xref: /openbmc/u-boot/drivers/net/mvpp2.c (revision 79df00fd)
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 #include <asm-generic/gpio.h>
34 #include <fdt_support.h>
35 
36 DECLARE_GLOBAL_DATA_PTR;
37 
38 /* Some linux -> U-Boot compatibility stuff */
39 #define netdev_err(dev, fmt, args...)		\
40 	printf(fmt, ##args)
41 #define netdev_warn(dev, fmt, args...)		\
42 	printf(fmt, ##args)
43 #define netdev_info(dev, fmt, args...)		\
44 	printf(fmt, ##args)
45 #define netdev_dbg(dev, fmt, args...)		\
46 	printf(fmt, ##args)
47 
48 #define ETH_ALEN	6		/* Octets in one ethernet addr	*/
49 
50 #define __verify_pcpu_ptr(ptr)						\
51 do {									\
52 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
53 	(void)__vpp_verify;						\
54 } while (0)
55 
56 #define VERIFY_PERCPU_PTR(__p)						\
57 ({									\
58 	__verify_pcpu_ptr(__p);						\
59 	(typeof(*(__p)) __kernel __force *)(__p);			\
60 })
61 
62 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
63 #define smp_processor_id()	0
64 #define num_present_cpus()	1
65 #define for_each_present_cpu(cpu)			\
66 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
67 
68 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
69 
70 #define CONFIG_NR_CPUS		1
71 #define ETH_HLEN		ETHER_HDR_SIZE	/* Total octets in header */
72 
73 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
74 #define WRAP			(2 + ETH_HLEN + 4 + 32)
75 #define MTU			1500
76 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
77 
78 #define MVPP2_SMI_TIMEOUT			10000
79 
80 /* RX Fifo Registers */
81 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
82 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
83 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
84 #define MVPP2_RX_FIFO_INIT_REG			0x64
85 
86 /* RX DMA Top Registers */
87 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
88 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
89 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
90 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
91 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
92 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
93 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
94 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
95 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
96 #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
97 #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
98 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
99 #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
100 #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
101 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
102 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
103 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
104 
105 /* Parser Registers */
106 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
107 #define     MVPP2_PRS_PORT_LU_MAX		0xf
108 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
109 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
110 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
111 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
112 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
113 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
114 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
115 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
116 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
117 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
118 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
119 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
120 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
121 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
122 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
123 
124 /* Classifier Registers */
125 #define MVPP2_CLS_MODE_REG			0x1800
126 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
127 #define MVPP2_CLS_PORT_WAY_REG			0x1810
128 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
129 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
130 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
131 #define MVPP2_CLS_LKP_TBL_REG			0x1818
132 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
133 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
134 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
135 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
136 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
137 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
138 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
139 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
140 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
141 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
142 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
143 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
144 
145 /* Descriptor Manager Top Registers */
146 #define MVPP2_RXQ_NUM_REG			0x2040
147 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
148 #define     MVPP22_DESC_ADDR_OFFS		8
149 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
150 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
151 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
152 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
153 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
154 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
155 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
156 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
157 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
158 #define MVPP2_RXQ_THRESH_REG			0x204c
159 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
160 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
161 #define MVPP2_RXQ_INDEX_REG			0x2050
162 #define MVPP2_TXQ_NUM_REG			0x2080
163 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
164 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
165 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
166 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
167 #define MVPP2_TXQ_THRESH_REG			0x2094
168 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
169 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
170 #define MVPP2_TXQ_INDEX_REG			0x2098
171 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
172 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
173 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
174 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
175 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
176 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
177 #define MVPP2_TXQ_PENDING_REG			0x20a0
178 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
179 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
180 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
181 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
182 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
183 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
184 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
185 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
186 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
187 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
188 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
189 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
190 #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
191 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
192 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
193 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
194 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
195 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
196 
197 /* MBUS bridge registers */
198 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
199 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
200 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
201 #define MVPP2_BASE_ADDR_ENABLE			0x4060
202 
203 /* AXI Bridge Registers */
204 #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
205 #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
206 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
207 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
208 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
209 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
210 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
211 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
212 #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
213 #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
214 #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
215 #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
216 
217 /* Values for AXI Bridge registers */
218 #define MVPP22_AXI_ATTR_CACHE_OFFS		0
219 #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
220 
221 #define MVPP22_AXI_CODE_CACHE_OFFS		0
222 #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
223 
224 #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
225 #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
226 #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
227 
228 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
229 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
230 
231 /* Interrupt Cause and Mask registers */
232 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
233 #define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
234 
235 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
237 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
238 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
239 
240 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
241 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
242 
243 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
244 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
245 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
246 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8
247 
248 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
249 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
250 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
251 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
252 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
253 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
254 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
255 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
256 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
257 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
258 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
259 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
260 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
261 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
262 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
263 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
264 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
265 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
266 
267 /* Buffer Manager registers */
268 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
269 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
270 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
271 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
272 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
273 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
274 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
275 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
276 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
277 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
278 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
279 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
280 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
281 #define     MVPP2_BM_START_MASK			BIT(0)
282 #define     MVPP2_BM_STOP_MASK			BIT(1)
283 #define     MVPP2_BM_STATE_MASK			BIT(4)
284 #define     MVPP2_BM_LOW_THRESH_OFFS		8
285 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
286 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
287 						MVPP2_BM_LOW_THRESH_OFFS)
288 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
289 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
290 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
291 						MVPP2_BM_HIGH_THRESH_OFFS)
292 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
293 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
294 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
295 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
296 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
297 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
298 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
299 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
300 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
301 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
302 #define MVPP2_BM_ADDR_HIGH_ALLOC		0x6444
303 #define     MVPP2_BM_ADDR_HIGH_PHYS_MASK	0xff
304 #define     MVPP2_BM_ADDR_HIGH_VIRT_MASK	0xff00
305 #define     MVPP2_BM_ADDR_HIGH_VIRT_SHIFT	8
306 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
307 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
308 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
309 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
310 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
311 #define MVPP21_BM_MC_RLS_REG			0x64c4
312 #define     MVPP2_BM_MC_ID_MASK			0xfff
313 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
314 #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
315 #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
316 #define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
317 #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
318 #define MVPP22_BM_MC_RLS_REG			0x64d4
319 #define MVPP22_BM_POOL_BASE_HIGH_REG		0x6310
320 #define MVPP22_BM_POOL_BASE_HIGH_MASK		0xff
321 
322 /* TX Scheduler registers */
323 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
324 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
325 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
326 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
327 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
328 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
329 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
330 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
331 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
332 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
333 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
334 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
335 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
336 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
337 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
338 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
339 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
340 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
341 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
342 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
343 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
344 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
345 
346 /* TX general registers */
347 #define MVPP2_TX_SNOOP_REG			0x8800
348 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
349 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
350 
351 /* LMS registers */
352 #define MVPP2_SRC_ADDR_MIDDLE			0x24
353 #define MVPP2_SRC_ADDR_HIGH			0x28
354 #define MVPP2_PHY_AN_CFG0_REG			0x34
355 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
356 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
357 #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
358 
359 /* Per-port registers */
360 #define MVPP2_GMAC_CTRL_0_REG			0x0
361 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
362 #define      MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
363 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
364 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
365 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
366 #define MVPP2_GMAC_CTRL_1_REG			0x4
367 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
368 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
369 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
370 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
371 #define      MVPP2_GMAC_SA_LOW_OFFS		7
372 #define MVPP2_GMAC_CTRL_2_REG			0x8
373 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
374 #define      MVPP2_GMAC_SGMII_MODE_MASK		BIT(0)
375 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
376 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
377 #define      MVPP2_GMAC_PORT_DIS_PADING_MASK	BIT(5)
378 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
379 #define      MVPP2_GMAC_CLK_125_BYPS_EN_MASK	BIT(9)
380 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
381 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
382 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
383 #define      MVPP2_GMAC_EN_PCS_AN		BIT(2)
384 #define      MVPP2_GMAC_AN_BYPASS_EN		BIT(3)
385 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
386 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
387 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
388 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
389 #define      MVPP2_GMAC_EN_FC_AN		BIT(11)
390 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
391 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
392 #define      MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG	BIT(15)
393 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
394 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
395 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
396 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
397 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
398 #define MVPP2_GMAC_CTRL_4_REG			0x90
399 #define      MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK	BIT(0)
400 #define      MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK	BIT(5)
401 #define      MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK	BIT(6)
402 #define      MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK	BIT(7)
403 
404 /*
405  * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
406  * relative to port->base.
407  */
408 
409 /* Port Mac Control0 */
410 #define MVPP22_XLG_CTRL0_REG			0x100
411 #define      MVPP22_XLG_PORT_EN			BIT(0)
412 #define      MVPP22_XLG_MAC_RESETN		BIT(1)
413 #define      MVPP22_XLG_RX_FC_EN		BIT(7)
414 #define      MVPP22_XLG_MIBCNT_DIS		BIT(13)
415 /* Port Mac Control1 */
416 #define MVPP22_XLG_CTRL1_REG			0x104
417 #define      MVPP22_XLG_MAX_RX_SIZE_OFFS	0
418 #define      MVPP22_XLG_MAX_RX_SIZE_MASK	0x1fff
419 /* Port Interrupt Mask */
420 #define MVPP22_XLG_INTERRUPT_MASK_REG		0x118
421 #define      MVPP22_XLG_INTERRUPT_LINK_CHANGE	BIT(1)
422 /* Port Mac Control3 */
423 #define MVPP22_XLG_CTRL3_REG			0x11c
424 #define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
425 #define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
426 #define      MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC	(1 << 13)
427 /* Port Mac Control4 */
428 #define MVPP22_XLG_CTRL4_REG			0x184
429 #define      MVPP22_XLG_FORWARD_802_3X_FC_EN	BIT(5)
430 #define      MVPP22_XLG_FORWARD_PFC_EN		BIT(6)
431 #define      MVPP22_XLG_MODE_DMA_1G		BIT(12)
432 #define      MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK	BIT(14)
433 
434 /* XPCS registers */
435 
436 /* Global Configuration 0 */
437 #define MVPP22_XPCS_GLOBAL_CFG_0_REG		0x0
438 #define      MVPP22_XPCS_PCSRESET		BIT(0)
439 #define      MVPP22_XPCS_PCSMODE_OFFS		3
440 #define      MVPP22_XPCS_PCSMODE_MASK		(0x3 << \
441 						 MVPP22_XPCS_PCSMODE_OFFS)
442 #define      MVPP22_XPCS_LANEACTIVE_OFFS	5
443 #define      MVPP22_XPCS_LANEACTIVE_MASK	(0x3 << \
444 						 MVPP22_XPCS_LANEACTIVE_OFFS)
445 
446 /* MPCS registers */
447 
448 #define PCS40G_COMMON_CONTROL			0x14
449 #define      FORWARD_ERROR_CORRECTION_MASK	BIT(10)
450 
451 #define PCS_CLOCK_RESET				0x14c
452 #define      TX_SD_CLK_RESET_MASK		BIT(0)
453 #define      RX_SD_CLK_RESET_MASK		BIT(1)
454 #define      MAC_CLK_RESET_MASK			BIT(2)
455 #define      CLK_DIVISION_RATIO_OFFS		4
456 #define      CLK_DIVISION_RATIO_MASK		(0x7 << CLK_DIVISION_RATIO_OFFS)
457 #define      CLK_DIV_PHASE_SET_MASK		BIT(11)
458 
459 /* System Soft Reset 1 */
460 #define GOP_SOFT_RESET_1_REG			0x108
461 #define     NETC_GOP_SOFT_RESET_OFFS		6
462 #define     NETC_GOP_SOFT_RESET_MASK		(0x1 << \
463 						 NETC_GOP_SOFT_RESET_OFFS)
464 
465 /* Ports Control 0 */
466 #define NETCOMP_PORTS_CONTROL_0_REG		0x110
467 #define     NETC_BUS_WIDTH_SELECT_OFFS		1
468 #define     NETC_BUS_WIDTH_SELECT_MASK		(0x1 << \
469 						 NETC_BUS_WIDTH_SELECT_OFFS)
470 #define     NETC_GIG_RX_DATA_SAMPLE_OFFS	29
471 #define     NETC_GIG_RX_DATA_SAMPLE_MASK	(0x1 << \
472 						 NETC_GIG_RX_DATA_SAMPLE_OFFS)
473 #define     NETC_CLK_DIV_PHASE_OFFS		31
474 #define     NETC_CLK_DIV_PHASE_MASK		(0x1 << NETC_CLK_DIV_PHASE_OFFS)
475 /* Ports Control 1 */
476 #define NETCOMP_PORTS_CONTROL_1_REG		0x114
477 #define     NETC_PORTS_ACTIVE_OFFSET(p)		(0 + p)
478 #define     NETC_PORTS_ACTIVE_MASK(p)		(0x1 << \
479 						 NETC_PORTS_ACTIVE_OFFSET(p))
480 #define     NETC_PORT_GIG_RF_RESET_OFFS(p)	(28 + p)
481 #define     NETC_PORT_GIG_RF_RESET_MASK(p)	(0x1 << \
482 						 NETC_PORT_GIG_RF_RESET_OFFS(p))
483 #define NETCOMP_CONTROL_0_REG			0x120
484 #define     NETC_GBE_PORT0_SGMII_MODE_OFFS	0
485 #define     NETC_GBE_PORT0_SGMII_MODE_MASK	(0x1 << \
486 						 NETC_GBE_PORT0_SGMII_MODE_OFFS)
487 #define     NETC_GBE_PORT1_SGMII_MODE_OFFS	1
488 #define     NETC_GBE_PORT1_SGMII_MODE_MASK	(0x1 << \
489 						 NETC_GBE_PORT1_SGMII_MODE_OFFS)
490 #define     NETC_GBE_PORT1_MII_MODE_OFFS	2
491 #define     NETC_GBE_PORT1_MII_MODE_MASK	(0x1 << \
492 						 NETC_GBE_PORT1_MII_MODE_OFFS)
493 
494 #define MVPP22_SMI_MISC_CFG_REG			(MVPP22_SMI + 0x04)
495 #define      MVPP22_SMI_POLLING_EN		BIT(10)
496 
497 #define MVPP22_SMI_PHY_ADDR_REG(port)		(MVPP22_SMI + 0x04 + \
498 						 (0x4 * (port)))
499 
500 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
501 
502 /* Descriptor ring Macros */
503 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
504 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
505 
506 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
507 #define MVPP21_SMI				0x0054
508 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
509 #define MVPP22_SMI				0x1200
510 #define     MVPP2_PHY_REG_MASK			0x1f
511 /* SMI register fields */
512 #define     MVPP2_SMI_DATA_OFFS			0	/* Data */
513 #define     MVPP2_SMI_DATA_MASK			(0xffff << MVPP2_SMI_DATA_OFFS)
514 #define     MVPP2_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
515 #define     MVPP2_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
516 #define     MVPP2_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
517 #define     MVPP2_SMI_OPCODE_READ		(1 << MVPP2_SMI_OPCODE_OFFS)
518 #define     MVPP2_SMI_READ_VALID		(1 << 27)	/* Read Valid */
519 #define     MVPP2_SMI_BUSY			(1 << 28)	/* Busy */
520 
521 #define     MVPP2_PHY_ADDR_MASK			0x1f
522 #define     MVPP2_PHY_REG_MASK			0x1f
523 
524 /* Additional PPv2.2 offsets */
525 #define MVPP22_MPCS				0x007000
526 #define MVPP22_XPCS				0x007400
527 #define MVPP22_PORT_BASE			0x007e00
528 #define MVPP22_PORT_OFFSET			0x001000
529 #define MVPP22_RFU1				0x318000
530 
531 /* Maximum number of ports */
532 #define MVPP22_GOP_MAC_NUM			4
533 
534 /* Sets the field located at the specified in data */
535 #define MVPP2_RGMII_TX_FIFO_MIN_TH		0x41
536 #define MVPP2_SGMII_TX_FIFO_MIN_TH		0x5
537 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH		0xb
538 
539 /* Net Complex */
540 enum mv_netc_topology {
541 	MV_NETC_GE_MAC2_SGMII		=	BIT(0),
542 	MV_NETC_GE_MAC3_SGMII		=	BIT(1),
543 	MV_NETC_GE_MAC3_RGMII		=	BIT(2),
544 };
545 
546 enum mv_netc_phase {
547 	MV_NETC_FIRST_PHASE,
548 	MV_NETC_SECOND_PHASE,
549 };
550 
551 enum mv_netc_sgmii_xmi_mode {
552 	MV_NETC_GBE_SGMII,
553 	MV_NETC_GBE_XMII,
554 };
555 
556 enum mv_netc_mii_mode {
557 	MV_NETC_GBE_RGMII,
558 	MV_NETC_GBE_MII,
559 };
560 
561 enum mv_netc_lanes {
562 	MV_NETC_LANE_23,
563 	MV_NETC_LANE_45,
564 };
565 
566 /* Various constants */
567 
568 /* Coalescing */
569 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
570 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
571 #define MVPP2_RX_COAL_PKTS		32
572 #define MVPP2_RX_COAL_USEC		100
573 
574 /* The two bytes Marvell header. Either contains a special value used
575  * by Marvell switches when a specific hardware mode is enabled (not
576  * supported by this driver) or is filled automatically by zeroes on
577  * the RX side. Those two bytes being at the front of the Ethernet
578  * header, they allow to have the IP header aligned on a 4 bytes
579  * boundary automatically: the hardware skips those two bytes on its
580  * own.
