3133 }
3134 
3135 /* Cleanup Tx ports */
3136 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
3137 {
3138 	struct mvpp2_txq_pcpu *txq_pcpu;
3139 	int delay, pending, cpu;
3140 	u32 val;
3141 
3142 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3143 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3144 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
3145 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3146 
3147 	/* The napi queue has been stopped so wait for all packets
3148 	 * to be transmitted.
3149 	 */
3150 	delay = 0;
3151 	do {
3152 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
3153 			netdev_warn(port->dev,
3154 				    "port %d: cleaning queue %d timed out\n",
3155 				    port->id, txq->log_id);
3156 			break;
3157 		}
3158 		mdelay(1);
3159 		delay++;
3160 
3161 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
3162 	} while (pending);
3163 
3164 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3165 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3166 
3167 	for_each_present_cpu(cpu) {
3168 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3169 
3170 		/* Release all packets */
3171 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
3172 
3173 		/* Reset queue */
3174 		txq_pcpu->count = 0;
3175 		txq_pcpu->txq_put_index = 0;
3176 		txq_pcpu->txq_get_index = 0;
3177 	}
3178 }
3179 
3180 /* Cleanup all Tx queues */
3181 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
3182 {
3183 	struct mvpp2_tx_queue *txq;
3184 	int queue;
3185 	u32 val;
3186 
3187 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
3188 
3189 	/* Reset Tx ports and delete Tx queues */
3190 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
3191 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3192 
3193 	for (queue = 0; queue < txq_number; queue++) {
3194 		txq = port->txqs[queue];
3195 		mvpp2_txq_clean(port, txq);
3196 		mvpp2_txq_deinit(port, txq);
3197 	}
3198 
3199 	mvpp2_txq_sent_counter_clear(port);
3200 
3201 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
3202 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
3203 }
3204 
3205 /* Cleanup all Rx queues */
3206 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
3207 {
3208 	int queue;
3209 
3210 	for (queue = 0; queue < rxq_number; queue++)
3211 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
3212 }
3213 
3214 /* Init all Rx queues for port */
3215 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
3216 {
3217 	int queue, err;
3218 
3219 	for (queue = 0; queue < rxq_number; queue++) {
3220 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
3221 		if (err)
3222 			goto err_cleanup;
3223 	}
3224 	return 0;
3225 
3226 err_cleanup:
3227 	mvpp2_cleanup_rxqs(port);
3228 	return err;
3229 }
3230 
3231 /* Init all tx queues for port */
3232 static int mvpp2_setup_txqs(struct mvpp2_port *port)
3233 {
3234 	struct mvpp2_tx_queue *txq;
3235 	int queue, err;
3236 
3237 	for (queue = 0; queue < txq_number; queue++) {
3238 		txq = port->txqs[queue];
3239 		err = mvpp2_txq_init(port, txq);
3240 		if (err)
3241 			goto err_cleanup;
3242 	}
3243 
3244 	mvpp2_txq_sent_counter_clear(port);
3245 	return 0;
3246 
3247 err_cleanup:
3248 	mvpp2_cleanup_txqs(port);
3249 	return err;
3250 }
3251 
3252 /* Adjust link */
3253 static void mvpp2_link_event(struct mvpp2_port *port)
3254 {
3255 	struct phy_device *phydev = port->phy_dev;
3256 	int status_change = 0;
3257 	u32 val;
3258 
3259 	if (phydev->link) {
3260 		if ((port->speed != phydev->speed) ||
3261 		    (port->duplex != phydev->duplex)) {
3262 			u32 val;
3263 
3264 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3265 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
3266 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
3267 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3268 				 MVPP2_GMAC_AN_SPEED_EN |
3269 				 MVPP2_GMAC_AN_DUPLEX_EN);
3270 
3271 			if (phydev->duplex)
3272 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
3273 
3274 			if (phydev->speed == SPEED_1000)
3275 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
3276 			else if (phydev->speed == SPEED_100)
3277 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
3278 
3279 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3280 
3281 			port->duplex = phydev->duplex;
3282 			port->speed  = phydev->speed;
3283 		}
3284 	}
3285 
3286 	if (phydev->link != port->link) {
3287 		if (!phydev->link) {
3288 			port->duplex = -1;
3289 			port->speed = 0;
3290 		}
3291 
3292 		port->link = phydev->link;
3293 		status_change = 1;
3294 	}
3295 
3296 	if (status_change) {
3297 		if (phydev->link) {
3298 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3299 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
3300 				MVPP2_GMAC_FORCE_LINK_DOWN);
3301 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3302 			mvpp2_egress_enable(port);
3303 			mvpp2_ingress_enable(port);
3304 		} else {
3305 			mvpp2_ingress_disable(port);
3306 			mvpp2_egress_disable(port);
3307 		}
3308 	}
3309 }
3310 
3311 /* Main RX/TX processing routines */
3312 
3313 /* Display more error info */
3314 static void mvpp2_rx_error(struct mvpp2_port *port,
3315 			   struct mvpp2_rx_desc *rx_desc)
3316 {
3317 	u32 status = rx_desc->status;
3318 
3319 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
3320 	case MVPP2_RXD_ERR_CRC:
3321 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
3322 			   status, rx_desc->data_size);
3323 		break;
3324 	case MVPP2_RXD_ERR_OVERRUN:
3325 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
3326 			   status, rx_desc->data_size);
3327 		break;
3328 	case MVPP2_RXD_ERR_RESOURCE:
3329 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
3330 			   status, rx_desc->data_size);
3331 		break;
3332 	}
3333 }
3334 
3335 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
3336 static int mvpp2_rx_refill(struct mvpp2_port *port,
3337 			   struct mvpp2_bm_pool *bm_pool,
3338 			   u32 bm, u32 phys_addr)
3339 {
3340 	mvpp2_pool_refill(port, bm, phys_addr, phys_addr);
3341 	return 0;
3342 }
3343 
3344 /* Set hw internals when starting port */
3345 static void mvpp2_start_dev(struct mvpp2_port *port)
3346 {
3347 	mvpp2_gmac_max_rx_size_set(port);
3348 	mvpp2_txp_max_tx_size_set(port);
3349 
3350 	mvpp2_port_enable(port);
3351 }
3352 
3353 /* Set hw internals when stopping port */
3354 static void mvpp2_stop_dev(struct mvpp2_port *port)
3355 {
3356 	/* Stop new packets from arriving to RXQs */
3357 	mvpp2_ingress_disable(port);
3358 
3359 	mvpp2_egress_disable(port);
3360 	mvpp2_port_disable(port);
3361 }
3362 
3363 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
3364 {
3365 	struct phy_device *phy_dev;
3366 
3367 	if (!port->init || port->link == 0) {
3368 		phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
3369 				      port->phy_interface);
3370 		port->phy_dev = phy_dev;
3371 		if (!phy_dev) {
3372 			netdev_err(port->dev, "cannot connect to phy\n");
3373 			return -ENODEV;
3374 		}
3375 		phy_dev->supported &= PHY_GBIT_FEATURES;
3376 		phy_dev->advertising = phy_dev->supported;
3377 
3378 		port->phy_dev = phy_dev;
3379 		port->link    = 0;
3380 		port->duplex  = 0;
3381 		port->speed   = 0;
3382 
3383 		phy_config(phy_dev);
3384 		phy_startup(phy_dev);
3385 		if (!phy_dev->link) {
3386 			printf("%s: No link\n", phy_dev->dev->name);
3387 			return -1;
3388 		}
3389 
3390 		port->init = 1;
3391 	} else {
3392 		mvpp2_egress_enable(port);
3393 		mvpp2_ingress_enable(port);
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
3400 {
3401 	unsigned char mac_bcast[ETH_ALEN] = {
3402 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3403 	int err;
3404 
3405 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
3406 	if (err) {
3407 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
3408 		return err;
3409 	}
3410 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
3411 				      port->dev_addr, true);
3412 	if (err) {