581  */
582 #define MVPP2_MH_SIZE			2
583 #define MVPP2_ETH_TYPE_LEN		2
584 #define MVPP2_PPPOE_HDR_SIZE		8
585 #define MVPP2_VLAN_TAG_LEN		4
586 
587 /* Lbtd 802.3 type */
588 #define MVPP2_IP_LBDT_TYPE		0xfffa
589 
590 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
591 #define MVPP2_TX_CSUM_MAX_SIZE		9800
592 
593 /* Timeout constants */
594 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
595 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
596 
597 #define MVPP2_TX_MTU_MAX		0x7ffff
598 
599 /* Maximum number of T-CONTs of PON port */
600 #define MVPP2_MAX_TCONT			16
601 
602 /* Maximum number of supported ports */
603 #define MVPP2_MAX_PORTS			4
604 
605 /* Maximum number of TXQs used by single port */
606 #define MVPP2_MAX_TXQ			8
607 
608 /* Default number of TXQs in use */
609 #define MVPP2_DEFAULT_TXQ		1
610 
611 /* Dfault number of RXQs in use */
612 #define MVPP2_DEFAULT_RXQ		1
613 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
614 
615 /* Max number of Rx descriptors */
616 #define MVPP2_MAX_RXD			16
617 
618 /* Max number of Tx descriptors */
619 #define MVPP2_MAX_TXD			16
620 
621 /* Amount of Tx descriptors that can be reserved at once by CPU */
622 #define MVPP2_CPU_DESC_CHUNK		16
623 
624 /* Max number of Tx descriptors in each aggregated queue */
625 #define MVPP2_AGGR_TXQ_SIZE		16
626 
627 /* Descriptor aligned size */
628 #define MVPP2_DESC_ALIGNED_SIZE		32
629 
630 /* Descriptor alignment mask */
631 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
632 
633 /* RX FIFO constants */
634 #define MVPP21_RX_FIFO_PORT_DATA_SIZE		0x2000
635 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE		0x80
636 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE	0x8000
637 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE	0x2000
638 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE	0x1000
639 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE	0x200
640 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE	0x80
641 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE	0x40
642 #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
643 
644 /* TX general registers */
645 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port)	(0x8860 + ((eth_tx_port) << 2))
646 #define MVPP22_TX_FIFO_SIZE_MASK		0xf
647 
648 /* TX FIFO constants */
649 #define MVPP2_TX_FIFO_DATA_SIZE_10KB		0xa
650 #define MVPP2_TX_FIFO_DATA_SIZE_3KB		0x3
651 
652 /* RX buffer constants */
653 #define MVPP2_SKB_SHINFO_SIZE \
654 	0
655 
656 #define MVPP2_RX_PKT_SIZE(mtu) \
657 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
658 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
659 
660 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
661 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
662 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
663 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
664 
665 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
666 
667 /* IPv6 max L3 address size */
668 #define MVPP2_MAX_L3_ADDR_SIZE		16
669 
670 /* Port flags */
671 #define MVPP2_F_LOOPBACK		BIT(0)
672 
673 /* Marvell tag types */
674 enum mvpp2_tag_type {
675 	MVPP2_TAG_TYPE_NONE = 0,
676 	MVPP2_TAG_TYPE_MH   = 1,
677 	MVPP2_TAG_TYPE_DSA  = 2,
678 	MVPP2_TAG_TYPE_EDSA = 3,
679 	MVPP2_TAG_TYPE_VLAN = 4,
680 	MVPP2_TAG_TYPE_LAST = 5
681 };
682 
683 /* Parser constants */
684 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
685 #define MVPP2_PRS_TCAM_WORDS		6
686 #define MVPP2_PRS_SRAM_WORDS		4
687 #define MVPP2_PRS_FLOW_ID_SIZE		64
688 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
689 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
690 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
691 #define MVPP2_PRS_IPV4_HEAD		0x40
692 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
693 #define MVPP2_PRS_IPV4_MC		0xe0
694 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
695 #define MVPP2_PRS_IPV4_BC_MASK		0xff
696 #define MVPP2_PRS_IPV4_IHL		0x5
697 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
698 #define MVPP2_PRS_IPV6_MC		0xff
699 #define MVPP2_PRS_IPV6_MC_MASK		0xff
700 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
701 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
702 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
703 #define MVPP2_PRS_DBL_VLANS_MAX		100
704 
705 /* Tcam structure:
706  * - lookup ID - 4 bits
707  * - port ID - 1 byte
708  * - additional information - 1 byte
709  * - header data - 8 bytes
710  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
711  */
712 #define MVPP2_PRS_AI_BITS			8
713 #define MVPP2_PRS_PORT_MASK			0xff
714 #define MVPP2_PRS_LU_MASK			0xf
715 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
716 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
717 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
718 					      (((offs) * 2) - ((offs) % 2)  + 2)
719 #define MVPP2_PRS_TCAM_AI_BYTE			16
720 #define MVPP2_PRS_TCAM_PORT_BYTE		17
721 #define MVPP2_PRS_TCAM_LU_BYTE			20
722 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
723 #define MVPP2_PRS_TCAM_INV_WORD			5
724 /* Tcam entries ID */
725 #define MVPP2_PE_DROP_ALL		0
726 #define MVPP2_PE_FIRST_FREE_TID		1
727 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
728 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
729 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
730 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
731 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
732 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
733 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
734 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
735 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
736 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
737 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
738 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
739 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
740 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
741 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
742 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
743 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
744 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
745 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
746 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
747 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
748 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
749 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
750 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
751 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
752 
753 /* Sram structure
754  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
755  */
756 #define MVPP2_PRS_SRAM_RI_OFFS			0
757 #define MVPP2_PRS_SRAM_RI_WORD			0
758 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
759 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
760 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
761 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
762 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
763 #define MVPP2_PRS_SRAM_UDF_OFFS			73
764 #define MVPP2_PRS_SRAM_UDF_BITS			8
765 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
766 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
767 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
768 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
769 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
770 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
772 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
773 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
774 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
775 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
778 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
779 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
780 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
781 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
782 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
783 #define MVPP2_PRS_SRAM_AI_OFFS			90
784 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
785 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
786 #define MVPP2_PRS_SRAM_AI_MASK			0xff
787 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
788 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
789 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
790 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
791 
792 /* Sram result info bits assignment */
793 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
794 #define MVPP2_PRS_RI_DSA_MASK			0x2
795 #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
796 #define MVPP2_PRS_RI_VLAN_NONE			0x0
797 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
798 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
799 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
800 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
801 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
802 #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
803 #define MVPP2_PRS_RI_L2_UCAST			0x0
804 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
805 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
806 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
807 #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
808 #define MVPP2_PRS_RI_L3_UN			0x0
809 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
810 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
811 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
812 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
813 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
814 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
815 #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
816 #define MVPP2_PRS_RI_L3_UCAST			0x0
817 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
818 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
819 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
820 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
821 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
822 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
823 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
824 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
825 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
826 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
827 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
828 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
829 
830 /* Sram additional info bits assignment */
831 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
832 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
833 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
834 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
835 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
836 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
837 #define MVPP2_PRS_SINGLE_VLAN_AI		0
838 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
839 
840 /* DSA/EDSA type */
841 #define MVPP2_PRS_TAGGED		true
842 #define MVPP2_PRS_UNTAGGED		false
843 #define MVPP2_PRS_EDSA			true
844 #define MVPP2_PRS_DSA			false
845 
846 /* MAC entries, shadow udf */
847 enum mvpp2_prs_udf {
848 	MVPP2_PRS_UDF_MAC_DEF,
849 	MVPP2_PRS_UDF_MAC_RANGE,
850 	MVPP2_PRS_UDF_L2_DEF,
851 	MVPP2_PRS_UDF_L2_DEF_COPY,
852 	MVPP2_PRS_UDF_L2_USER,
853 };
854 
855 /* Lookup ID */
856 enum mvpp2_prs_lookup {
857 	MVPP2_PRS_LU_MH,
858 	MVPP2_PRS_LU_MAC,
859 	MVPP2_PRS_LU_DSA,
860 	MVPP2_PRS_LU_VLAN,
861 	MVPP2_PRS_LU_L2,
862 	MVPP2_PRS_LU_PPPOE,
863 	MVPP2_PRS_LU_IP4,
864 	MVPP2_PRS_LU_IP6,
865 	MVPP2_PRS_LU_FLOWS,
866 	MVPP2_PRS_LU_LAST,
867 };
868 
869 /* L3 cast enum */
870 enum mvpp2_prs_l3_cast {
871 	MVPP2_PRS_L3_UNI_CAST,
872 	MVPP2_PRS_L3_MULTI_CAST,
873 	MVPP2_PRS_L3_BROAD_CAST
874 };
875 
876 /* Classifier constants */
877 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
878 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
879 #define MVPP2_CLS_LKP_TBL_SIZE		64
880 
881 /* BM constants */
882 #define MVPP2_BM_POOLS_NUM		1
883 #define MVPP2_BM_LONG_BUF_NUM		16
884 #define MVPP2_BM_SHORT_BUF_NUM		16
885 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
886 #define MVPP2_BM_POOL_PTR_ALIGN		128
887 #define MVPP2_BM_SWF_LONG_POOL(port)	0
888 
889 /* BM cookie (32 bits) definition */
890 #define MVPP2_BM_COOKIE_POOL_OFFS	8
891 #define MVPP2_BM_COOKIE_CPU_OFFS	24
892 
893 /* BM short pool packet size
894  * These value assure that for SWF the total number
895  * of bytes allocated for each buffer will be 512
896  */
897 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
898 
899 enum mvpp2_bm_type {
900 	MVPP2_BM_FREE,
901 	MVPP2_BM_SWF_LONG,
902 	MVPP2_BM_SWF_SHORT
903 };
904 
905 /* Definitions */
906 
907 /* Shared Packet Processor resources */
908 struct mvpp2 {
909 	/* Shared registers' base addresses */
910 	void __iomem *base;
911 	void __iomem *lms_base;
912 	void __iomem *iface_base;
913 	void __iomem *mdio_base;
914 
915 	void __iomem *mpcs_base;
916 	void __iomem *xpcs_base;
917 	void __iomem *rfu1_base;
918 
919 	u32 netc_config;
920 
921 	/* List of pointers to port structures */
922 	struct mvpp2_port **port_list;
923 
924 	/* Aggregated TXQs */
925 	struct mvpp2_tx_queue *aggr_txqs;
926 
927 	/* BM pools */
928 	struct mvpp2_bm_pool *bm_pools;
929 
930 	/* PRS shadow table */
931 	struct mvpp2_prs_shadow *prs_shadow;
932 	/* PRS auxiliary table for double vlan entries control */
933 	bool *prs_double_vlans;
934 
935 	/* Tclk value */
936 	u32 tclk;
937 
938 	/* HW version */
939 	enum { MVPP21, MVPP22 } hw_version;
940 
941 	/* Maximum number of RXQs per port */
942 	unsigned int max_port_rxqs;
943 
944 	struct mii_dev *bus;
945 
946 	int probe_done;
947 	u8 num_ports;
948 };
949 
950 struct mvpp2_pcpu_stats {
951 	u64	rx_packets;
952 	u64	rx_bytes;
953 	u64	tx_packets;
954 	u64	tx_bytes;
955 };
956 
957 struct mvpp2_port {
958 	u8 id;
959 
960 	/* Index of the port from the "group of ports" complex point
961 	 * of view
962 	 */
963 	int gop_id;
964 
965 	int irq;
966 
967 	struct mvpp2 *priv;
968 
969 	/* Per-port registers' base address */
970 	void __iomem *base;
971 
972 	struct mvpp2_rx_queue **rxqs;
973 	struct mvpp2_tx_queue **txqs;
974 
975 	int pkt_size;
976 
977 	u32 pending_cause_rx;
978 
979 	/* Per-CPU port control */
980 	struct mvpp2_port_pcpu __percpu *pcpu;
981 
982 	/* Flags */
983 	unsigned long flags;
984 
985 	u16 tx_ring_size;
986 	u16 rx_ring_size;
987 	struct mvpp2_pcpu_stats __percpu *stats;
988 
989 	struct phy_device *phy_dev;
990 	phy_interface_t phy_interface;
991 	int phy_node;
992 	int phyaddr;
993 #ifdef CONFIG_DM_GPIO
994 	struct gpio_desc phy_reset_gpio;
995 	struct gpio_desc phy_tx_disable_gpio;
996 #endif
997 	int init;
998 	unsigned int link;
999 	unsigned int duplex;
1000 	unsigned int speed;
1001 
1002 	unsigned int phy_speed;		/* SGMII 1Gbps vs 2.5Gbps */
1003 
1004 	struct mvpp2_bm_pool *pool_long;
1005 	struct mvpp2_bm_pool *pool_short;
1006 
1007 	/* Index of first port's physical RXQ */
1008 	u8 first_rxq;
1009 
1010 	u8 dev_addr[ETH_ALEN];
1011 };
1012 
1013 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1014  * layout of the transmit and reception DMA descriptors, and their
1015  * layout is therefore defined by the hardware design
1016  */
1017 
1018 #define MVPP2_TXD_L3_OFF_SHIFT		0
1019 #define MVPP2_TXD_IP_HLEN_SHIFT		8
1020 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
1021 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
1022 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
1023 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
1024 #define MVPP2_TXD_L4_UDP		BIT(24)
1025 #define MVPP2_TXD_L3_IP6		BIT(26)
1026 #define MVPP2_TXD_L_DESC		BIT(28)
1027 #define MVPP2_TXD_F_DESC		BIT(29)
1028 
1029 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
1030 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
1031 #define MVPP2_RXD_ERR_CRC		0x0
1032 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
1033 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
1034 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
1035 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
1036 #define MVPP2_RXD_HWF_SYNC		BIT(21)
1037 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
1038 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
1039 #define MVPP2_RXD_L4_TCP		BIT(25)
1040 #define MVPP2_RXD_L4_UDP		BIT(26)
1041 #define MVPP2_RXD_L3_IP4		BIT(28)
1042 #define MVPP2_RXD_L3_IP6		BIT(30)
1043 #define MVPP2_RXD_BUF_HDR		BIT(31)
1044 
1045 /* HW TX descriptor for PPv2.1 */
1046 struct mvpp21_tx_desc {
1047 	u32 command;		/* Options used by HW for packet transmitting.*/
1048 	u8  packet_offset;	/* the offset from the buffer beginning	*/
1049 	u8  phys_txq;		/* destination queue ID			*/
1050 	u16 data_size;		/* data size of transmitted packet in bytes */
1051 	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
1052 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
1053 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
1054 	u32 reserved2;		/* reserved (for future use)		*/
1055 };
1056 
1057 /* HW RX descriptor for PPv2.1 */
1058 struct mvpp21_rx_desc {
1059 	u32 status;		/* info about received packet		*/
1060 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
1061 	u16 data_size;		/* size of received packet in bytes	*/
1062 	u32 buf_dma_addr;	/* physical address of the buffer	*/
1063 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
1064 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
1065 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
1066 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
1067 	u8  reserved5;
1068 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
1069 	u32 reserved7;		/* flow_id (for future use, PnC) */
1070 	u32 reserved8;
1071 };
1072 
1073 /* HW TX descriptor for PPv2.2 */
1074 struct mvpp22_tx_desc {
1075 	u32 command;
1076 	u8  packet_offset;
1077 	u8  phys_txq;
1078 	u16 data_size;
1079 	u64 reserved1;
1080 	u64 buf_dma_addr_ptp;
1081 	u64 buf_cookie_misc;
1082 };
1083 
1084 /* HW RX descriptor for PPv2.2 */
1085 struct mvpp22_rx_desc {
1086 	u32 status;
1087 	u16 reserved1;
1088 	u16 data_size;
1089 	u32 reserved2;
1090 	u32 reserved3;
1091 	u64 buf_dma_addr_key_hash;
1092 	u64 buf_cookie_misc;
1093 };
1094 
1095 /* Opaque type used by the driver to manipulate the HW TX and RX
1096  * descriptors
1097  */
1098 struct mvpp2_tx_desc {
1099 	union {
1100 		struct mvpp21_tx_desc pp21;
1101 		struct mvpp22_tx_desc pp22;
1102 	};
1103 };
1104 
1105 struct mvpp2_rx_desc {
1106 	union {
1107 		struct mvpp21_rx_desc pp21;
1108 		struct mvpp22_rx_desc pp22;
1109 	};
1110 };
1111 
1112 /* Per-CPU Tx queue control */
1113 struct mvpp2_txq_pcpu {
1114 	int cpu;
1115 
1116 	/* Number of Tx DMA descriptors in the descriptor ring */
1117 	int size;
1118 
1119 	/* Number of currently used Tx DMA descriptor in the
1120 	 * descriptor ring
1121 	 */
1122 	int count;
1123 
1124 	/* Number of Tx DMA descriptors reserved for each CPU */
1125 	int reserved_num;
1126 
1127 	/* Index of last TX DMA descriptor that was inserted */
1128 	int txq_put_index;
1129 
1130 	/* Index of the TX DMA descriptor to be cleaned up */
1131 	int txq_get_index;
1132 };
1133 
1134 struct mvpp2_tx_queue {
1135 	/* Physical number of this Tx queue */
1136 	u8 id;
1137 
1138 	/* Logical number of this Tx queue */
1139 	u8 log_id;
1140 
1141 	/* Number of Tx DMA descriptors in the descriptor ring */
1142 	int size;
1143 
1144 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
1145 	int count;
1146 
1147 	/* Per-CPU control of physical Tx queues */
1148 	struct mvpp2_txq_pcpu __percpu *pcpu;
1149 
1150 	u32 done_pkts_coal;
1151 
1152 	/* Virtual address of thex Tx DMA descriptors array */
1153 	struct mvpp2_tx_desc *descs;
1154 
1155 	/* DMA address of the Tx DMA descriptors array */
1156 	dma_addr_t descs_dma;
1157 
1158 	/* Index of the last Tx DMA descriptor */
1159 	int last_desc;
1160 
1161 	/* Index of the next Tx DMA descriptor to process */
1162 	int next_desc_to_proc;
1163 };
1164 
1165 struct mvpp2_rx_queue {
1166 	/* RX queue number, in the range 0-31 for physical RXQs */
1167 	u8 id;
1168 
1169 	/* Num of rx descriptors in the rx descriptor ring */
1170 	int size;
1171 
1172 	u32 pkts_coal;
1173 	u32 time_coal;
1174 
1175 	/* Virtual address of the RX DMA descriptors array */
1176 	struct mvpp2_rx_desc *descs;
1177 
1178 	/* DMA address of the RX DMA descriptors array */
1179 	dma_addr_t descs_dma;
1180 
1181 	/* Index of the last RX DMA descriptor */
1182 	int last_desc;
1183 
1184 	/* Index of the next RX DMA descriptor to process */
1185 	int next_desc_to_proc;
1186 
1187 	/* ID of port to which physical RXQ is mapped */
1188 	int port;
1189 
1190 	/* Port's logic RXQ number to which physical RXQ is mapped */
1191 	int logic_rxq;
1192 };
1193 
1194 union mvpp2_prs_tcam_entry {
1195 	u32 word[MVPP2_PRS_TCAM_WORDS];
1196 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
1197 };
1198 
1199 union mvpp2_prs_sram_entry {
1200 	u32 word[MVPP2_PRS_SRAM_WORDS];
1201 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
1202 };
1203 
1204 struct mvpp2_prs_entry {
1205 	u32 index;
1206 	union mvpp2_prs_tcam_entry tcam;
1207 	union mvpp2_prs_sram_entry sram;
1208 };
1209 
1210 struct mvpp2_prs_shadow {
1211 	bool valid;
1212 	bool finish;
1213 
1214 	/* Lookup ID */
1215 	int lu;
1216 
1217 	/* User defined offset */
1218 	int udf;
1219 
1220 	/* Result info */
1221 	u32 ri;