3413 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
3414 		return err;
3415 	}
3416 	err = mvpp2_prs_def_flow(port);
3417 	if (err) {
3418 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
3419 		return err;
3420 	}
3421 
3422 	/* Allocate the Rx/Tx queues */
3423 	err = mvpp2_setup_rxqs(port);
3424 	if (err) {
3425 		netdev_err(port->dev, "cannot allocate Rx queues\n");
3426 		return err;
3427 	}
3428 
3429 	err = mvpp2_setup_txqs(port);
3430 	if (err) {
3431 		netdev_err(port->dev, "cannot allocate Tx queues\n");
3432 		return err;
3433 	}
3434 
3435 	err = mvpp2_phy_connect(dev, port);
3436 	if (err < 0)
3437 		return err;
3438 
3439 	mvpp2_link_event(port);
3440 
3441 	mvpp2_start_dev(port);
3442 
3443 	return 0;
3444 }
3445 
3446 /* No Device ops here in U-Boot */
3447 
3448 /* Driver initialization */
3449 
3450 static void mvpp2_port_power_up(struct mvpp2_port *port)
3451 {
3452 	mvpp2_port_mii_set(port);
3453 	mvpp2_port_periodic_xon_disable(port);
3454 	mvpp2_port_fc_adv_enable(port);
3455 	mvpp2_port_reset(port);
3456 }
3457 
3458 /* Initialize port HW */
3459 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
3460 {
3461 	struct mvpp2 *priv = port->priv;
3462 	struct mvpp2_txq_pcpu *txq_pcpu;
3463 	int queue, cpu, err;
3464 
3465 	if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
3466 		return -EINVAL;
3467 
3468 	/* Disable port */
3469 	mvpp2_egress_disable(port);
3470 	mvpp2_port_disable(port);
3471 
3472 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
3473 				  GFP_KERNEL);
3474 	if (!port->txqs)
3475 		return -ENOMEM;
3476 
3477 	/* Associate physical Tx queues to this port and initialize.
3478 	 * The mapping is predefined.
3479 	 */
3480 	for (queue = 0; queue < txq_number; queue++) {
3481 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
3482 		struct mvpp2_tx_queue *txq;
3483 
3484 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
3485 		if (!txq)
3486 			return -ENOMEM;
3487 
3488 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
3489 					 GFP_KERNEL);
3490 		if (!txq->pcpu)
3491 			return -ENOMEM;
3492 
3493 		txq->id = queue_phy_id;
3494 		txq->log_id = queue;
3495 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
3496 		for_each_present_cpu(cpu) {
3497 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
3498 			txq_pcpu->cpu = cpu;
3499 		}
3500 
3501 		port->txqs[queue] = txq;
3502 	}
3503 
3504 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
3505 				  GFP_KERNEL);
3506 	if (!port->rxqs)
3507 		return -ENOMEM;
3508 
3509 	/* Allocate and initialize Rx queue for this port */
3510 	for (queue = 0; queue < rxq_number; queue++) {
3511 		struct mvpp2_rx_queue *rxq;
3512 
3513 		/* Map physical Rx queue to port's logical Rx queue */
3514 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
3515 		if (!rxq)
3516 			return -ENOMEM;
3517 		/* Map this Rx queue to a physical queue */
3518 		rxq->id = port->first_rxq + queue;
3519 		rxq->port = port->id;
3520 		rxq->logic_rxq = queue;
3521 
3522 		port->rxqs[queue] = rxq;
3523 	}
3524 
3525 	/* Configure Rx queue group interrupt for this port */
3526 	mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), CONFIG_MV_ETH_RXQ);
3527 
3528 	/* Create Rx descriptor rings */
3529 	for (queue = 0; queue < rxq_number; queue++) {
3530 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
3531 
3532 		rxq->size = port->rx_ring_size;
3533 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
3534 		rxq->time_coal = MVPP2_RX_COAL_USEC;
3535 	}
3536 
3537 	mvpp2_ingress_disable(port);
3538 
3539 	/* Port default configuration */
3540 	mvpp2_defaults_set(port);
3541 
3542 	/* Port's classifier configuration */
3543 	mvpp2_cls_oversize_rxq_set(port);
3544 	mvpp2_cls_port_config(port);
3545 
3546 	/* Provide an initial Rx packet size */
3547 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
3548 
3549 	/* Initialize pools for swf */
3550 	err = mvpp2_swf_bm_pool_init(port);
3551 	if (err)
3552 		return err;
3553 
3554 	return 0;
3555 }
3556 
3557 /* Ports initialization */
3558 static int mvpp2_port_probe(struct udevice *dev,
3559 			    struct mvpp2_port *port,
3560 			    int port_node,
3561 			    struct mvpp2 *priv,
3562 			    int *next_first_rxq)
3563 {
3564 	int phy_node;
3565 	u32 id;
3566 	u32 phyaddr;
3567 	const char *phy_mode_str;
3568 	int phy_mode = -1;
3569 	int priv_common_regs_num = 2;
3570 	int err;
3571 
3572 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
3573 	if (phy_node < 0) {
3574 		dev_err(&pdev->dev, "missing phy\n");
3575 		return -ENODEV;
3576 	}
3577 
3578 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
3579 	if (phy_mode_str)
3580 		phy_mode = phy_get_interface_by_name(phy_mode_str);
3581 	if (phy_mode == -1) {
3582 		dev_err(&pdev->dev, "incorrect phy mode\n");
3583 		return -EINVAL;
3584 	}
3585 
3586 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
3587 	if (id == -1) {
3588 		dev_err(&pdev->dev, "missing port-id value\n");
3589 		return -EINVAL;
3590 	}
3591 
3592 	phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
3593 
3594 	port->priv = priv;
3595 	port->id = id;
3596 	port->first_rxq = *next_first_rxq;
3597 	port->phy_node = phy_node;
3598 	port->phy_interface = phy_mode;
3599 	port->phyaddr = phyaddr;
3600 
3601 	port->base = (void __iomem *)dev_get_addr_index(dev->parent,
3602 							priv_common_regs_num
3603 							+ id);
3604 	if (IS_ERR(port->base))
3605 		return PTR_ERR(port->base);
3606 
3607 	port->tx_ring_size = MVPP2_MAX_TXD;
3608 	port->rx_ring_size = MVPP2_MAX_RXD;
3609 
3610 	err = mvpp2_port_init(dev, port);
3611 	if (err < 0) {
3612 		dev_err(&pdev->dev, "failed to init port %d\n", id);
3613 		return err;
3614 	}
3615 	mvpp2_port_power_up(port);
3616 
3617 	/* Increment the first Rx queue number to be used by the next port */
3618 	*next_first_rxq += CONFIG_MV_ETH_RXQ;
3619 	priv->port_list[id] = port;
3620 	return 0;
3621 }
3622 
3623 /* Initialize decoding windows */
3624 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
3625 				    struct mvpp2 *priv)
3626 {
3627 	u32 win_enable;
3628 	int i;
3629 
3630 	for (i = 0; i < 6; i++) {
3631 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
3632 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
3633 
3634 		if (i < 4)
3635 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
3636 	}
3637 
3638 	win_enable = 0;
3639 
3640 	for (i = 0; i < dram->num_cs; i++) {
3641 		const struct mbus_dram_window *cs = dram->cs + i;
3642 
3643 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
3644 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
3645 			    dram->mbus_dram_target_id);
3646 
3647 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
3648 			    (cs->size - 1) & 0xffff0000);
3649 
3650 		win_enable |= (1 << i);
3651 	}
3652 
3653 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
3654 }
3655 
3656 /* Initialize Rx FIFO's */
3657 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
3658 {
3659 	int port;
3660 
3661 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
3662 		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
3663 			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
3664 		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
3665 			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
3666 	}
3667 
3668 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
3669 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
3670 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
3671 }
3672 
3673 /* Initialize network controller common part HW */
3674 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
3675 {
3676 	const struct mbus_dram_target_info *dram_target_info;
3677 	int err, i;
3678 	u32 val;
3679 
3680 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
3681 	if ((rxq_number > MVPP2_MAX_RXQ) || (txq_number > MVPP2_MAX_TXQ)) {
3682 		dev_err(&pdev->dev, "invalid queue size parameter\n");
3683 		return -EINVAL;