1222 	u32 ri_mask;
1223 };
1224 
1225 struct mvpp2_cls_flow_entry {
1226 	u32 index;
1227 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1228 };
1229 
1230 struct mvpp2_cls_lookup_entry {
1231 	u32 lkpid;
1232 	u32 way;
1233 	u32 data;
1234 };
1235 
1236 struct mvpp2_bm_pool {
1237 	/* Pool number in the range 0-7 */
1238 	int id;
1239 	enum mvpp2_bm_type type;
1240 
1241 	/* Buffer Pointers Pool External (BPPE) size */
1242 	int size;
1243 	/* Number of buffers for this pool */
1244 	int buf_num;
1245 	/* Pool buffer size */
1246 	int buf_size;
1247 	/* Packet size */
1248 	int pkt_size;
1249 
1250 	/* BPPE virtual base address */
1251 	unsigned long *virt_addr;
1252 	/* BPPE DMA base address */
1253 	dma_addr_t dma_addr;
1254 
1255 	/* Ports using BM pool */
1256 	u32 port_map;
1257 };
1258 
1259 /* Static declaractions */
1260 
1261 /* Number of RXQs used by single port */
1262 static int rxq_number = MVPP2_DEFAULT_RXQ;
1263 /* Number of TXQs used by single port */
1264 static int txq_number = MVPP2_DEFAULT_TXQ;
1265 
1266 static int base_id;
1267 
1268 #define MVPP2_DRIVER_NAME "mvpp2"
1269 #define MVPP2_DRIVER_VERSION "1.0"
1270 
1271 /*
1272  * U-Boot internal data, mostly uncached buffers for descriptors and data
1273  */
1274 struct buffer_location {
1275 	struct mvpp2_tx_desc *aggr_tx_descs;
1276 	struct mvpp2_tx_desc *tx_descs;
1277 	struct mvpp2_rx_desc *rx_descs;
1278 	unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1279 	unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1280 	int first_rxq;
1281 };
1282 
1283 /*
1284  * All 4 interfaces use the same global buffer, since only one interface
1285  * can be enabled at once
1286  */
1287 static struct buffer_location buffer_loc;
1288 
1289 /*
1290  * Page table entries are set to 1MB, or multiples of 1MB
1291  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1292  */
1293 #define BD_SPACE	(1 << 20)
1294 
1295 /* Utility/helper methods */
1296 
1297 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1298 {
1299 	writel(data, priv->base + offset);
1300 }
1301 
1302 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1303 {
1304 	return readl(priv->base + offset);
1305 }
1306 
1307 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1308 				      struct mvpp2_tx_desc *tx_desc,
1309 				      dma_addr_t dma_addr)
1310 {
1311 	if (port->priv->hw_version == MVPP21) {
1312 		tx_desc->pp21.buf_dma_addr = dma_addr;
1313 	} else {
1314 		u64 val = (u64)dma_addr;
1315 
1316 		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1317 		tx_desc->pp22.buf_dma_addr_ptp |= val;
1318 	}
1319 }
1320 
1321 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1322 				  struct mvpp2_tx_desc *tx_desc,
1323 				  size_t size)
1324 {
1325 	if (port->priv->hw_version == MVPP21)
1326 		tx_desc->pp21.data_size = size;
1327 	else
1328 		tx_desc->pp22.data_size = size;
1329 }
1330 
1331 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1332 				 struct mvpp2_tx_desc *tx_desc,
1333 				 unsigned int txq)
1334 {
1335 	if (port->priv->hw_version == MVPP21)
1336 		tx_desc->pp21.phys_txq = txq;
1337 	else
1338 		tx_desc->pp22.phys_txq = txq;
1339 }
1340 
1341 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1342 				 struct mvpp2_tx_desc *tx_desc,
1343 				 unsigned int command)
1344 {
1345 	if (port->priv->hw_version == MVPP21)
1346 		tx_desc->pp21.command = command;
1347 	else
1348 		tx_desc->pp22.command = command;
1349 }
1350 
1351 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1352 				    struct mvpp2_tx_desc *tx_desc,
1353 				    unsigned int offset)
1354 {
1355 	if (port->priv->hw_version == MVPP21)
1356 		tx_desc->pp21.packet_offset = offset;
1357 	else
1358 		tx_desc->pp22.packet_offset = offset;
1359 }
1360 
1361 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1362 					    struct mvpp2_rx_desc *rx_desc)
1363 {
1364 	if (port->priv->hw_version == MVPP21)
1365 		return rx_desc->pp21.buf_dma_addr;
1366 	else
1367 		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1368 }
1369 
1370 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1371 					     struct mvpp2_rx_desc *rx_desc)
1372 {
1373 	if (port->priv->hw_version == MVPP21)
1374 		return rx_desc->pp21.buf_cookie;
1375 	else
1376 		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1377 }
1378 
1379 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1380 				    struct mvpp2_rx_desc *rx_desc)
1381 {
1382 	if (port->priv->hw_version == MVPP21)
1383 		return rx_desc->pp21.data_size;
1384 	else
1385 		return rx_desc->pp22.data_size;
1386 }
1387 
1388 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1389 				   struct mvpp2_rx_desc *rx_desc)
1390 {
1391 	if (port->priv->hw_version == MVPP21)
1392 		return rx_desc->pp21.status;
1393 	else
1394 		return rx_desc->pp22.status;
1395 }
1396 
1397 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1398 {
1399 	txq_pcpu->txq_get_index++;
1400 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1401 		txq_pcpu->txq_get_index = 0;
1402 }
1403 
1404 /* Get number of physical egress port */
1405 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1406 {
1407 	return MVPP2_MAX_TCONT + port->id;
1408 }
1409 
1410 /* Get number of physical TXQ */
1411 static inline int mvpp2_txq_phys(int port, int txq)
1412 {
1413 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1414 }
1415 
1416 /* Parser configuration routines */
1417 
1418 /* Update parser tcam and sram hw entries */
1419 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1420 {
1421 	int i;
1422 
1423 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1424 		return -EINVAL;
1425 
1426 	/* Clear entry invalidation bit */
1427 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1428 
1429 	/* Write tcam index - indirect access */
1430 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1431 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1432 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1433 
1434 	/* Write sram index - indirect access */
1435 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1436 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1437 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1438 
1439 	return 0;
1440 }
1441 
1442 /* Read tcam entry from hw */
1443 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1444 {
1445 	int i;
1446 
1447 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1448 		return -EINVAL;
1449 
1450 	/* Write tcam index - indirect access */
1451 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1452 
1453 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1454 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1455 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1456 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1457 
1458 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1459 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1460 
1461 	/* Write sram index - indirect access */
1462 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1463 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1464 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1465 
1466 	return 0;
1467 }
1468 
1469 /* Invalidate tcam hw entry */
1470 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1471 {
1472 	/* Write index - indirect access */
1473 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1474 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1475 		    MVPP2_PRS_TCAM_INV_MASK);
1476 }
1477 
1478 /* Enable shadow table entry and set its lookup ID */
1479 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1480 {
1481 	priv->prs_shadow[index].valid = true;
1482 	priv->prs_shadow[index].lu = lu;
1483 }
1484 
1485 /* Update ri fields in shadow table entry */
1486 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1487 				    unsigned int ri, unsigned int ri_mask)
1488 {
1489 	priv->prs_shadow[index].ri_mask = ri_mask;
1490 	priv->prs_shadow[index].ri = ri;
1491 }
1492 
1493 /* Update lookup field in tcam sw entry */
1494 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1495 {
1496 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1497 
1498 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1499 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1500 }
1501 
1502 /* Update mask for single port in tcam sw entry */
1503 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1504 				    unsigned int port, bool add)
1505 {
1506 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1507 
1508 	if (add)
1509 		pe->tcam.byte[enable_off] &= ~(1 << port);
1510 	else
1511 		pe->tcam.byte[enable_off] |= 1 << port;
1512 }
1513 
1514 /* Update port map in tcam sw entry */
1515 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1516 					unsigned int ports)
1517 {
1518 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1519 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1520 
1521 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1522 	pe->tcam.byte[enable_off] &= ~port_mask;
1523 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1524 }
1525 
1526 /* Obtain port map from tcam sw entry */
1527 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1528 {
1529 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1530 
1531 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1532 }
1533 
1534 /* Set byte of data and its enable bits in tcam sw entry */
1535 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1536 					 unsigned int offs, unsigned char byte,
1537 					 unsigned char enable)
1538 {
1539 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1540 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1541 }
1542 
1543 /* Get byte of data and its enable bits from tcam sw entry */
1544 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1545 					 unsigned int offs, unsigned char *byte,
1546 					 unsigned char *enable)
1547 {
1548 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1549 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1550 }
1551 
1552 /* Set ethertype in tcam sw entry */
1553 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1554 				  unsigned short ethertype)
1555 {
1556 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1557 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1558 }
1559 
1560 /* Set bits in sram sw entry */
1561 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1562 				    int val)
1563 {
1564 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1565 }
1566 
1567 /* Clear bits in sram sw entry */
1568 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1569 				      int val)
1570 {
1571 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1572 }
1573 
1574 /* Update ri bits in sram sw entry */
1575 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1576 				     unsigned int bits, unsigned int mask)
1577 {
1578 	unsigned int i;
1579 
1580 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1581 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1582 
1583 		if (!(mask & BIT(i)))
1584 			continue;
1585 
1586 		if (bits & BIT(i))
1587 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1588 		else
1589 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1590 
1591 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1592 	}
1593 }
1594 
1595 /* Update ai bits in sram sw entry */
1596 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1597 				     unsigned int bits, unsigned int mask)
1598 {
1599 	unsigned int i;
1600 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1601 
1602 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1603 
1604 		if (!(mask & BIT(i)))
1605 			continue;
1606 
1607 		if (bits & BIT(i))
1608 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1609 		else
1610 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1611 
1612 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1613 	}
1614 }
1615 
1616 /* Read ai bits from sram sw entry */
1617 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1618 {
1619 	u8 bits;
1620 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1621 	int ai_en_off = ai_off + 1;
1622 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1623 
1624 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1625 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1626 
1627 	return bits;
1628 }
1629 
1630 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1631  * lookup interation
1632  */
1633 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1634 				       unsigned int lu)
1635 {
1636 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1637 
1638 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1639 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1640 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1641 }
1642 
1643 /* In the sram sw entry set sign and value of the next lookup offset
1644  * and the offset value generated to the classifier
1645  */
1646 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1647 				     unsigned int op)
1648 {
1649 	/* Set sign */
1650 	if (shift < 0) {
1651 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1652 		shift = 0 - shift;
1653 	} else {
1654 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1655 	}
1656 
1657 	/* Set value */
1658 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1659 							   (unsigned char)shift;
1660 
1661 	/* Reset and set operation */
1662 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1663 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1664 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1665 
1666 	/* Set base offset as current */
1667 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1668 }
1669 
1670 /* In the sram sw entry set sign and value of the user defined offset
1671  * generated to the classifier
1672  */
1673 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1674 				      unsigned int type, int offset,
1675 				      unsigned int op)
1676 {
1677 	/* Set sign */
1678 	if (offset < 0) {
1679 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1680 		offset = 0 - offset;
1681 	} else {
1682 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1683 	}
1684 
1685 	/* Set value */
1686 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1687 				  MVPP2_PRS_SRAM_UDF_MASK);
1688 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1689 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1690 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1691 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1692 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1693 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1694 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1695 
1696 	/* Set offset type */
1697 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1698 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1699 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1700 
1701 	/* Set offset operation */
1702 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1703 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1704 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1705 
1706 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1707 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1708 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1709 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1710 
1711 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1712 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1713 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1714 
1715 	/* Set base offset as current */
1716 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1717 }
1718 
1719 /* Find parser flow entry */
1720 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1721 {
1722 	struct mvpp2_prs_entry *pe;
1723 	int tid;
1724 
1725 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1726 	if (!pe)
1727 		return NULL;
1728 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1729 
1730 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1731 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1732 		u8 bits;
1733 
1734 		if (!priv->prs_shadow[tid].valid ||
1735 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1736 			continue;
1737 
1738 		pe->index = tid;
1739 		mvpp2_prs_hw_read(priv, pe);
1740 		bits = mvpp2_prs_sram_ai_get(pe);
1741 
1742 		/* Sram store classification lookup ID in AI bits [5:0] */
1743 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1744 			return pe;
1745 	}
1746 	kfree(pe);
1747 
1748 	return NULL;
1749 }
1750 
1751 /* Return first free tcam index, seeking from start to end */
1752 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1753 				     unsigned char end)
1754 {
1755 	int tid;
1756 
1757 	if (start > end)
1758 		swap(start, end);
1759 
1760 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1761 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1762 
1763 	for (tid = start; tid <= end; tid++) {
1764 		if (!priv->prs_shadow[tid].valid)
1765 			return tid;
1766 	}
1767 
1768 	return -EINVAL;
1769 }
1770 
1771 /* Enable/disable dropping all mac da's */
1772 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1773 {
1774 	struct mvpp2_prs_entry pe;
1775 
1776 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1777 		/* Entry exist - update port only */
1778 		pe.index = MVPP2_PE_DROP_ALL;
1779 		mvpp2_prs_hw_read(priv, &pe);
1780 	} else {
1781 		/* Entry doesn't exist - create new */
1782 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1783 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1784 		pe.index = MVPP2_PE_DROP_ALL;
1785 
1786 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1787 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1788 					 MVPP2_PRS_RI_DROP_MASK);
1789 
1790 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1791 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1792 
1793 		/* Update shadow table */
1794 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1795 
1796 		/* Mask all ports */
1797 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1798 	}
1799 
1800 	/* Update port mask */
1801 	mvpp2_prs_tcam_port_set(&pe, port, add);
1802 
1803 	mvpp2_prs_hw_write(priv, &pe);
1804 }
1805 
1806 /* Set port to promiscuous mode */
1807 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1808 {
1809 	struct mvpp2_prs_entry pe;
1810 
1811 	/* Promiscuous mode - Accept unknown packets */
1812 
1813 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1814 		/* Entry exist - update port only */
1815 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1816 		mvpp2_prs_hw_read(priv, &pe);
1817 	} else {
1818 		/* Entry doesn't exist - create new */
1819 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1820 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1821 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1822 
1823 		/* Continue - set next lookup */
1824 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1825 
1826 		/* Set result info bits */
1827 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1828 					 MVPP2_PRS_RI_L2_CAST_MASK);
1829 
1830 		/* Shift to ethertype */
1831 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1832 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1833 
1834 		/* Mask all ports */
1835 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1836 
1837 		/* Update shadow table */
1838 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1839 	}
1840 
1841 	/* Update port mask */
1842 	mvpp2_prs_tcam_port_set(&pe, port, add);
1843 
1844 	mvpp2_prs_hw_write(priv, &pe);
1845 }
1846 
1847 /* Accept multicast */
1848 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1849 				    bool add)
1850 {
1851 	struct mvpp2_prs_entry pe;
1852 	unsigned char da_mc;
1853 
1854 	/* Ethernet multicast address first byte is
1855 	 * 0x01 for IPv4 and 0x33 for IPv6
1856 	 */
1857 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1858 
1859 	if (priv->prs_shadow[index].valid) {
1860 		/* Entry exist - update port only */
1861 		pe.index = index;
1862 		mvpp2_prs_hw_read(priv, &pe);
1863 	} else {
1864 		/* Entry doesn't exist - create new */
1865 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1866 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1867 		pe.index = index;
1868 
1869 		/* Continue - set next lookup */
1870 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1871 
1872 		/* Set result info bits */
1873 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1874 					 MVPP2_PRS_RI_L2_CAST_MASK);
1875 
1876 		/* Update tcam entry data first byte */
1877 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1878 
1879 		/* Shift to ethertype */
1880 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1881 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1882 
1883 		/* Mask all ports */
1884 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1885 
1886 		/* Update shadow table */
1887 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1888 	}
1889 
1890 	/* Update port mask */
1891 	mvpp2_prs_tcam_port_set(&pe, port, add);
1892 
1893 	mvpp2_prs_hw_write(priv, &pe);
1894 }
1895 
1896 /* Parser per-port initialization */
1897 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1898 				   int lu_max, int offset)
1899 {
1900 	u32 val;
1901 
1902 	/* Set lookup ID */
1903 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1904 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1905 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1906 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1907 
1908 	/* Set maximum number of loops for packet received from port */