3684 	}
3685 
3686 	/* MBUS windows configuration */
3687 	dram_target_info = mvebu_mbus_dram_info();
3688 	if (dram_target_info)
3689 		mvpp2_conf_mbus_windows(dram_target_info, priv);
3690 
3691 	/* Disable HW PHY polling */
3692 	val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3693 	val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
3694 	writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
3695 
3696 	/* Allocate and initialize aggregated TXQs */
3697 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
3698 				       sizeof(struct mvpp2_tx_queue),
3699 				       GFP_KERNEL);
3700 	if (!priv->aggr_txqs)
3701 		return -ENOMEM;
3702 
3703 	for_each_present_cpu(i) {
3704 		priv->aggr_txqs[i].id = i;
3705 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
3706 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
3707 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
3708 		if (err < 0)
3709 			return err;
3710 	}
3711 
3712 	/* Rx Fifo Init */
3713 	mvpp2_rx_fifo_init(priv);
3714 
3715 	/* Reset Rx queue group interrupt configuration */
3716 	for (i = 0; i < MVPP2_MAX_PORTS; i++)
3717 		mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i),
3718 			    CONFIG_MV_ETH_RXQ);
3719 
3720 	writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
3721 	       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
3722 
3723 	/* Allow cache snoop when transmiting packets */
3724 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
3725 
3726 	/* Buffer Manager initialization */
3727 	err = mvpp2_bm_init(dev, priv);
3728 	if (err < 0)
3729 		return err;
3730 
3731 	/* Parser default initialization */
3732 	err = mvpp2_prs_default_init(dev, priv);
3733 	if (err < 0)
3734 		return err;
3735 
3736 	/* Classifier default initialization */
3737 	mvpp2_cls_init(priv);
3738 
3739 	return 0;
3740 }
3741 
3742 /* SMI / MDIO functions */
3743 
3744 static int smi_wait_ready(struct mvpp2 *priv)
3745 {
3746 	u32 timeout = MVPP2_SMI_TIMEOUT;
3747 	u32 smi_reg;
3748 
3749 	/* wait till the SMI is not busy */
3750 	do {
3751 		/* read smi register */
3752 		smi_reg = readl(priv->lms_base + MVPP2_SMI);
3753 		if (timeout-- == 0) {
3754 			printf("Error: SMI busy timeout\n");
3755 			return -EFAULT;
3756 		}
3757 	} while (smi_reg & MVPP2_SMI_BUSY);
3758 
3759 	return 0;
3760 }
3761 
3762 /*
3763  * mpp2_mdio_read - miiphy_read callback function.
3764  *
3765  * Returns 16bit phy register value, or 0xffff on error
3766  */
3767 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
3768 {
3769 	struct mvpp2 *priv = bus->priv;
3770 	u32 smi_reg;
3771 	u32 timeout;
3772 
3773 	/* check parameters */
3774 	if (addr > MVPP2_PHY_ADDR_MASK) {
3775 		printf("Error: Invalid PHY address %d\n", addr);
3776 		return -EFAULT;
3777 	}
3778 
3779 	if (reg > MVPP2_PHY_REG_MASK) {
3780 		printf("Err: Invalid register offset %d\n", reg);
3781 		return -EFAULT;
3782 	}
3783 
3784 	/* wait till the SMI is not busy */
3785 	if (smi_wait_ready(priv) < 0)
3786 		return -EFAULT;
3787 
3788 	/* fill the phy address and regiser offset and read opcode */
3789 	smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3790 		| (reg << MVPP2_SMI_REG_ADDR_OFFS)
3791 		| MVPP2_SMI_OPCODE_READ;
3792 
3793 	/* write the smi register */
3794 	writel(smi_reg, priv->lms_base + MVPP2_SMI);
3795 
3796 	/* wait till read value is ready */
3797 	timeout = MVPP2_SMI_TIMEOUT;
3798 
3799 	do {
3800 		/* read smi register */
3801 		smi_reg = readl(priv->lms_base + MVPP2_SMI);
3802 		if (timeout-- == 0) {
3803 			printf("Err: SMI read ready timeout\n");
3804 			return -EFAULT;
3805 		}
3806 	} while (!(smi_reg & MVPP2_SMI_READ_VALID));
3807 
3808 	/* Wait for the data to update in the SMI register */
3809 	for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
3810 		;
3811 
3812 	return readl(priv->lms_base + MVPP2_SMI) & MVPP2_SMI_DATA_MASK;
3813 }
3814 
3815 /*
3816  * mpp2_mdio_write - miiphy_write callback function.