1909 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1910 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1911 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1912 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1913 
1914 	/* Set initial offset for packet header extraction for the first
1915 	 * searching loop
1916 	 */
1917 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1918 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1919 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1920 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1921 }
1922 
1923 /* Default flow entries initialization for all ports */
1924 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1925 {
1926 	struct mvpp2_prs_entry pe;
1927 	int port;
1928 
1929 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1930 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1931 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1932 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1933 
1934 		/* Mask all ports */
1935 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1936 
1937 		/* Set flow ID*/
1938 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1939 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1940 
1941 		/* Update shadow table and hw entry */
1942 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1943 		mvpp2_prs_hw_write(priv, &pe);
1944 	}
1945 }
1946 
1947 /* Set default entry for Marvell Header field */
1948 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1949 {
1950 	struct mvpp2_prs_entry pe;
1951 
1952 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1953 
1954 	pe.index = MVPP2_PE_MH_DEFAULT;
1955 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1956 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1957 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1958 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1959 
1960 	/* Unmask all ports */
1961 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1962 
1963 	/* Update shadow table and hw entry */
1964 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1965 	mvpp2_prs_hw_write(priv, &pe);
1966 }
1967 
1968 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1969  * multicast MAC addresses
1970  */
1971 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1972 {
1973 	struct mvpp2_prs_entry pe;
1974 
1975 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1976 
1977 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1978 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1979 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1980 
1981 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1982 				 MVPP2_PRS_RI_DROP_MASK);
1983 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1984 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1985 
1986 	/* Unmask all ports */
1987 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1988 
1989 	/* Update shadow table and hw entry */
1990 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1991 	mvpp2_prs_hw_write(priv, &pe);
1992 
1993 	/* place holders only - no ports */
1994 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1995 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1996 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1997 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1998 }
1999 
2000 /* Match basic ethertypes */
2001 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2002 {
2003 	struct mvpp2_prs_entry pe;
2004 	int tid;
2005 
2006 	/* Ethertype: PPPoE */
2007 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2008 					MVPP2_PE_LAST_FREE_TID);
2009 	if (tid < 0)
2010 		return tid;
2011 
2012 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2013 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2014 	pe.index = tid;
2015 
2016 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2017 
2018 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2019 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2020 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2021 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2022 				 MVPP2_PRS_RI_PPPOE_MASK);
2023 
2024 	/* Update shadow table and hw entry */
2025 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2026 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2027 	priv->prs_shadow[pe.index].finish = false;
2028 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2029 				MVPP2_PRS_RI_PPPOE_MASK);
2030 	mvpp2_prs_hw_write(priv, &pe);
2031 
2032 	/* Ethertype: ARP */
2033 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2034 					MVPP2_PE_LAST_FREE_TID);
2035 	if (tid < 0)
2036 		return tid;
2037 
2038 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2039 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2040 	pe.index = tid;
2041 
2042 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2043 
2044 	/* Generate flow in the next iteration*/
2045 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2046 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2047 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2048 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2049 	/* Set L3 offset */
2050 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2051 				  MVPP2_ETH_TYPE_LEN,
2052 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2053 
2054 	/* Update shadow table and hw entry */
2055 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2056 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2057 	priv->prs_shadow[pe.index].finish = true;
2058 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2059 				MVPP2_PRS_RI_L3_PROTO_MASK);
2060 	mvpp2_prs_hw_write(priv, &pe);
2061 
2062 	/* Ethertype: LBTD */
2063 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2064 					MVPP2_PE_LAST_FREE_TID);
2065 	if (tid < 0)
2066 		return tid;
2067 
2068 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2069 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2070 	pe.index = tid;
2071 
2072 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2073 
2074 	/* Generate flow in the next iteration*/
2075 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2076 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2077 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2078 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2079 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2080 				 MVPP2_PRS_RI_UDF3_MASK);
2081 	/* Set L3 offset */
2082 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2083 				  MVPP2_ETH_TYPE_LEN,
2084 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2085 
2086 	/* Update shadow table and hw entry */
2087 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2088 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2089 	priv->prs_shadow[pe.index].finish = true;
2090 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2091 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2092 				MVPP2_PRS_RI_CPU_CODE_MASK |
2093 				MVPP2_PRS_RI_UDF3_MASK);
2094 	mvpp2_prs_hw_write(priv, &pe);
2095 
2096 	/* Ethertype: IPv4 without options */
2097 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2098 					MVPP2_PE_LAST_FREE_TID);
2099 	if (tid < 0)
2100 		return tid;
2101 
2102 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2103 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2104 	pe.index = tid;
2105 
2106 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2107 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2108 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2109 				     MVPP2_PRS_IPV4_HEAD_MASK |
2110 				     MVPP2_PRS_IPV4_IHL_MASK);
2111 
2112 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2113 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2114 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2115 	/* Skip eth_type + 4 bytes of IP header */
2116 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2117 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2118 	/* Set L3 offset */
2119 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2120 				  MVPP2_ETH_TYPE_LEN,
2121 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2122 
2123 	/* Update shadow table and hw entry */
2124 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2125 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2126 	priv->prs_shadow[pe.index].finish = false;
2127 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2128 				MVPP2_PRS_RI_L3_PROTO_MASK);
2129 	mvpp2_prs_hw_write(priv, &pe);
2130 
2131 	/* Ethertype: IPv4 with options */
2132 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2133 					MVPP2_PE_LAST_FREE_TID);
2134 	if (tid < 0)
2135 		return tid;
2136 
2137 	pe.index = tid;
2138 
2139 	/* Clear tcam data before updating */
2140 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2141 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2142 
2143 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2144 				     MVPP2_PRS_IPV4_HEAD,
2145 				     MVPP2_PRS_IPV4_HEAD_MASK);
2146 
2147 	/* Clear ri before updating */
2148 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2149 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2150 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2151 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2152 
2153 	/* Update shadow table and hw entry */
2154 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2155 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2156 	priv->prs_shadow[pe.index].finish = false;
2157 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2158 				MVPP2_PRS_RI_L3_PROTO_MASK);
2159 	mvpp2_prs_hw_write(priv, &pe);
2160 
2161 	/* Ethertype: IPv6 without options */
2162 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2163 					MVPP2_PE_LAST_FREE_TID);
2164 	if (tid < 0)
2165 		return tid;
2166 
2167 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2168 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2169 	pe.index = tid;
2170 
2171 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2172 
2173 	/* Skip DIP of IPV6 header */
2174 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2175 				 MVPP2_MAX_L3_ADDR_SIZE,
2176 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2177 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2178 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2179 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2180 	/* Set L3 offset */
2181 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2182 				  MVPP2_ETH_TYPE_LEN,
2183 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2184 
2185 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2186 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2187 	priv->prs_shadow[pe.index].finish = false;
2188 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2189 				MVPP2_PRS_RI_L3_PROTO_MASK);
2190 	mvpp2_prs_hw_write(priv, &pe);
2191 
2192 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2193 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2194 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2195 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2196 
2197 	/* Unmask all ports */
2198 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2199 
2200 	/* Generate flow in the next iteration*/
2201 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2202 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2203 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2204 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2205 	/* Set L3 offset even it's unknown L3 */
2206 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2207 				  MVPP2_ETH_TYPE_LEN,
2208 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2209 
2210 	/* Update shadow table and hw entry */
2211 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2212 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2213 	priv->prs_shadow[pe.index].finish = true;
2214 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2215 				MVPP2_PRS_RI_L3_PROTO_MASK);
2216 	mvpp2_prs_hw_write(priv, &pe);
2217 
2218 	return 0;
2219 }
2220 
2221 /* Parser default initialization */
2222 static int mvpp2_prs_default_init(struct udevice *dev,
2223 				  struct mvpp2 *priv)
2224 {
2225 	int err, index, i;
2226 
2227 	/* Enable tcam table */
2228 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2229 
2230 	/* Clear all tcam and sram entries */
2231 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2232 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2233 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2234 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2235 
2236 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2237 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2238 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2239 	}
2240 
2241 	/* Invalidate all tcam entries */
2242 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2243 		mvpp2_prs_hw_inv(priv, index);
2244 
2245 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2246 					sizeof(struct mvpp2_prs_shadow),
2247 					GFP_KERNEL);
2248 	if (!priv->prs_shadow)
2249 		return -ENOMEM;
2250 
2251 	/* Always start from lookup = 0 */
2252 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2253 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2254 				       MVPP2_PRS_PORT_LU_MAX, 0);
2255 
2256 	mvpp2_prs_def_flow_init(priv);
2257 
2258 	mvpp2_prs_mh_init(priv);
2259 
2260 	mvpp2_prs_mac_init(priv);
2261 
2262 	err = mvpp2_prs_etype_init(priv);
2263 	if (err)
2264 		return err;
2265 
2266 	return 0;
2267 }
2268 
2269 /* Compare MAC DA with tcam entry data */
2270 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2271 				       const u8 *da, unsigned char *mask)
2272 {
2273 	unsigned char tcam_byte, tcam_mask;
2274 	int index;
2275 
2276 	for (index = 0; index < ETH_ALEN; index++) {
2277 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2278 		if (tcam_mask != mask[index])
2279 			return false;
2280 
2281 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2282 			return false;
2283 	}
2284 
2285 	return true;
2286 }
2287 
2288 /* Find tcam entry with matched pair <MAC DA, port> */
2289 static struct mvpp2_prs_entry *
2290 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2291 			    unsigned char *mask, int udf_type)
2292 {
2293 	struct mvpp2_prs_entry *pe;
2294 	int tid;
2295 
2296 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2297 	if (!pe)
2298 		return NULL;
2299 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2300 
2301 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2302 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2303 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2304 		unsigned int entry_pmap;
2305 
2306 		if (!priv->prs_shadow[tid].valid ||
2307 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2308 		    (priv->prs_shadow[tid].udf != udf_type))
2309 			continue;
2310 
2311 		pe->index = tid;
2312 		mvpp2_prs_hw_read(priv, pe);
2313 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2314 
2315 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2316 		    entry_pmap == pmap)
2317 			return pe;
2318 	}
2319 	kfree(pe);
2320 
2321 	return NULL;
2322 }
2323 
2324 /* Update parser's mac da entry */
2325 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2326 				   const u8 *da, bool add)
2327 {
2328 	struct mvpp2_prs_entry *pe;
2329 	unsigned int pmap, len, ri;
2330 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2331 	int tid;
2332 
2333 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2334 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2335 					 MVPP2_PRS_UDF_MAC_DEF);
2336 
2337 	/* No such entry */
2338 	if (!pe) {
2339 		if (!add)
2340 			return 0;
2341 
2342 		/* Create new TCAM entry */
2343 		/* Find first range mac entry*/
2344 		for (tid = MVPP2_PE_FIRST_FREE_TID;
2345 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2346 			if (priv->prs_shadow[tid].valid &&
2347 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2348 			    (priv->prs_shadow[tid].udf ==
2349 						       MVPP2_PRS_UDF_MAC_RANGE))
2350 				break;
2351 
2352 		/* Go through the all entries from first to last */
2353 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2354 						tid - 1);
2355 		if (tid < 0)
2356 			return tid;
2357 
2358 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2359 		if (!pe)
2360 			return -1;
2361 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2362 		pe->index = tid;
2363 
2364 		/* Mask all ports */
2365 		mvpp2_prs_tcam_port_map_set(pe, 0);
2366 	}
2367 
2368 	/* Update port mask */
2369 	mvpp2_prs_tcam_port_set(pe, port, add);
2370 
2371 	/* Invalidate the entry if no ports are left enabled */
2372 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2373 	if (pmap == 0) {
2374 		if (add) {
2375 			kfree(pe);
2376 			return -1;
2377 		}
2378 		mvpp2_prs_hw_inv(priv, pe->index);
2379 		priv->prs_shadow[pe->index].valid = false;
2380 		kfree(pe);
2381 		return 0;
2382 	}
2383 
2384 	/* Continue - set next lookup */
2385 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2386 
2387 	/* Set match on DA */
2388 	len = ETH_ALEN;
2389 	while (len--)
2390 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2391 
2392 	/* Set result info bits */
2393 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2394 
2395 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2396 				 MVPP2_PRS_RI_MAC_ME_MASK);
2397 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2398 				MVPP2_PRS_RI_MAC_ME_MASK);
2399 
2400 	/* Shift to ethertype */
2401 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2402 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2403 
2404 	/* Update shadow table and hw entry */
2405 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2406 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2407 	mvpp2_prs_hw_write(priv, pe);
2408 
2409 	kfree(pe);
2410 
2411 	return 0;
2412 }
2413 
2414 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2415 {
2416 	int err;
2417 
2418 	/* Remove old parser entry */
2419 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2420 				      false);
2421 	if (err)
2422 		return err;
2423 
2424 	/* Add new parser entry */
2425 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2426 	if (err)
2427 		return err;
2428 
2429 	/* Set addr in the device */
2430 	memcpy(port->dev_addr, da, ETH_ALEN);
2431 
2432 	return 0;
2433 }
2434 
2435 /* Set prs flow for the port */
2436 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2437 {
2438 	struct mvpp2_prs_entry *pe;
2439 	int tid;
2440 
2441 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2442 
2443 	/* Such entry not exist */
2444 	if (!pe) {
2445 		/* Go through the all entires from last to first */
2446 		tid = mvpp2_prs_tcam_first_free(port->priv,
2447 						MVPP2_PE_LAST_FREE_TID,
2448 					       MVPP2_PE_FIRST_FREE_TID);
2449 		if (tid < 0)
2450 			return tid;
2451 
2452 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2453 		if (!pe)
2454 			return -ENOMEM;
2455 
2456 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2457 		pe->index = tid;
2458 
2459 		/* Set flow ID*/
2460 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2461 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2462 
2463 		/* Update shadow table */
2464 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2465 	}
2466 
2467 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2468 	mvpp2_prs_hw_write(port->priv, pe);
2469 	kfree(pe);
2470 
2471 	return 0;
2472 }
2473 
2474 /* Classifier configuration routines */
2475 
2476 /* Update classification flow table registers */
2477 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2478 				 struct mvpp2_cls_flow_entry *fe)
2479 {
2480 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2481 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2482 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2483 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2484 }
2485 
2486 /* Update classification lookup table register */
2487 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2488 				   struct mvpp2_cls_lookup_entry *le)
2489 {
2490 	u32 val;
2491 
2492 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2493 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2494 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2495 }
2496 
2497 /* Classifier default initialization */
2498 static void mvpp2_cls_init(struct mvpp2 *priv)
2499 {
2500 	struct mvpp2_cls_lookup_entry le;
2501 	struct mvpp2_cls_flow_entry fe;
2502 	int index;
2503 
2504 	/* Enable classifier */
2505 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2506 
2507 	/* Clear classifier flow table */
2508 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2509 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2510 		fe.index = index;
2511 		mvpp2_cls_flow_write(priv, &fe);
2512 	}
2513 
2514 	/* Clear classifier lookup table */
2515 	le.data = 0;
2516 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2517 		le.lkpid = index;
2518 		le.way = 0;
2519 		mvpp2_cls_lookup_write(priv, &le);
2520 
2521 		le.way = 1;
2522 		mvpp2_cls_lookup_write(priv, &le);
2523 	}
2524 }
2525 
2526 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2527 {
2528 	struct mvpp2_cls_lookup_entry le;
2529 	u32 val;
2530 
2531 	/* Set way for the port */
2532 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2533 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2534 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2535 
2536 	/* Pick the entry to be accessed in lookup ID decoding table
2537 	 * according to the way and lkpid.