3817  *
3818  * Returns 0 if write succeed, -EINVAL on bad parameters
3819  * -ETIME on timeout
3820  */
3821 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
3822 			   u16 value)
3823 {
3824 	struct mvpp2 *priv = bus->priv;
3825 	u32 smi_reg;
3826 
3827 	/* check parameters */
3828 	if (addr > MVPP2_PHY_ADDR_MASK) {
3829 		printf("Error: Invalid PHY address %d\n", addr);
3830 		return -EFAULT;
3831 	}
3832 
3833 	if (reg > MVPP2_PHY_REG_MASK) {
3834 		printf("Err: Invalid register offset %d\n", reg);
3835 		return -EFAULT;
3836 	}
3837 
3838 	/* wait till the SMI is not busy */
3839 	if (smi_wait_ready(priv) < 0)
3840 		return -EFAULT;
3841 
3842 	/* fill the phy addr and reg offset and write opcode and data */
3843 	smi_reg = value << MVPP2_SMI_DATA_OFFS;
3844 	smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
3845 		| (reg << MVPP2_SMI_REG_ADDR_OFFS);
3846 	smi_reg &= ~MVPP2_SMI_OPCODE_READ;
3847 
3848 	/* write the smi register */
3849 	writel(smi_reg, priv->lms_base + MVPP2_SMI);
3850 
3851 	return 0;
3852 }
3853 
3854 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
3855 {
3856 	struct mvpp2_port *port = dev_get_priv(dev);
3857 	struct mvpp2_rx_desc *rx_desc;
3858 	struct mvpp2_bm_pool *bm_pool;
3859 	dma_addr_t phys_addr;
3860 	u32 bm, rx_status;
3861 	int pool, rx_bytes, err;
3862 	int rx_received;
3863 	struct mvpp2_rx_queue *rxq;
3864 	u32 cause_rx_tx, cause_rx, cause_misc;
3865 	u8 *data;
3866 
3867 	cause_rx_tx = mvpp2_read(port->priv,
3868 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
3869 	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
3870 	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
3871 	if (!cause_rx_tx && !cause_misc)
3872 		return 0;
3873 
3874 	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
3875 
3876 	/* Process RX packets */
3877 	cause_rx |= port->pending_cause_rx;
3878 	rxq = mvpp2_get_rx_queue(port, cause_rx);
3879 
3880 	/* Get number of received packets and clamp the to-do */
3881 	rx_received = mvpp2_rxq_received(port, rxq->id);
3882 
3883 	/* Return if no packets are received */
3884 	if (!rx_received)
3885 		return 0;
3886 
3887 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
3888 	rx_status = rx_desc->status;
3889 	rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
3890 	phys_addr = rx_desc->buf_phys_addr;
3891 
3892 	bm = mvpp2_bm_cookie_build(rx_desc);
3893 	pool = mvpp2_bm_cookie_pool_get(bm);
3894 	bm_pool = &port->priv->bm_pools[pool];
3895 
3896 	/* Check if buffer header is used */
3897 	if (rx_status & MVPP2_RXD_BUF_HDR)
3898 		return 0;
3899 
3900 	/* In case of an error, release the requested buffer pointer
3901 	 * to the Buffer Manager. This request process is controlled
3902 	 * by the hardware, and the information about the buffer is
3903 	 * comprised by the RX descriptor.
3904 	 */
3905 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
3906 		mvpp2_rx_error(port, rx_desc);
3907 		/* Return the buffer to the pool */
3908 		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
3909 				  rx_desc->buf_cookie);
3910 		return 0;
3911 	}
3912 
3913 	err = mvpp2_rx_refill(port, bm_pool, bm, phys_addr);
3914 	if (err) {
3915 		netdev_err(port->dev, "failed to refill BM pools\n");
3916 		return 0;
3917 	}
3918 
3919 	/* Update Rx queue management counters */
3920 	mb();
3921 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
3922 
3923 	/* give packet to stack - skip on first n bytes */
3924 	data = (u8 *)phys_addr + 2 + 32;
3925 
3926 	if (rx_bytes <= 0)
3927 		return 0;
3928 
3929 	/*
3930 	 * No cache invalidation needed here, since the rx_buffer's are
3931 	 * located in a uncached memory region
3932 	 */
3933 	*packetp = data;
3934 
3935 	return rx_bytes;
3936 }
3937 
3938 /* Drain Txq */
3939 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
3940 			    int enable)
3941 {
3942 	u32 val;
3943 
3944 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3945 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
3946 	if (enable)
3947 		val |= MVPP2_TXQ_DRAIN_EN_MASK;
3948 	else
3949 		val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
3950 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
3951 }
3952 
3953 static int mvpp2_send(struct udevice *dev, void *packet, int length)
3954 {
3955 	struct mvpp2_port *port = dev_get_priv(dev);
3956 	struct mvpp2_tx_queue *txq, *aggr_txq;
3957 	struct mvpp2_tx_desc *tx_desc;
3958 	int tx_done;
3959 	int timeout;
3960 
3961 	txq = port->txqs[0];
3962 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
3963 
3964 	/* Get a descriptor for the first part of the packet */
3965 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
3966 	tx_desc->phys_txq = txq->id;
3967 	tx_desc->data_size = length;
3968 	tx_desc->packet_offset = (u32)packet & MVPP2_TX_DESC_ALIGN;
3969 	tx_desc->buf_phys_addr = (u32)packet & ~MVPP2_TX_DESC_ALIGN;
3970 	/* First and Last descriptor */
3971 	tx_desc->command = MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
3972 		| MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
3973 
3974 	/* Flush tx data */
3975 	flush_dcache_range((u32)packet, (u32)packet + length);
3976 
3977 	/* Enable transmit */
3978 	mb();
3979 	mvpp2_aggr_txq_pend_desc_add(port, 1);
3980 
3981 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3982 
3983 	timeout = 0;
3984 	do {
3985 		if (timeout++ > 10000) {
3986 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
3987 			return 0;
3988 		}
3989 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
3990 	} while (tx_done);
3991 
3992 	/* Enable TXQ drain */
3993 	mvpp2_txq_drain(port, txq, 1);
3994 
3995 	timeout = 0;
3996 	do {
3997 		if (timeout++ > 10000) {
3998 			printf("timeout: packet not sent\n");
3999 			return 0;
4000 		}
4001 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4002 	} while (!tx_done);
4003 
4004 	/* Disable TXQ drain */
4005 	mvpp2_txq_drain(port, txq, 0);
4006 
4007 	return 0;
4008 }
4009 
4010 static int mvpp2_start(struct udevice *dev)
4011 {
4012 	struct eth_pdata *pdata = dev_get_platdata(dev);
4013 	struct mvpp2_port *port = dev_get_priv(dev);
4014 
4015 	/* Load current MAC address */
4016 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
4017 
4018 	/* Reconfigure parser accept the original MAC address */
4019 	mvpp2_prs_update_mac_da(port, port->dev_addr);
4020 
4021 	mvpp2_port_power_up(port);
4022 
4023 	mvpp2_open(dev, port);
4024 
4025 	return 0;
4026 }
4027 
4028 static void mvpp2_stop(struct udevice *dev)
4029 {
4030 	struct mvpp2_port *port = dev_get_priv(dev);
4031 
4032 	mvpp2_stop_dev(port);
4033 	mvpp2_cleanup_rxqs(port);
4034 	mvpp2_cleanup_txqs(port);
4035 }
4036 
4037 static int mvpp2_probe(struct udevice *dev)
4038 {
4039 	struct mvpp2_port *port = dev_get_priv(dev);
4040 	struct mvpp2 *priv = dev_get_priv(dev->parent);
4041 	int err;
4042 
4043 	/* Initialize network controller */
4044 	err = mvpp2_init(dev, priv);
4045 	if (err < 0) {
4046 		dev_err(&pdev->dev, "failed to initialize controller\n");
4047 		return err;
4048 	}
4049 
4050 	return mvpp2_port_probe(dev, port, dev->of_offset, priv,
4051 				&buffer_loc.first_rxq);
4052 }
4053 
4054 static const struct eth_ops mvpp2_ops = {
4055 	.start		= mvpp2_start,
4056 	.send		= mvpp2_send,
4057 	.recv		= mvpp2_recv,
4058 	.stop		= mvpp2_stop,
4059 };
4060 
4061 static struct driver mvpp2_driver = {
4062 	.name	= "mvpp2",
4063 	.id	= UCLASS_ETH,
4064 	.probe	= mvpp2_probe,
4065 	.ops	= &mvpp2_ops,
4066 	.priv_auto_alloc_size = sizeof(struct mvpp2_port),
4067 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
4068 };
4069 
4070 /*
4071  * Use a MISC device to bind the n instances (child nodes) of the
4072  * network base controller in UCLASS_ETH.