2538 	 */
2539 	le.lkpid = port->id;
2540 	le.way = 0;
2541 	le.data = 0;
2542 
2543 	/* Set initial CPU queue for receiving packets */
2544 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2545 	le.data |= port->first_rxq;
2546 
2547 	/* Disable classification engines */
2548 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2549 
2550 	/* Update lookup ID table entry */
2551 	mvpp2_cls_lookup_write(port->priv, &le);
2552 }
2553 
2554 /* Set CPU queue number for oversize packets */
2555 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2556 {
2557 	u32 val;
2558 
2559 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2560 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2561 
2562 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2563 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2564 
2565 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2566 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2567 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2568 }
2569 
2570 /* Buffer Manager configuration routines */
2571 
2572 /* Create pool */
2573 static int mvpp2_bm_pool_create(struct udevice *dev,
2574 				struct mvpp2 *priv,
2575 				struct mvpp2_bm_pool *bm_pool, int size)
2576 {
2577 	u32 val;
2578 
2579 	/* Number of buffer pointers must be a multiple of 16, as per
2580 	 * hardware constraints
2581 	 */
2582 	if (!IS_ALIGNED(size, 16))
2583 		return -EINVAL;
2584 
2585 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2586 	bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2587 	if (!bm_pool->virt_addr)
2588 		return -ENOMEM;
2589 
2590 	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2591 			MVPP2_BM_POOL_PTR_ALIGN)) {
2592 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2593 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2594 		return -ENOMEM;
2595 	}
2596 
2597 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2598 		    lower_32_bits(bm_pool->dma_addr));
2599 	if (priv->hw_version == MVPP22)
2600 		mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
2601 			    (upper_32_bits(bm_pool->dma_addr) &
2602 			    MVPP22_BM_POOL_BASE_HIGH_MASK));
2603 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2604 
2605 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2606 	val |= MVPP2_BM_START_MASK;
2607 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2608 
2609 	bm_pool->type = MVPP2_BM_FREE;
2610 	bm_pool->size = size;
2611 	bm_pool->pkt_size = 0;
2612 	bm_pool->buf_num = 0;
2613 
2614 	return 0;
2615 }
2616 
2617 /* Set pool buffer size */
2618 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2619 				      struct mvpp2_bm_pool *bm_pool,
2620 				      int buf_size)
2621 {
2622 	u32 val;
2623 
2624 	bm_pool->buf_size = buf_size;
2625 
2626 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2627 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2628 }
2629 
2630 /* Free all buffers from the pool */
2631 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2632 			       struct mvpp2_bm_pool *bm_pool)
2633 {
2634 	int i;
2635 
2636 	for (i = 0; i < bm_pool->buf_num; i++) {
2637 		/* Allocate buffer back from the buffer manager */
2638 		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2639 	}
2640 
2641 	bm_pool->buf_num = 0;
2642 }
2643 
2644 /* Cleanup pool */
2645 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2646 				 struct mvpp2 *priv,
2647 				 struct mvpp2_bm_pool *bm_pool)
2648 {
2649 	u32 val;
2650 
2651 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2652 	if (bm_pool->buf_num) {
2653 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2654 		return 0;
2655 	}
2656 
2657 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2658 	val |= MVPP2_BM_STOP_MASK;
2659 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2660 
2661 	return 0;
2662 }
2663 
2664 static int mvpp2_bm_pools_init(struct udevice *dev,
2665 			       struct mvpp2 *priv)
2666 {
2667 	int i, err, size;
2668 	struct mvpp2_bm_pool *bm_pool;
2669 
2670 	/* Create all pools with maximum size */
2671 	size = MVPP2_BM_POOL_SIZE_MAX;
2672 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2673 		bm_pool = &priv->bm_pools[i];
2674 		bm_pool->id = i;
2675 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2676 		if (err)
2677 			goto err_unroll_pools;
2678 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
2679 	}
2680 	return 0;
2681 
2682 err_unroll_pools:
2683 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2684 	for (i = i - 1; i >= 0; i--)
2685 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2686 	return err;
2687 }
2688 
2689 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2690 {
2691 	int i, err;
2692 
2693 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2694 		/* Mask BM all interrupts */
2695 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2696 		/* Clear BM cause register */
2697 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2698 	}
2699 
2700 	/* Allocate and initialize BM pools */
2701 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2702 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2703 	if (!priv->bm_pools)
2704 		return -ENOMEM;
2705 
2706 	err = mvpp2_bm_pools_init(dev, priv);
2707 	if (err < 0)
2708 		return err;
2709 	return 0;
2710 }
2711 
2712 /* Attach long pool to rxq */
2713 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2714 				    int lrxq, int long_pool)
2715 {
2716 	u32 val, mask;
2717 	int prxq;
2718 
2719 	/* Get queue physical ID */
2720 	prxq = port->rxqs[lrxq]->id;
2721 
2722 	if (port->priv->hw_version == MVPP21)
2723 		mask = MVPP21_RXQ_POOL_LONG_MASK;
2724 	else
2725 		mask = MVPP22_RXQ_POOL_LONG_MASK;
2726 
2727 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2728 	val &= ~mask;
2729 	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2730 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2731 }
2732 
2733 /* Set pool number in a BM cookie */
2734 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2735 {
2736 	u32 bm;
2737 
2738 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2739 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2740 
2741 	return bm;
2742 }
2743 
2744 /* Get pool number from a BM cookie */
2745 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2746 {
2747 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2748 }
2749 
2750 /* Release buffer to BM */
2751 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2752 				     dma_addr_t buf_dma_addr,
2753 				     unsigned long buf_phys_addr)
2754 {
2755 	if (port->priv->hw_version == MVPP22) {
2756 		u32 val = 0;
2757 
2758 		if (sizeof(dma_addr_t) == 8)
2759 			val |= upper_32_bits(buf_dma_addr) &
2760 				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2761 
2762 		if (sizeof(phys_addr_t) == 8)
2763 			val |= (upper_32_bits(buf_phys_addr)
2764 				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2765 				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2766 
2767 		mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2768 	}
2769 
2770 	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2771 	 * returned in the "cookie" field of the RX
2772 	 * descriptor. Instead of storing the virtual address, we
2773 	 * store the physical address
2774 	 */
2775 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2776 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2777 }
2778 
2779 /* Refill BM pool */
2780 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2781 			      dma_addr_t dma_addr,
2782 			      phys_addr_t phys_addr)
2783 {
2784 	int pool = mvpp2_bm_cookie_pool_get(bm);
2785 
2786 	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2787 }
2788 
2789 /* Allocate buffers for the pool */
2790 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2791 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2792 {
2793 	int i;
2794 
2795 	if (buf_num < 0 ||
2796 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2797 		netdev_err(port->dev,
2798 			   "cannot allocate %d buffers for pool %d\n",
2799 			   buf_num, bm_pool->id);
2800 		return 0;
2801 	}
2802 
2803 	for (i = 0; i < buf_num; i++) {
2804 		mvpp2_bm_pool_put(port, bm_pool->id,
2805 				  (dma_addr_t)buffer_loc.rx_buffer[i],
2806 				  (unsigned long)buffer_loc.rx_buffer[i]);
2807 
2808 	}
2809 
2810 	/* Update BM driver with number of buffers added to pool */
2811 	bm_pool->buf_num += i;
2812 
2813 	return i;
2814 }
2815 
2816 /* Notify the driver that BM pool is being used as specific type and return the
2817  * pool pointer on success
2818  */
2819 static struct mvpp2_bm_pool *
2820 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2821 		  int pkt_size)
2822 {
2823 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2824 	int num;
2825 
2826 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2827 		netdev_err(port->dev, "mixing pool types is forbidden\n");
2828 		return NULL;
2829 	}
2830 
2831 	if (new_pool->type == MVPP2_BM_FREE)
2832 		new_pool->type = type;
2833 
2834 	/* Allocate buffers in case BM pool is used as long pool, but packet
2835 	 * size doesn't match MTU or BM pool hasn't being used yet
2836 	 */
2837 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2838 	    (new_pool->pkt_size == 0)) {
2839 		int pkts_num;
2840 
2841 		/* Set default buffer number or free all the buffers in case
2842 		 * the pool is not empty
2843 		 */
2844 		pkts_num = new_pool->buf_num;
2845 		if (pkts_num == 0)
2846 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2847 				   MVPP2_BM_LONG_BUF_NUM :
2848 				   MVPP2_BM_SHORT_BUF_NUM;
2849 		else
2850 			mvpp2_bm_bufs_free(NULL,
2851 					   port->priv, new_pool);
2852 
2853 		new_pool->pkt_size = pkt_size;
2854 
2855 		/* Allocate buffers for this pool */
2856 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2857 		if (num != pkts_num) {
2858 			dev_err(dev, "pool %d: %d of %d allocated\n",
2859 				new_pool->id, num, pkts_num);
2860 			return NULL;
2861 		}
2862 	}
2863 
2864 	return new_pool;
2865 }
2866 
2867 /* Initialize pools for swf */
2868 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2869 {
2870 	int rxq;
2871 
2872 	if (!port->pool_long) {
2873 		port->pool_long =
2874 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2875 					 MVPP2_BM_SWF_LONG,
2876 					 port->pkt_size);
2877 		if (!port->pool_long)
2878 			return -ENOMEM;
2879 
2880 		port->pool_long->port_map |= (1 << port->id);
2881 
2882 		for (rxq = 0; rxq < rxq_number; rxq++)
2883 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 /* Port configuration routines */
2890 
2891 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2892 {
2893 	u32 val;
2894 
2895 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2896 
2897 	switch (port->phy_interface) {
2898 	case PHY_INTERFACE_MODE_SGMII:
2899 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2900 		break;
2901 	case PHY_INTERFACE_MODE_RGMII:
2902 	case PHY_INTERFACE_MODE_RGMII_ID:
2903 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2904 	default:
2905 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2906 	}
2907 
2908 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2909 }
2910 
2911 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2912 {
2913 	u32 val;
2914 
2915 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2916 	val |= MVPP2_GMAC_FC_ADV_EN;
2917 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2918 }
2919 
2920 static void mvpp2_port_enable(struct mvpp2_port *port)
2921 {
2922 	u32 val;
2923 
2924 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2925 	val |= MVPP2_GMAC_PORT_EN_MASK;
2926 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2927 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2928 }
2929 
2930 static void mvpp2_port_disable(struct mvpp2_port *port)
2931 {
2932 	u32 val;
2933 
2934 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2935 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2936 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2937 }
2938 
2939 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2940 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2941 {
2942 	u32 val;
2943 
2944 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2945 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2946 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2947 }
2948 
2949 /* Configure loopback port */
2950 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2951 {
2952 	u32 val;
2953 
2954 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2955 
2956 	if (port->speed == 1000)
2957 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2958 	else
2959 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2960 
2961 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2962 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2963 	else
2964 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2965 
2966 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2967 }
2968 
2969 static void mvpp2_port_reset(struct mvpp2_port *port)
2970 {
2971 	u32 val;
2972 
2973 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2974 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2975 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2976 
2977 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2978 	       MVPP2_GMAC_PORT_RESET_MASK)
2979 		continue;
2980 }
2981 
2982 /* Change maximum receive size of the port */
2983 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2984 {
2985 	u32 val;
2986 
2987 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2988 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2989 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2990 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2991 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2992 }
2993 
2994 /* PPv2.2 GoP/GMAC config */
2995 
2996 /* Set the MAC to reset or exit from reset */
2997 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2998 {
2999 	u32 val;
3000 
3001 	/* read - modify - write */
3002 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3003 	if (reset)
3004 		val |= MVPP2_GMAC_PORT_RESET_MASK;
3005 	else
3006 		val &= ~MVPP2_GMAC_PORT_RESET_MASK;
3007 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  * gop_gpcs_mode_cfg
3014  *
3015  * Configure port to working with Gig PCS or don't.
3016  */
3017 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3018 {
3019 	u32 val;
3020 
3021 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3022 	if (en)
3023 		val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3024 	else
3025 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3026 	/* enable / disable PCS on this port */
3027 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3028 
3029 	return 0;
3030 }
3031 
3032 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3033 {
3034 	u32 val;
3035 
3036 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3037 	if (en)
3038 		val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3039 	else
3040 		val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3041 	/* enable / disable PCS on this port */
3042 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3043 
3044 	return 0;
3045 }
3046 
3047 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3048 {
3049 	u32 val, thresh;
3050 
3051 	/*
3052 	 * Configure minimal level of the Tx FIFO before the lower part
3053 	 * starts to read a packet
3054 	 */
3055 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3056 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3057 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3058 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3059 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3060 
3061 	/* Disable bypass of sync module */
3062 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3063 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3064 	/* configure DP clock select according to mode */
3065 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3066 	/* configure QSGMII bypass according to mode */
3067 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3068 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3069 
3070 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3071 	/*
3072 	 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3073 	 * transceiver
3074 	 */
3075 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3076 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3077 
3078 	/* configure AN 0x9268 */
3079 	val = MVPP2_GMAC_EN_PCS_AN |
3080 		MVPP2_GMAC_AN_BYPASS_EN |
3081 		MVPP2_GMAC_CONFIG_MII_SPEED  |
3082 		MVPP2_GMAC_CONFIG_GMII_SPEED     |
3083 		MVPP2_GMAC_FC_ADV_EN    |
3084 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3085 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3086 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3087 }
3088 
3089 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3090 {
3091 	u32 val, thresh;
3092 
3093 	/*
3094 	 * Configure minimal level of the Tx FIFO before the lower part
3095 	 * starts to read a packet
3096 	 */
3097 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3098 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3099 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3100 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3101 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3102 
3103 	/* Disable bypass of sync module */
3104 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3105 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3106 	/* configure DP clock select according to mode */
3107 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3108 	/* configure QSGMII bypass according to mode */
3109 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3110 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3111 
3112 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3113 	/* configure GIG MAC to SGMII mode */
3114 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3115 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3116 
3117 	/* configure AN */
3118 	val = MVPP2_GMAC_EN_PCS_AN |
3119 		MVPP2_GMAC_AN_BYPASS_EN |
3120 		MVPP2_GMAC_AN_SPEED_EN  |
3121 		MVPP2_GMAC_EN_FC_AN     |
3122 		MVPP2_GMAC_AN_DUPLEX_EN |
3123 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3124 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3125 }
3126 
3127 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3128 {
3129 	u32 val, thresh;
3130 
3131 	/*
3132 	 * Configure minimal level of the Tx FIFO before the lower part
3133 	 * starts to read a packet
3134 	 */
3135 	thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3136 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3137 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3138 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3139 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3140 
3141 	/* Disable bypass of sync module */
3142 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3143 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3144 	/* configure DP clock select according to mode */
3145 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3146 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3147 	val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3148 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3149 
3150 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3151 	/* configure GIG MAC to SGMII mode */
3152 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3153 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3154 
3155 	/* configure AN 0xb8e8 */
3156 	val = MVPP2_GMAC_AN_BYPASS_EN |
3157 		MVPP2_GMAC_AN_SPEED_EN   |
3158 		MVPP2_GMAC_EN_FC_AN      |
3159 		MVPP2_GMAC_AN_DUPLEX_EN  |
3160 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3161 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3162 }
3163 
3164 /* Set the internal mux's to the required MAC in the GOP */
3165 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3166 {
3167 	u32 val;
3168 
3169 	/* Set TX FIFO thresholds */
3170 	switch (port->phy_interface) {
3171 	case PHY_INTERFACE_MODE_SGMII:
3172 		if (port->phy_speed == 2500)
3173 			gop_gmac_sgmii2_5_cfg(port);
3174 		else
3175 			gop_gmac_sgmii_cfg(port);
3176 		break;
3177 
3178 	case PHY_INTERFACE_MODE_RGMII:
3179 	case PHY_INTERFACE_MODE_RGMII_ID:
3180 		gop_gmac_rgmii_cfg(port);
3181 		break;
3182 
3183 	default:
3184 		return -1;
3185 	}
3186 
3187 	/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3188 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3189 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3190 	val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3191 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3192 
3193 	/* PeriodicXonEn disable */
3194 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3195 	val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3196 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3197 
3198 	return 0;
3199 }
3200 
3201 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3202 {
3203 	u32 val;
3204 
3205 	/* relevant only for MAC0 (XLG0 and GMAC0) */
3206 	if (port->gop_id > 0)
3207 		return;
3208 
3209 	/* configure 1Gig MAC mode */
3210 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3211 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3212 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3213 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3214 }
3215 
3216 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3217 {
3218 	u32 val;
3219 
3220 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3221 	if (reset)
3222 		val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3223 	else
3224 		val |= MVPP2_GMAC_SGMII_MODE_MASK;
3225 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3226 
3227 	return 0;
3228 }
3229 
3230 /* Set the internal mux's to the required PCS in the PI */
3231 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3232 {
3233 	u32 val;
3234 	int lane;
3235 
3236 	switch (num_of_lanes) {
3237 	case 1:
3238 		lane = 0;
3239 		break;
3240 	case 2:
3241 		lane = 1;
3242 		break;
3243 	case 4:
3244 		lane = 2;
3245 		break;
3246 	default:
3247 		return -1;
3248 	}
3249 
3250 	/* configure XG MAC mode */
3251 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3252 	val &= ~MVPP22_XPCS_PCSMODE_MASK;
3253 	val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3254 	val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3255 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3256 
3257 	return 0;
3258 }
3259 
3260 static int gop_mpcs_mode(struct mvpp2_port *port)
3261 {
3262 	u32 val;
3263 
3264 	/* configure PCS40G COMMON CONTROL */
3265 	val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3266 	val &= ~FORWARD_ERROR_CORRECTION_MASK;
3267 	writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3268 
3269 	/* configure PCS CLOCK RESET */
3270 	val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3271 	val &= ~CLK_DIVISION_RATIO_MASK;
3272 	val |= 1 << CLK_DIVISION_RATIO_OFFS;
3273 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3274 
3275 	val &= ~CLK_DIV_PHASE_SET_MASK;
3276 	val |= MAC_CLK_RESET_MASK;
3277 	val |= RX_SD_CLK_RESET_MASK;
3278 	val |= TX_SD_CLK_RESET_MASK;
3279 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3280 
3281 	return 0;
3282 }
3283 
3284 /* Set the internal mux's to the required MAC in the GOP */
3285 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3286 {
3287 	u32 val;
3288 
3289 	/* configure 10G MAC mode */
3290 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3291 	val |= MVPP22_XLG_RX_FC_EN;
3292 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3293 
3294 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3295 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3296 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3297 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3298 
3299 	/* read - modify - write */
3300 	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3301 	val &= ~MVPP22_XLG_MODE_DMA_1G;
3302 	val |= MVPP22_XLG_FORWARD_PFC_EN;
3303 	val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3304 	val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3305 	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3306 
3307 	/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3308 	val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3309 	val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3310 	val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3311 	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3312 
3313 	/* unmask link change interrupt */
3314 	val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3315 	val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3316 	val |= 1; /* unmask summary bit */
3317 	writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3318 
3319 	return 0;
3320 }
3321 
3322 /* Set PCS to reset or exit from reset */
3323 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3324 {
3325 	u32 val;
3326 
3327 	/* read - modify - write */
3328 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3329 	if (reset)
3330 		val &= ~MVPP22_XPCS_PCSRESET;
3331 	else
3332 		val |= MVPP22_XPCS_PCSRESET;
3333 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3334 
3335 	return 0;
3336 }
3337 
3338 /* Set the MAC to reset or exit from reset */
3339 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3340 {
3341 	u32 val;
3342 
3343 	/* read - modify - write */
3344 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3345 	if (reset)
3346 		val &= ~MVPP22_XLG_MAC_RESETN;
3347 	else
3348 		val |= MVPP22_XLG_MAC_RESETN;
3349 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3350 
3351 	return 0;
3352 }
3353 
3354 /*
3355  * gop_port_init
3356  *
3357  * Init physical port. Configures the port mode and all it's elements
3358  * accordingly.
3359  * Does not verify that the selected mode/port number is valid at the
3360  * core level.
3361  */
3362 static int gop_port_init(struct mvpp2_port *port)
3363 {
3364 	int mac_num = port->gop_id;
3365 	int num_of_act_lanes;
3366 
3367 	if (mac_num >= MVPP22_GOP_MAC_NUM) {
3368 		netdev_err(NULL, "%s: illegal port number %d", __func__,
3369 			   mac_num);
3370 		return -1;
3371 	}
3372 
3373 	switch (port->phy_interface) {
3374 	case PHY_INTERFACE_MODE_RGMII:
3375 	case PHY_INTERFACE_MODE_RGMII_ID:
3376 		gop_gmac_reset(port, 1);
3377 
3378 		/* configure PCS */
3379 		gop_gpcs_mode_cfg(port, 0);
3380 		gop_bypass_clk_cfg(port, 1);
3381 
3382 		/* configure MAC */
3383 		gop_gmac_mode_cfg(port);
3384 		/* pcs unreset */
3385 		gop_gpcs_reset(port, 0);
3386 
3387 		/* mac unreset */
3388 		gop_gmac_reset(port, 0);
3389 		break;
3390 
3391 	case PHY_INTERFACE_MODE_SGMII:
3392 		/* configure PCS */
3393 		gop_gpcs_mode_cfg(port, 1);
3394 
3395 		/* configure MAC */
3396 		gop_gmac_mode_cfg(port);
3397 		/* select proper Mac mode */
3398 		gop_xlg_2_gig_mac_cfg(port);
3399 
3400 		/* pcs unreset */
3401 		gop_gpcs_reset(port, 0);
3402 		/* mac unreset */
3403 		gop_gmac_reset(port, 0);
3404 		break;
3405 
3406 	case PHY_INTERFACE_MODE_SFI:
3407 		num_of_act_lanes = 2;
3408 		mac_num = 0;
3409 		/* configure PCS */
3410 		gop_xpcs_mode(port, num_of_act_lanes);
3411 		gop_mpcs_mode(port);
3412 		/* configure MAC */
3413 		gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3414 
3415 		/* pcs unreset */
3416 		gop_xpcs_reset(port, 0);
3417 
3418 		/* mac unreset */
3419 		gop_xlg_mac_reset(port, 0);
3420 		break;
3421 
3422 	default:
3423 		netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3424 			   __func__, port->phy_interface);
3425 		return -1;
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3432 {
3433 	u32 val;
3434 
3435 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3436 	if (enable) {
3437 		/* Enable port and MIB counters update */
3438 		val |= MVPP22_XLG_PORT_EN;
3439 		val &= ~MVPP22_XLG_MIBCNT_DIS;
3440 	} else {
3441 		/* Disable port */
3442 		val &= ~MVPP22_XLG_PORT_EN;
3443 	}
3444 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3445 }
3446 
3447 static void gop_port_enable(struct mvpp2_port *port, int enable)
3448 {
3449 	switch (port->phy_interface) {
3450 	case PHY_INTERFACE_MODE_RGMII:
3451 	case PHY_INTERFACE_MODE_RGMII_ID:
3452 	case PHY_INTERFACE_MODE_SGMII:
3453 		if (enable)
3454 			mvpp2_port_enable(port);
3455 		else
3456 			mvpp2_port_disable(port);
3457 		break;
3458 
3459 	case PHY_INTERFACE_MODE_SFI:
3460 		gop_xlg_mac_port_enable(port, enable);
3461 
3462 		break;
3463 	default:
3464 		netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3465 			   port->phy_interface);
3466 		return;
3467 	}
3468 }
3469 
3470 /* RFU1 functions */
3471 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3472 {
3473 	return readl(priv->rfu1_base + offset);
3474 }
3475 
3476 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3477 {
3478 	writel(data, priv->rfu1_base + offset);
3479 }
3480 
3481 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3482 {
3483 	u32 val = 0;
3484 
3485 	if (gop_id == 2) {
3486 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3487 			val |= MV_NETC_GE_MAC2_SGMII;
3488 	}
3489 
3490 	if (gop_id == 3) {
3491 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3492 			val |= MV_NETC_GE_MAC3_SGMII;
3493 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3494 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3495 			val |= MV_NETC_GE_MAC3_RGMII;
3496 	}
3497 
3498 	return val;
3499 }
3500 
3501 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3502 {
3503 	u32 reg;
3504 
3505 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3506 	reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3507 
3508 	val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3509 	val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3510 
3511 	reg |= val;
3512 
3513 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3514 }
3515 
3516 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3517 {
3518 	u32 reg;
3519 
3520 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3521 	reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3522 
3523 	val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3524 	val &= NETC_GBE_PORT1_MII_MODE_MASK;
3525 
3526 	reg |= val;
3527 
3528 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3529 }
3530 
3531 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3532 {
3533 	u32 reg;
3534 
3535 	reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3536 	reg &= ~NETC_GOP_SOFT_RESET_MASK;
3537 
3538 	val <<= NETC_GOP_SOFT_RESET_OFFS;
3539 	val &= NETC_GOP_SOFT_RESET_MASK;
3540 
3541 	reg |= val;
3542 
3543 	gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3544 }
3545 
3546 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3547 {
3548 	u32 reg;
3549 
3550 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3551 	reg &= ~NETC_CLK_DIV_PHASE_MASK;
3552 
3553 	val <<= NETC_CLK_DIV_PHASE_OFFS;
3554 	val &= NETC_CLK_DIV_PHASE_MASK;
3555 
3556 	reg |= val;
3557 
3558 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3559 }
3560 
3561 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3562 {
3563 	u32 reg;
3564 
3565 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3566 	reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3567 
3568 	val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3569 	val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3570 
3571 	reg |= val;
3572 
3573 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3574 }
3575 
3576 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3577 					   u32 val)
3578 {
3579 	u32 reg, mask, offset;
3580 
3581 	if (gop_id == 2) {
3582 		mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3583 		offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3584 	} else {
3585 		mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3586 		offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3587 	}
3588 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3589 	reg &= ~mask;
3590 
3591 	val <<= offset;
3592 	val &= mask;
3593 
3594 	reg |= val;
3595 
3596 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3597 }
3598 
3599 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3600 {
3601 	u32 reg;
3602 
3603 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3604 	reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3605 
3606 	val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3607 	val &= NETC_BUS_WIDTH_SELECT_MASK;
3608 
3609 	reg |= val;
3610 
3611 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3612 }
3613 
3614 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3615 {
3616 	u32 reg;
3617 
3618 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3619 	reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3620 
3621 	val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3622 	val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3623 
3624 	reg |= val;
3625 
3626 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3627 }
3628 
3629 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3630 				  enum mv_netc_phase phase)
3631 {
3632 	switch (phase) {
3633 	case MV_NETC_FIRST_PHASE:
3634 		/* Set Bus Width to HB mode = 1 */
3635 		gop_netc_bus_width_select(priv, 1);
3636 		/* Select RGMII mode */
3637 		gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3638 		break;
3639 
3640 	case MV_NETC_SECOND_PHASE:
3641 		/* De-assert the relevant port HB reset */
3642 		gop_netc_port_rf_reset(priv, gop_id, 1);
3643 		break;
3644 	}
3645 }
3646 
3647 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3648 				  enum mv_netc_phase phase)
3649 {
3650 	switch (phase) {
3651 	case MV_NETC_FIRST_PHASE:
3652 		/* Set Bus Width to HB mode = 1 */
3653 		gop_netc_bus_width_select(priv, 1);
3654 		/* Select SGMII mode */
3655 		if (gop_id >= 1) {
3656 			gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3657 						       MV_NETC_GBE_SGMII);
3658 		}
3659 
3660 		/* Configure the sample stages */
3661 		gop_netc_sample_stages_timing(priv, 0);
3662 		/* Configure the ComPhy Selector */
3663 		/* gop_netc_com_phy_selector_config(netComplex); */
3664 		break;
3665 
3666 	case MV_NETC_SECOND_PHASE:
3667 		/* De-assert the relevant port HB reset */
3668 		gop_netc_port_rf_reset(priv, gop_id, 1);
3669 		break;
3670 	}
3671 }
3672 
3673 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3674 {
3675 	u32 c = priv->netc_config;
3676 
3677 	if (c & MV_NETC_GE_MAC2_SGMII)
3678 		gop_netc_mac_to_sgmii(priv, 2, phase);
3679 	else
3680 		gop_netc_mac_to_xgmii(priv, 2, phase);
3681 
3682 	if (c & MV_NETC_GE_MAC3_SGMII) {
3683 		gop_netc_mac_to_sgmii(priv, 3, phase);
3684 	} else {
3685 		gop_netc_mac_to_xgmii(priv, 3, phase);
3686 		if (c & MV_NETC_GE_MAC3_RGMII)
3687 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3688 		else
3689 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3690 	}
3691 
3692 	/* Activate gop ports 0, 2, 3 */
3693 	gop_netc_active_port(priv, 0, 1);
3694 	gop_netc_active_port(priv, 2, 1);
3695 	gop_netc_active_port(priv, 3, 1);
3696 
3697 	if (phase == MV_NETC_SECOND_PHASE) {
3698 		/* Enable the GOP internal clock logic */
3699 		gop_netc_gop_clock_logic_set(priv, 1);
3700 		/* De-assert GOP unit reset */
3701 		gop_netc_gop_reset(priv, 1);
3702 	}
3703 
3704 	return 0;
3705 }
3706 
3707 /* Set defaults to the MVPP2 port */
3708 static void mvpp2_defaults_set(struct mvpp2_port *port)
3709 {
3710 	int tx_port_num, val, queue, ptxq, lrxq;
3711 
3712 	if (port->priv->hw_version == MVPP21) {
3713 		/* Configure port to loopback if needed */
3714 		if (port->flags & MVPP2_F_LOOPBACK)
3715 			mvpp2_port_loopback_set(port);
3716 
3717 		/* Update TX FIFO MIN Threshold */
3718 		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3719 		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3720 		/* Min. TX threshold must be less than minimal packet length */
3721 		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3722 		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3723 	}
3724 
3725 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3726 	tx_port_num = mvpp2_egress_port(port);
3727 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3728 		    tx_port_num);
3729 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3730 
3731 	/* Close bandwidth for all queues */
3732 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3733 		ptxq = mvpp2_txq_phys(port->id, queue);
3734 		mvpp2_write(port->priv,
3735 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3736 	}
3737 
3738 	/* Set refill period to 1 usec, refill tokens
3739 	 * and bucket size to maximum
3740 	 */
3741 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3742 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3743 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3744 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3745 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3746 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3747 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3748 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3749 
3750 	/* Set MaximumLowLatencyPacketSize value to 256 */
3751 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3752 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3753 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3754 
3755 	/* Enable Rx cache snoop */
3756 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3757 		queue = port->rxqs[lrxq]->id;
3758 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3759 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3760 			   MVPP2_SNOOP_BUF_HDR_MASK;
3761 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3762 	}
3763 }
3764 
3765 /* Enable/disable receiving packets */
3766 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3767 {
3768 	u32 val;
3769 	int lrxq, queue;
3770 
3771 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3772 		queue = port->rxqs[lrxq]->id;
3773 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3774 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3775 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3776 	}
3777 }
3778 
3779 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3780 {
3781 	u32 val;
3782 	int lrxq, queue;
3783 
3784 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3785 		queue = port->rxqs[lrxq]->id;
3786 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3787 		val |= MVPP2_RXQ_DISABLE_MASK;
3788 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3789 	}
3790 }
3791 
3792 /* Enable transmit via physical egress queue
3793  * - HW starts take descriptors from DRAM
3794  */
3795 static void mvpp2_egress_enable(struct mvpp2_port *port)
3796 {
3797 	u32 qmap;
3798 	int queue;
3799 	int tx_port_num = mvpp2_egress_port(port);
3800 
3801 	/* Enable all initialized TXs. */
3802 	qmap = 0;
3803 	for (queue = 0; queue < txq_number; queue++) {
3804 		struct mvpp2_tx_queue *txq = port->txqs[queue];
3805 
3806 		if (txq->descs != NULL)
3807 			qmap |= (1 << queue);
3808 	}
3809 
3810 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3811 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3812 }
3813 
3814 /* Disable transmit via physical egress queue
3815  * - HW doesn't take descriptors from DRAM
3816  */
3817 static void mvpp2_egress_disable(struct mvpp2_port *port)
3818 {
3819 	u32 reg_data;
3820 	int delay;
3821 	int tx_port_num = mvpp2_egress_port(port);
3822 
3823 	/* Issue stop command for active channels only */
3824 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3825 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3826 		    MVPP2_TXP_SCHED_ENQ_MASK;
3827 	if (reg_data != 0)
3828 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3829 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3830 
3831 	/* Wait for all Tx activity to terminate. */
3832 	delay = 0;
3833 	do {
3834 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3835 			netdev_warn(port->dev,
3836 				    "Tx stop timed out, status=0x%08x\n",
3837 				    reg_data);
3838 			break;
3839 		}
3840 		mdelay(1);
3841 		delay++;
3842 
3843 		/* Check port TX Command register that all
3844 		 * Tx queues are stopped
3845 		 */
3846 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3847 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3848 }
3849 
3850 /* Rx descriptors helper methods */
3851 
3852 /* Get number of Rx descriptors occupied by received packets */
3853 static inline int
3854 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3855 {
3856 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3857 
3858 	return val & MVPP2_RXQ_OCCUPIED_MASK;
3859 }
3860 
3861 /* Update Rx queue status with the number of occupied and available
3862  * Rx descriptor slots.
3863  */
3864 static inline void
3865 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3866 			int used_count, int free_count)
3867 {
3868 	/* Decrement the number of used descriptors and increment count
3869 	 * increment the number of free descriptors.
3870 	 */
3871 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3872 
3873 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3874 }
3875 
3876 /* Get pointer to next RX descriptor to be processed by SW */
3877 static inline struct mvpp2_rx_desc *
3878 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3879 {
3880 	int rx_desc = rxq->next_desc_to_proc;
3881 
3882 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3883 	prefetch(rxq->descs + rxq->next_desc_to_proc);
3884 	return rxq->descs + rx_desc;
3885 }
3886 
3887 /* Set rx queue offset */
3888 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3889 				 int prxq, int offset)
3890 {
3891 	u32 val;
3892 
3893 	/* Convert offset from bytes to units of 32 bytes */
3894 	offset = offset >> 5;
3895 
3896 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3897 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3898 
3899 	/* Offset is in */
3900 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3901 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
3902 
3903 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3904 }
3905 
3906 /* Obtain BM cookie information from descriptor */
3907 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3908 				 struct mvpp2_rx_desc *rx_desc)
3909 {
3910 	int cpu = smp_processor_id();
3911 	int pool;
3912 
3913 	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3914 		MVPP2_RXD_BM_POOL_ID_MASK) >>
3915 		MVPP2_RXD_BM_POOL_ID_OFFS;
3916 
3917 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3918 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3919 }
3920 
3921 /* Tx descriptors helper methods */
3922 
3923 /* Get number of Tx descriptors waiting to be transmitted by HW */
3924 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3925 				       struct mvpp2_tx_queue *txq)
3926 {
3927 	u32 val;
3928 
3929 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3930 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3931 
3932 	return val & MVPP2_TXQ_PENDING_MASK;
3933 }
3934 
3935 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3936 static struct mvpp2_tx_desc *
3937 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3938 {
3939 	int tx_desc = txq->next_desc_to_proc;
3940 
3941 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3942 	return txq->descs + tx_desc;
3943 }
3944 
3945 /* Update HW with number of aggregated Tx descriptors to be sent */
3946 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3947 {
3948 	/* aggregated access - relevant TXQ number is written in TX desc */
3949 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3950 }
3951 
3952 /* Get number of sent descriptors and decrement counter.
3953  * The number of sent descriptors is returned.