4073  */
4074 static int mvpp2_base_probe(struct udevice *dev)
4075 {
4076 	struct mvpp2 *priv = dev_get_priv(dev);
4077 	struct mii_dev *bus;
4078 	void *bd_space;
4079 	u32 size = 0;
4080 	int i;
4081 
4082 	/*
4083 	 * U-Boot special buffer handling:
4084 	 *
4085 	 * Allocate buffer area for descs and rx_buffers. This is only
4086 	 * done once for all interfaces. As only one interface can
4087 	 * be active. Make this area DMA-safe by disabling the D-cache
4088 	 */
4089 
4090 	/* Align buffer area for descs and rx_buffers to 1MiB */
4091 	bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
4092 	mmu_set_region_dcache_behaviour((u32)bd_space, BD_SPACE, DCACHE_OFF);
4093 
4094 	buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
4095 	size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
4096 
4097 	buffer_loc.tx_descs = (struct mvpp2_tx_desc *)((u32)bd_space + size);
4098 	size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
4099 
4100 	buffer_loc.rx_descs = (struct mvpp2_rx_desc *)((u32)bd_space + size);
4101 	size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
4102 
4103 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
4104 		buffer_loc.bm_pool[i] = (u32 *)((u32)bd_space + size);
4105 		size += MVPP2_BM_POOL_SIZE_MAX * sizeof(u32);
4106 	}
4107 
4108 	for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
4109 		buffer_loc.rx_buffer[i] = (u32 *)((u32)bd_space + size);
4110 		size += RX_BUFFER_SIZE;
4111 	}
4112 
4113 	/* Save base addresses for later use */
4114 	priv->base = (void *)dev_get_addr_index(dev, 0);
4115 	if (IS_ERR(priv->base))
4116 		return PTR_ERR(priv->base);
4117 
4118 	priv->lms_base = (void *)dev_get_addr_index(dev, 1);
4119 	if (IS_ERR(priv->lms_base))
4120 		return PTR_ERR(priv->lms_base);
4121 
4122 	/* Finally create and register the MDIO bus driver */
4123 	bus = mdio_alloc();
4124 	if (!bus) {
4125 		printf("Failed to allocate MDIO bus\n");
4126 		return -ENOMEM;
4127 	}
4128 
4129 	bus->read = mpp2_mdio_read;
4130 	bus->write = mpp2_mdio_write;
4131 	snprintf(bus->name, sizeof(bus->name), dev->name);
4132 	bus->priv = (void *)priv;
4133 	priv->bus = bus;
4134 
4135 	return mdio_register(bus);
4136 }
4137 
4138 static int mvpp2_base_bind(struct udevice *parent)
4139 {
4140 	const void *blob = gd->fdt_blob;
4141 	int node = parent->of_offset;
4142 	struct uclass_driver *drv;
4143 	struct udevice *dev;
4144 	struct eth_pdata *plat;
4145 	char *name;
4146 	int subnode;
4147 	u32 id;
4148 
4149 	/* Lookup eth driver */
4150 	drv = lists_uclass_lookup(UCLASS_ETH);
4151 	if (!drv) {
4152 		puts("Cannot find eth driver\n");
4153 		return -ENOENT;
4154 	}
4155 
4156 	fdt_for_each_subnode(subnode, blob, node) {
4157 		/* Skip disabled ports */
4158 		if (!fdtdec_get_is_enabled(blob, subnode))
4159 			continue;
4160 
4161 		plat = calloc(1, sizeof(*plat));
4162 		if (!plat)
4163 			return -ENOMEM;
4164 
4165 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
4166 
4167 		name = calloc(1, 16);
4168 		sprintf(name, "mvpp2-%d", id);
4169 
4170 		/* Create child device UCLASS_ETH and bind it */
4171 		device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
4172 		dev->of_offset = subnode;
4173 	}
4174 
4175 	return 0;
4176 }
4177 
4178 static const struct udevice_id mvpp2_ids[] = {
4179 	{ .compatible = "marvell,armada-375-pp2" },
4180 	{ }
4181 };
4182 
4183 U_BOOT_DRIVER(mvpp2_base) = {
4184 	.name	= "mvpp2_base",
4185 	.id	= UCLASS_MISC,
4186 	.of_match = mvpp2_ids,
4187 	.bind	= mvpp2_base_bind,
4188 	.probe	= mvpp2_base_probe,
4189 	.priv_auto_alloc_size = sizeof(struct mvpp2),
4190 };
4191