3954  * Per-CPU access
3955  */
3956 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3957 					   struct mvpp2_tx_queue *txq)
3958 {
3959 	u32 val;
3960 
3961 	/* Reading status reg resets transmitted descriptor counter */
3962 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3963 
3964 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3965 		MVPP2_TRANSMITTED_COUNT_OFFSET;
3966 }
3967 
3968 static void mvpp2_txq_sent_counter_clear(void *arg)
3969 {
3970 	struct mvpp2_port *port = arg;
3971 	int queue;
3972 
3973 	for (queue = 0; queue < txq_number; queue++) {
3974 		int id = port->txqs[queue]->id;
3975 
3976 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3977 	}
3978 }
3979 
3980 /* Set max sizes for Tx queues */
3981 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3982 {
3983 	u32	val, size, mtu;
3984 	int	txq, tx_port_num;
3985 
3986 	mtu = port->pkt_size * 8;
3987 	if (mtu > MVPP2_TXP_MTU_MAX)
3988 		mtu = MVPP2_TXP_MTU_MAX;
3989 
3990 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3991 	mtu = 3 * mtu;
3992 
3993 	/* Indirect access to registers */
3994 	tx_port_num = mvpp2_egress_port(port);
3995 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3996 
3997 	/* Set MTU */
3998 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
3999 	val &= ~MVPP2_TXP_MTU_MAX;
4000 	val |= mtu;
4001 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4002 
4003 	/* TXP token size and all TXQs token size must be larger that MTU */
4004 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4005 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4006 	if (size < mtu) {
4007 		size = mtu;
4008 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4009 		val |= size;
4010 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4011 	}
4012 
4013 	for (txq = 0; txq < txq_number; txq++) {
4014 		val = mvpp2_read(port->priv,
4015 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4016 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4017 
4018 		if (size < mtu) {
4019 			size = mtu;
4020 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4021 			val |= size;
4022 			mvpp2_write(port->priv,
4023 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4024 				    val);
4025 		}
4026 	}
4027 }
4028 
4029 /* Free Tx queue skbuffs */
4030 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4031 				struct mvpp2_tx_queue *txq,
4032 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4033 {
4034 	int i;
4035 
4036 	for (i = 0; i < num; i++)
4037 		mvpp2_txq_inc_get(txq_pcpu);
4038 }
4039 
4040 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4041 							u32 cause)
4042 {
4043 	int queue = fls(cause) - 1;
4044 
4045 	return port->rxqs[queue];
4046 }
4047 
4048 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4049 							u32 cause)
4050 {
4051 	int queue = fls(cause) - 1;
4052 
4053 	return port->txqs[queue];
4054 }
4055 
4056 /* Rx/Tx queue initialization/cleanup methods */
4057 
4058 /* Allocate and initialize descriptors for aggr TXQ */
4059 static int mvpp2_aggr_txq_init(struct udevice *dev,
4060 			       struct mvpp2_tx_queue *aggr_txq,
4061 			       int desc_num, int cpu,
4062 			       struct mvpp2 *priv)
4063 {
4064 	u32 txq_dma;
4065 
4066 	/* Allocate memory for TX descriptors */
4067 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
4068 	aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4069 	if (!aggr_txq->descs)
4070 		return -ENOMEM;
4071 
4072 	/* Make sure descriptor address is cache line size aligned  */
4073 	BUG_ON(aggr_txq->descs !=
4074 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4075 
4076 	aggr_txq->last_desc = aggr_txq->size - 1;
4077 
4078 	/* Aggr TXQ no reset WA */
4079 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4080 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4081 
4082 	/* Set Tx descriptors queue starting address indirect
4083 	 * access
4084 	 */
4085 	if (priv->hw_version == MVPP21)
4086 		txq_dma = aggr_txq->descs_dma;
4087 	else
4088 		txq_dma = aggr_txq->descs_dma >>
4089 			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4090 
4091 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4092 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4093 
4094 	return 0;
4095 }
4096 
4097 /* Create a specified Rx queue */
4098 static int mvpp2_rxq_init(struct mvpp2_port *port,
4099 			  struct mvpp2_rx_queue *rxq)
4100 
4101 {
4102 	u32 rxq_dma;
4103 
4104 	rxq->size = port->rx_ring_size;
4105 
4106 	/* Allocate memory for RX descriptors */
4107 	rxq->descs = buffer_loc.rx_descs;
4108 	rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4109 	if (!rxq->descs)
4110 		return -ENOMEM;
4111 
4112 	BUG_ON(rxq->descs !=
4113 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4114 
4115 	rxq->last_desc = rxq->size - 1;
4116 
4117 	/* Zero occupied and non-occupied counters - direct access */
4118 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4119 
4120 	/* Set Rx descriptors queue starting address - indirect access */
4121 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4122 	if (port->priv->hw_version == MVPP21)
4123 		rxq_dma = rxq->descs_dma;
4124 	else
4125 		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4126 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4127 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4128 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4129 
4130 	/* Set Offset */
4131 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4132 
4133 	/* Add number of descriptors ready for receiving packets */
4134 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4135 
4136 	return 0;
4137 }
4138 
4139 /* Push packets received by the RXQ to BM pool */
4140 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4141 				struct mvpp2_rx_queue *rxq)
4142 {
4143 	int rx_received, i;
4144 
4145 	rx_received = mvpp2_rxq_received(port, rxq->id);
4146 	if (!rx_received)
4147 		return;
4148 
4149 	for (i = 0; i < rx_received; i++) {
4150 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4151 		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4152 
4153 		mvpp2_pool_refill(port, bm,
4154 				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4155 				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4156 	}
4157 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4158 }
4159 
4160 /* Cleanup Rx queue */
4161 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4162 			     struct mvpp2_rx_queue *rxq)
4163 {
4164 	mvpp2_rxq_drop_pkts(port, rxq);
4165 
4166 	rxq->descs             = NULL;
4167 	rxq->last_desc         = 0;
4168 	rxq->next_desc_to_proc = 0;
4169 	rxq->descs_dma         = 0;
4170 
4171 	/* Clear Rx descriptors queue starting address and size;
4172 	 * free descriptor number
4173 	 */
4174 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4175 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4176 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4177 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4178 }
4179 
4180 /* Create and initialize a Tx queue */
4181 static int mvpp2_txq_init(struct mvpp2_port *port,
4182 			  struct mvpp2_tx_queue *txq)
4183 {
4184 	u32 val;
4185 	int cpu, desc, desc_per_txq, tx_port_num;
4186 	struct mvpp2_txq_pcpu *txq_pcpu;
4187 
4188 	txq->size = port->tx_ring_size;
4189 
4190 	/* Allocate memory for Tx descriptors */
4191 	txq->descs = buffer_loc.tx_descs;
4192 	txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4193 	if (!txq->descs)
4194 		return -ENOMEM;
4195 
4196 	/* Make sure descriptor address is cache line size aligned  */
4197 	BUG_ON(txq->descs !=
4198 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4199 
4200 	txq->last_desc = txq->size - 1;
4201 
4202 	/* Set Tx descriptors queue starting address - indirect access */
4203 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4204 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4205 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4206 					     MVPP2_TXQ_DESC_SIZE_MASK);
4207 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4208 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4209 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4210 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4211 	val &= ~MVPP2_TXQ_PENDING_MASK;
4212 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4213 
4214 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4215 	 * for each existing TXQ.
4216 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4217 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4218 	 */
4219 	desc_per_txq = 16;
4220 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4221 	       (txq->log_id * desc_per_txq);
4222 
4223 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4224 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4225 		    MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4226 
4227 	/* WRR / EJP configuration - indirect access */
4228 	tx_port_num = mvpp2_egress_port(port);
4229 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4230 
4231 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4232 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4233 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4234 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4235 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4236 
4237 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4238 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4239 		    val);
4240 
4241 	for_each_present_cpu(cpu) {
4242 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4243 		txq_pcpu->size = txq->size;
4244 	}
4245 
4246 	return 0;
4247 }
4248 
4249 /* Free allocated TXQ resources */
4250 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4251 			     struct mvpp2_tx_queue *txq)
4252 {
4253 	txq->descs             = NULL;
4254 	txq->last_desc         = 0;
4255 	txq->next_desc_to_proc = 0;
4256 	txq->descs_dma         = 0;
4257 
4258 	/* Set minimum bandwidth for disabled TXQs */
4259 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4260 
4261 	/* Set Tx descriptors queue starting address and size */
4262 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4263 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4264 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4265 }
4266 
4267 /* Cleanup Tx ports */
4268 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4269 {
4270 	struct mvpp2_txq_pcpu *txq_pcpu;
4271 	int delay, pending, cpu;
4272 	u32 val;
4273 
4274 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4275 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4276 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4277 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4278 
4279 	/* The napi queue has been stopped so wait for all packets
4280 	 * to be transmitted.
4281 	 */
4282 	delay = 0;
4283 	do {
4284 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4285 			netdev_warn(port->dev,
4286 				    "port %d: cleaning queue %d timed out\n",
4287 				    port->id, txq->log_id);
4288 			break;
4289 		}
4290 		mdelay(1);
4291 		delay++;
4292 
4293 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4294 	} while (pending);
4295 
4296 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4297 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4298 
4299 	for_each_present_cpu(cpu) {
4300 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4301 
4302 		/* Release all packets */
4303 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4304 
4305 		/* Reset queue */
4306 		txq_pcpu->count = 0;
4307 		txq_pcpu->txq_put_index = 0;
4308 		txq_pcpu->txq_get_index = 0;
4309 	}
4310 }
4311 
4312 /* Cleanup all Tx queues */
4313 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4314 {
4315 	struct mvpp2_tx_queue *txq;
4316 	int queue;
4317 	u32 val;
4318 
4319 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4320 
4321 	/* Reset Tx ports and delete Tx queues */
4322 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4323 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4324 
4325 	for (queue = 0; queue < txq_number; queue++) {
4326 		txq = port->txqs[queue];
4327 		mvpp2_txq_clean(port, txq);
4328 		mvpp2_txq_deinit(port, txq);
4329 	}
4330 
4331 	mvpp2_txq_sent_counter_clear(port);
4332 
4333 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4334 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4335 }
4336 
4337 /* Cleanup all Rx queues */
4338 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4339 {
4340 	int queue;
4341 
4342 	for (queue = 0; queue < rxq_number; queue++)
4343 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4344 }
4345 
4346 /* Init all Rx queues for port */
4347 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4348 {
4349 	int queue, err;
4350 
4351 	for (queue = 0; queue < rxq_number; queue++) {
4352 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4353 		if (err)
4354 			goto err_cleanup;
4355 	}
4356 	return 0;
4357 
4358 err_cleanup:
4359 	mvpp2_cleanup_rxqs(port);
4360 	return err;
4361 }
4362 
4363 /* Init all tx queues for port */
4364 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4365 {
4366 	struct mvpp2_tx_queue *txq;
4367 	int queue, err;
4368 
4369 	for (queue = 0; queue < txq_number; queue++) {
4370 		txq = port->txqs[queue];
4371 		err = mvpp2_txq_init(port, txq);
4372 		if (err)
4373 			goto err_cleanup;
4374 	}
4375 
4376 	mvpp2_txq_sent_counter_clear(port);
4377 	return 0;
4378 
4379 err_cleanup:
4380 	mvpp2_cleanup_txqs(port);
4381 	return err;
4382 }
4383 
4384 /* Adjust link */
4385 static void mvpp2_link_event(struct mvpp2_port *port)
4386 {
4387 	struct phy_device *phydev = port->phy_dev;
4388 	int status_change = 0;
4389 	u32 val;
4390 
4391 	if (phydev->link) {
4392 		if ((port->speed != phydev->speed) ||
4393 		    (port->duplex != phydev->duplex)) {
4394 			u32 val;
4395 
4396 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4397 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4398 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4399 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4400 				 MVPP2_GMAC_AN_SPEED_EN |
4401 				 MVPP2_GMAC_AN_DUPLEX_EN);
4402 
4403 			if (phydev->duplex)
4404 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4405 
4406 			if (phydev->speed == SPEED_1000)
4407 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4408 			else if (phydev->speed == SPEED_100)
4409 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4410 
4411 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4412 
4413 			port->duplex = phydev->duplex;
4414 			port->speed  = phydev->speed;
4415 		}
4416 	}
4417 
4418 	if (phydev->link != port->link) {
4419 		if (!phydev->link) {
4420 			port->duplex = -1;
4421 			port->speed = 0;
4422 		}
4423 
4424 		port->link = phydev->link;
4425 		status_change = 1;
4426 	}
4427 
4428 	if (status_change) {
4429 		if (phydev->link) {
4430 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4431 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4432 				MVPP2_GMAC_FORCE_LINK_DOWN);
4433 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4434 			mvpp2_egress_enable(port);
4435 			mvpp2_ingress_enable(port);
4436 		} else {
4437 			mvpp2_ingress_disable(port);
4438 			mvpp2_egress_disable(port);
4439 		}
4440 	}
4441 }
4442 
4443 /* Main RX/TX processing routines */
4444 
4445 /* Display more error info */
4446 static void mvpp2_rx_error(struct mvpp2_port *port,
4447 			   struct mvpp2_rx_desc *rx_desc)
4448 {
4449 	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4450 	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4451 
4452 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4453 	case MVPP2_RXD_ERR_CRC:
4454 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4455 			   status, sz);
4456 		break;
4457 	case MVPP2_RXD_ERR_OVERRUN:
4458 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4459 			   status, sz);
4460 		break;
4461 	case MVPP2_RXD_ERR_RESOURCE:
4462 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4463 			   status, sz);
4464 		break;
4465 	}
4466 }
4467 
4468 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4469 static int mvpp2_rx_refill(struct mvpp2_port *port,
4470 			   struct mvpp2_bm_pool *bm_pool,
4471 			   u32 bm, dma_addr_t dma_addr)
4472 {
4473 	mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4474 	return 0;
4475 }
4476 
4477 /* Set hw internals when starting port */
4478 static void mvpp2_start_dev(struct mvpp2_port *port)
4479 {
4480 	switch (port->phy_interface) {
4481 	case PHY_INTERFACE_MODE_RGMII:
4482 	case PHY_INTERFACE_MODE_RGMII_ID:
4483 	case PHY_INTERFACE_MODE_SGMII:
4484 		mvpp2_gmac_max_rx_size_set(port);
4485 	default:
4486 		break;
4487 	}
4488 
4489 	mvpp2_txp_max_tx_size_set(port);
4490 
4491 	if (port->priv->hw_version == MVPP21)
4492 		mvpp2_port_enable(port);
4493 	else
4494 		gop_port_enable(port, 1);
4495 }
4496 
4497 /* Set hw internals when stopping port */
4498 static void mvpp2_stop_dev(struct mvpp2_port *port)
4499 {
4500 	/* Stop new packets from arriving to RXQs */
4501 	mvpp2_ingress_disable(port);
4502 
4503 	mvpp2_egress_disable(port);
4504 
4505 	if (port->priv->hw_version == MVPP21)
4506 		mvpp2_port_disable(port);
4507 	else
4508 		gop_port_enable(port, 0);
4509 }
4510 
4511 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4512 {
4513 	struct phy_device *phy_dev;
4514 
4515 	if (!port->init || port->link == 0) {
4516 		phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
4517 				      port->phy_interface);
4518 		port->phy_dev = phy_dev;
4519 		if (!phy_dev) {
4520 			netdev_err(port->dev, "cannot connect to phy\n");
4521 			return -ENODEV;
4522 		}
4523 		phy_dev->supported &= PHY_GBIT_FEATURES;
4524 		phy_dev->advertising = phy_dev->supported;
4525 
4526 		port->phy_dev = phy_dev;
4527 		port->link    = 0;
4528 		port->duplex  = 0;
4529 		port->speed   = 0;
4530 
4531 		phy_config(phy_dev);
4532 		phy_startup(phy_dev);
4533 		if (!phy_dev->link) {
4534 			printf("%s: No link\n", phy_dev->dev->name);
4535 			return -1;
4536 		}
4537 
4538 		port->init = 1;
4539 	} else {
4540 		mvpp2_egress_enable(port);
4541 		mvpp2_ingress_enable(port);
4542 	}
4543 
4544 	return 0;
4545 }
4546 
4547 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4548 {
4549 	unsigned char mac_bcast[ETH_ALEN] = {
4550 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4551 	int err;
4552 
4553 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4554 	if (err) {
4555 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4556 		return err;
4557 	}
4558 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4559 				      port->dev_addr, true);
4560 	if (err) {
4561 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4562 		return err;
4563 	}
4564 	err = mvpp2_prs_def_flow(port);
4565 	if (err) {
4566 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4567 		return err;
4568 	}
4569 
4570 	/* Allocate the Rx/Tx queues */
4571 	err = mvpp2_setup_rxqs(port);
4572 	if (err) {
4573 		netdev_err(port->dev, "cannot allocate Rx queues\n");
4574 		return err;
4575 	}
4576 
4577 	err = mvpp2_setup_txqs(port);
4578 	if (err) {
4579 		netdev_err(port->dev, "cannot allocate Tx queues\n");
4580 		return err;
4581 	}
4582 
4583 	if (port->phy_node) {
4584 		err = mvpp2_phy_connect(dev, port);
4585 		if (err < 0)
4586 			return err;
4587 
4588 		mvpp2_link_event(port);
4589 	} else {
4590 		mvpp2_egress_enable(port);
4591 		mvpp2_ingress_enable(port);
4592 	}
4593 
4594 	mvpp2_start_dev(port);
4595 
4596 	return 0;
4597 }
4598 
4599 /* No Device ops here in U-Boot */
4600 
4601 /* Driver initialization */
4602 
4603 static void mvpp2_port_power_up(struct mvpp2_port *port)
4604 {
4605 	struct mvpp2 *priv = port->priv;
4606 
4607 	/* On PPv2.2 the GoP / interface configuration has already been done */
4608 	if (priv->hw_version == MVPP21)
4609 		mvpp2_port_mii_set(port);
4610 	mvpp2_port_periodic_xon_disable(port);
4611 	if (priv->hw_version == MVPP21)
4612 		mvpp2_port_fc_adv_enable(port);
4613 	mvpp2_port_reset(port);
4614 }
4615 
4616 /* Initialize port HW */
4617 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4618 {
4619 	struct mvpp2 *priv = port->priv;
4620 	struct mvpp2_txq_pcpu *txq_pcpu;
4621 	int queue, cpu, err;
4622 
4623 	if (port->first_rxq + rxq_number >
4624 	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
4625 		return -EINVAL;
4626 
4627 	/* Disable port */
4628 	mvpp2_egress_disable(port);
4629 	if (priv->hw_version == MVPP21)
4630 		mvpp2_port_disable(port);
4631 	else
4632 		gop_port_enable(port, 0);
4633 
4634 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4635 				  GFP_KERNEL);
4636 	if (!port->txqs)
4637 		return -ENOMEM;
4638 
4639 	/* Associate physical Tx queues to this port and initialize.
4640 	 * The mapping is predefined.
4641 	 */
4642 	for (queue = 0; queue < txq_number; queue++) {
4643 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4644 		struct mvpp2_tx_queue *txq;
4645 
4646 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4647 		if (!txq)
4648 			return -ENOMEM;
4649 
4650 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4651 					 GFP_KERNEL);
4652 		if (!txq->pcpu)
4653 			return -ENOMEM;
4654 
4655 		txq->id = queue_phy_id;
4656 		txq->log_id = queue;
4657 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4658 		for_each_present_cpu(cpu) {
4659 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4660 			txq_pcpu->cpu = cpu;
4661 		}
4662 
4663 		port->txqs[queue] = txq;
4664 	}
4665 
4666 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4667 				  GFP_KERNEL);
4668 	if (!port->rxqs)
4669 		return -ENOMEM;
4670 
4671 	/* Allocate and initialize Rx queue for this port */
4672 	for (queue = 0; queue < rxq_number; queue++) {
4673 		struct mvpp2_rx_queue *rxq;
4674 
4675 		/* Map physical Rx queue to port's logical Rx queue */
4676 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4677 		if (!rxq)
4678 			return -ENOMEM;
4679 		/* Map this Rx queue to a physical queue */
4680 		rxq->id = port->first_rxq + queue;
4681 		rxq->port = port->id;
4682 		rxq->logic_rxq = queue;
4683 
4684 		port->rxqs[queue] = rxq;
4685 	}
4686 
4687 
4688 	/* Create Rx descriptor rings */
4689 	for (queue = 0; queue < rxq_number; queue++) {
4690 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4691 
4692 		rxq->size = port->rx_ring_size;
4693 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4694 		rxq->time_coal = MVPP2_RX_COAL_USEC;
4695 	}
4696 
4697 	mvpp2_ingress_disable(port);
4698 
4699 	/* Port default configuration */
4700 	mvpp2_defaults_set(port);
4701 
4702 	/* Port's classifier configuration */
4703 	mvpp2_cls_oversize_rxq_set(port);
4704 	mvpp2_cls_port_config(port);
4705 
4706 	/* Provide an initial Rx packet size */
4707 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4708 
4709 	/* Initialize pools for swf */
4710 	err = mvpp2_swf_bm_pool_init(port);
4711 	if (err)
4712 		return err;
4713 
4714 	return 0;
4715 }
4716 
4717 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4718 {
4719 	int port_node = dev_of_offset(dev);
4720 	const char *phy_mode_str;
4721 	int phy_node, mdio_off, cp_node;
4722 	u32 id;
4723 	u32 phyaddr = 0;
4724 	int phy_mode = -1;
4725 	u64 mdio_addr;
4726 
4727 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4728 
4729 	if (phy_node > 0) {
4730 		phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4731 		if (phyaddr < 0) {
4732 			dev_err(&pdev->dev, "could not find phy address\n");
4733 			return -1;
4734 		}
4735 		mdio_off = fdt_parent_offset(gd->fdt_blob, phy_node);
4736 
4737 		/* TODO: This WA for mdio issue. U-boot 2017 don't have
4738 		 * mdio driver and on MACHIATOBin board ports from CP1
4739 		 * connected to mdio on CP0.
4740 		 * WA is to get mdio address from phy handler parent
4741 		 * base address. WA should be removed after
4742 		 * mdio driver implementation.
4743 		 */
4744 		mdio_addr = fdtdec_get_uint(gd->fdt_blob,
4745 					    mdio_off, "reg", 0);
4746 
4747 		cp_node = fdt_parent_offset(gd->fdt_blob, mdio_off);
4748 		mdio_addr |= fdt_get_base_address((void *)gd->fdt_blob,
4749 						  cp_node);
4750 
4751 		port->priv->mdio_base = (void *)mdio_addr;
4752 
4753 		if (port->priv->mdio_base < 0) {
4754 			dev_err(&pdev->dev, "could not find mdio base address\n");
4755 			return -1;
4756 		}
4757 	} else {
4758 		phy_node = 0;
4759 	}
4760 
4761 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4762 	if (phy_mode_str)
4763 		phy_mode = phy_get_interface_by_name(phy_mode_str);
4764 	if (phy_mode == -1) {
4765 		dev_err(&pdev->dev, "incorrect phy mode\n");
4766 		return -EINVAL;
4767 	}
4768 
4769 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4770 	if (id == -1) {
4771 		dev_err(&pdev->dev, "missing port-id value\n");
4772 		return -EINVAL;
4773 	}
4774 
4775 #ifdef CONFIG_DM_GPIO
4776 	gpio_request_by_name(dev, "phy-reset-gpios", 0,
4777 			     &port->phy_reset_gpio, GPIOD_IS_OUT);
4778 	gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
4779 			     &port->phy_tx_disable_gpio, GPIOD_IS_OUT);
4780 #endif
4781 
4782 	/*
4783 	 * ToDo:
4784 	 * Not sure if this DT property "phy-speed" will get accepted, so
4785 	 * this might change later
4786 	 */
4787 	/* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4788 	port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4789 					 "phy-speed", 1000);
4790 
4791 	port->id = id;
4792 	if (port->priv->hw_version == MVPP21)
4793 		port->first_rxq = port->id * rxq_number;
4794 	else
4795 		port->first_rxq = port->id * port->priv->max_port_rxqs;
4796 	port->phy_node = phy_node;
4797 	port->phy_interface = phy_mode;
4798 	port->phyaddr = phyaddr;
4799 
4800 	return 0;
4801 }
4802 
4803 #ifdef CONFIG_DM_GPIO
4804 /* Port GPIO initialization */
4805 static void mvpp2_gpio_init(struct mvpp2_port *port)
4806 {
4807 	if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
4808 		dm_gpio_set_value(&port->phy_reset_gpio, 0);
4809 		udelay(1000);
4810 		dm_gpio_set_value(&port->phy_reset_gpio, 1);
4811 	}
4812 
4813 	if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
4814 		dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
4815 }
4816 #endif
4817 
4818 /* Ports initialization */
4819 static int mvpp2_port_probe(struct udevice *dev,
4820 			    struct mvpp2_port *port,
4821 			    int port_node,
4822 			    struct mvpp2 *priv)
4823 {
4824 	int err;
4825 
4826 	port->tx_ring_size = MVPP2_MAX_TXD;
4827 	port->rx_ring_size = MVPP2_MAX_RXD;
4828 
4829 	err = mvpp2_port_init(dev, port);
4830 	if (err < 0) {
4831 		dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4832 		return err;
4833 	}
4834 	mvpp2_port_power_up(port);
4835 
4836 #ifdef CONFIG_DM_GPIO
4837 	mvpp2_gpio_init(port);
4838 #endif
4839 
4840 	priv->port_list[port->id] = port;
4841 	priv->num_ports++;
4842 	return 0;
4843 }
4844 
4845 /* Initialize decoding windows */
4846 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4847 				    struct mvpp2 *priv)
4848 {
4849 	u32 win_enable;
4850 	int i;
4851 
4852 	for (i = 0; i < 6; i++) {
4853 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4854 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4855 
4856 		if (i < 4)
4857 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4858 	}
4859 
4860 	win_enable = 0;
4861 
4862 	for (i = 0; i < dram->num_cs; i++) {
4863 		const struct mbus_dram_window *cs = dram->cs + i;
4864 
4865 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
4866 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4867 			    dram->mbus_dram_target_id);
4868 
4869 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4870 			    (cs->size - 1) & 0xffff0000);
4871 
4872 		win_enable |= (1 << i);
4873 	}
4874 
4875 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4876 }
4877 
4878 /* Initialize Rx FIFO's */
4879 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4880 {
4881 	int port;
4882 
4883 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4884 		if (priv->hw_version == MVPP22) {
4885 			if (port == 0) {
4886 				mvpp2_write(priv,
4887 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4888 					    MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4889 				mvpp2_write(priv,
4890 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4891 					    MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4892 			} else if (port == 1) {
4893 				mvpp2_write(priv,
4894 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4895 					    MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4896 				mvpp2_write(priv,
4897 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4898 					    MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4899 			} else {
4900 				mvpp2_write(priv,
4901 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4902 					    MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4903 				mvpp2_write(priv,
4904 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4905 					    MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4906 			}
4907 		} else {
4908 			mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4909 				    MVPP21_RX_FIFO_PORT_DATA_SIZE);
4910 			mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4911 				    MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4912 		}
4913 	}
4914 
4915 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4916 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
4917 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4918 }
4919 
4920 /* Initialize Tx FIFO's */
4921 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4922 {
4923 	int port, val;
4924 
4925 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4926 		/* Port 0 supports 10KB TX FIFO */
4927 		if (port == 0) {
4928 			val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4929 				MVPP22_TX_FIFO_SIZE_MASK;
4930 		} else {
4931 			val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4932 				MVPP22_TX_FIFO_SIZE_MASK;
4933 		}
4934 		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4935 	}
4936 }
4937 
4938 static void mvpp2_axi_init(struct mvpp2 *priv)
4939 {
4940 	u32 val, rdval, wrval;
4941 
4942 	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4943 
4944 	/* AXI Bridge Configuration */
4945 
4946 	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4947 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4948 	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4949 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4950 
4951 	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4952 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4953 	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4954 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4955 
4956 	/* BM */
4957 	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4958 	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4959 
4960 	/* Descriptors */
4961 	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4962 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4963 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4964 	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4965 
4966 	/* Buffer Data */
4967 	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4968 	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4969 
4970 	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4971 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4972 	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4973 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4974 	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4975 	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4976 
4977 	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4978 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4979 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4980 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4981 
4982 	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4983 
4984 	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4985 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4986 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4987 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4988 
4989 	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4990 }
4991 
4992 /* Initialize network controller common part HW */
4993 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4994 {
4995 	const struct mbus_dram_target_info *dram_target_info;
4996 	int err, i;
4997 	u32 val;
4998 
4999 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
5000 	if ((rxq_number > priv->max_port_rxqs) ||
5001 	    (txq_number > MVPP2_MAX_TXQ)) {
5002 		dev_err(&pdev->dev, "invalid queue size parameter\n");
5003 		return -EINVAL;
5004 	}
5005 
5006 	if (priv->hw_version == MVPP22)
5007 		mvpp2_axi_init(priv);
5008 	else {
5009 		/* MBUS windows configuration */
5010 		dram_target_info = mvebu_mbus_dram_info();
5011 		if (dram_target_info)
5012 			mvpp2_conf_mbus_windows(dram_target_info, priv);
5013 	}
5014 
5015 	if (priv->hw_version == MVPP21) {
5016 		/* Disable HW PHY polling */
5017 		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5018 		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
5019 		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
5020 	} else {
5021 		/* Enable HW PHY polling */
5022 		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5023 		val |= MVPP22_SMI_POLLING_EN;
5024 		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
5025 	}
5026 
5027 	/* Allocate and initialize aggregated TXQs */
5028 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
5029 				       sizeof(struct mvpp2_tx_queue),
5030 				       GFP_KERNEL);
5031 	if (!priv->aggr_txqs)
5032 		return -ENOMEM;
5033 
5034 	for_each_present_cpu(i) {
5035 		priv->aggr_txqs[i].id = i;
5036 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
5037 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
5038 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
5039 		if (err < 0)
5040 			return err;
5041 	}
5042 
5043 	/* Rx Fifo Init */
5044 	mvpp2_rx_fifo_init(priv);
5045 
5046 	/* Tx Fifo Init */
5047 	if (priv->hw_version == MVPP22)
5048 		mvpp2_tx_fifo_init(priv);
5049 
5050 	if (priv->hw_version == MVPP21)
5051 		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5052 		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5053 
5054 	/* Allow cache snoop when transmiting packets */
5055 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5056 
5057 	/* Buffer Manager initialization */
5058 	err = mvpp2_bm_init(dev, priv);
5059 	if (err < 0)
5060 		return err;
5061 
5062 	/* Parser default initialization */
5063 	err = mvpp2_prs_default_init(dev, priv);
5064 	if (err < 0)
5065 		return err;
5066 
5067 	/* Classifier default initialization */
5068 	mvpp2_cls_init(priv);
5069 
5070 	return 0;
5071 }
5072 
5073 /* SMI / MDIO functions */
5074 
5075 static int smi_wait_ready(struct mvpp2 *priv)
5076 {
5077 	u32 timeout = MVPP2_SMI_TIMEOUT;
5078 	u32 smi_reg;
5079 
5080 	/* wait till the SMI is not busy */
5081 	do {
5082 		/* read smi register */
5083 		smi_reg = readl(priv->mdio_base);
5084 		if (timeout-- == 0) {
5085 			printf("Error: SMI busy timeout\n");
5086 			return -EFAULT;
5087 		}
5088 	} while (smi_reg & MVPP2_SMI_BUSY);
5089 
5090 	return 0;
5091 }
5092 
5093 /*
5094  * mpp2_mdio_read - miiphy_read callback function.
5095  *
5096  * Returns 16bit phy register value, or 0xffff on error
5097  */
5098 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5099 {
5100 	struct mvpp2 *priv = bus->priv;
5101 	u32 smi_reg;
5102 	u32 timeout;
5103 
5104 	/* check parameters */
5105 	if (addr > MVPP2_PHY_ADDR_MASK) {
5106 		printf("Error: Invalid PHY address %d\n", addr);
5107 		return -EFAULT;
5108 	}
5109 
5110 	if (reg > MVPP2_PHY_REG_MASK) {
5111 		printf("Err: Invalid register offset %d\n", reg);
5112 		return -EFAULT;
5113 	}
5114 
5115 	/* wait till the SMI is not busy */
5116 	if (smi_wait_ready(priv) < 0)
5117 		return -EFAULT;
5118 
5119 	/* fill the phy address and regiser offset and read opcode */
5120 	smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5121 		| (reg << MVPP2_SMI_REG_ADDR_OFFS)
5122 		| MVPP2_SMI_OPCODE_READ;
5123 
5124 	/* write the smi register */
5125 	writel(smi_reg, priv->mdio_base);
5126 
5127 	/* wait till read value is ready */
5128 	timeout = MVPP2_SMI_TIMEOUT;
5129 
5130 	do {
5131 		/* read smi register */
5132 		smi_reg = readl(priv->mdio_base);
5133 		if (timeout-- == 0) {
5134 			printf("Err: SMI read ready timeout\n");
5135 			return -EFAULT;
5136 		}
5137 	} while (!(smi_reg & MVPP2_SMI_READ_VALID));
5138 
5139 	/* Wait for the data to update in the SMI register */
5140 	for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5141 		;
5142 
5143 	return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5144 }
5145 
5146 /*
5147  * mpp2_mdio_write - miiphy_write callback function.
5148  *
5149  * Returns 0 if write succeed, -EINVAL on bad parameters
5150  * -ETIME on timeout
5151  */
5152 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5153 			   u16 value)
5154 {
5155 	struct mvpp2 *priv = bus->priv;
5156 	u32 smi_reg;
5157 
5158 	/* check parameters */
5159 	if (addr > MVPP2_PHY_ADDR_MASK) {
5160 		printf("Error: Invalid PHY address %d\n", addr);
5161 		return -EFAULT;
5162 	}
5163 
5164 	if (reg > MVPP2_PHY_REG_MASK) {
5165 		printf("Err: Invalid register offset %d\n", reg);
5166 		return -EFAULT;
5167 	}
5168 
5169 	/* wait till the SMI is not busy */
5170 	if (smi_wait_ready(priv) < 0)
5171 		return -EFAULT;
5172 
5173 	/* fill the phy addr and reg offset and write opcode and data */
5174 	smi_reg = value << MVPP2_SMI_DATA_OFFS;
5175 	smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5176 		| (reg << MVPP2_SMI_REG_ADDR_OFFS);
5177 	smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5178 
5179 	/* write the smi register */
5180 	writel(smi_reg, priv->mdio_base);
5181 
5182 	return 0;
5183 }
5184 
5185 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5186 {
5187 	struct mvpp2_port *port = dev_get_priv(dev);
5188 	struct mvpp2_rx_desc *rx_desc;
5189 	struct mvpp2_bm_pool *bm_pool;
5190 	dma_addr_t dma_addr;
5191 	u32 bm, rx_status;
5192 	int pool, rx_bytes, err;
5193 	int rx_received;
5194 	struct mvpp2_rx_queue *rxq;
5195 	u8 *data;
5196 
5197 	/* Process RX packets */
5198 	rxq = port->rxqs[0];
5199 
5200 	/* Get number of received packets and clamp the to-do */
5201 	rx_received = mvpp2_rxq_received(port, rxq->id);
5202 
5203 	/* Return if no packets are received */
5204 	if (!rx_received)
5205 		return 0;
5206 
5207 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
5208 	rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5209 	rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5210 	rx_bytes -= MVPP2_MH_SIZE;
5211 	dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5212 
5213 	bm = mvpp2_bm_cookie_build(port, rx_desc);
5214 	pool = mvpp2_bm_cookie_pool_get(bm);
5215 	bm_pool = &port->priv->bm_pools[pool];
5216 
5217 	/* In case of an error, release the requested buffer pointer
5218 	 * to the Buffer Manager. This request process is controlled
5219 	 * by the hardware, and the information about the buffer is
5220 	 * comprised by the RX descriptor.
5221 	 */
5222 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5223 		mvpp2_rx_error(port, rx_desc);
5224 		/* Return the buffer to the pool */
5225 		mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5226 		return 0;
5227 	}
5228 
5229 	err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5230 	if (err) {
5231 		netdev_err(port->dev, "failed to refill BM pools\n");
5232 		return 0;
5233 	}
5234 
5235 	/* Update Rx queue management counters */
5236 	mb();
5237 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5238 
5239 	/* give packet to stack - skip on first n bytes */
5240 	data = (u8 *)dma_addr + 2 + 32;
5241 
5242 	if (rx_bytes <= 0)
5243 		return 0;
5244 
5245 	/*
5246 	 * No cache invalidation needed here, since the rx_buffer's are
5247 	 * located in a uncached memory region
5248 	 */
5249 	*packetp = data;
5250 
5251 	return rx_bytes;
5252 }
5253 
5254 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5255 {
5256 	struct mvpp2_port *port = dev_get_priv(dev);
5257 	struct mvpp2_tx_queue *txq, *aggr_txq;
5258 	struct mvpp2_tx_desc *tx_desc;
5259 	int tx_done;
5260 	int timeout;
5261 
5262 	txq = port->txqs[0];
5263 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5264 
5265 	/* Get a descriptor for the first part of the packet */
5266 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5267 	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5268 	mvpp2_txdesc_size_set(port, tx_desc, length);
5269 	mvpp2_txdesc_offset_set(port, tx_desc,
5270 				(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5271 	mvpp2_txdesc_dma_addr_set(port, tx_desc,
5272 				  (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5273 	/* First and Last descriptor */
5274 	mvpp2_txdesc_cmd_set(port, tx_desc,
5275 			     MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5276 			     | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5277 
5278 	/* Flush tx data */
5279 	flush_dcache_range((unsigned long)packet,
5280 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
5281 
5282 	/* Enable transmit */
5283 	mb();
5284 	mvpp2_aggr_txq_pend_desc_add(port, 1);
5285 
5286 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5287 
5288 	timeout = 0;
5289 	do {
5290 		if (timeout++ > 10000) {
5291 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
5292 			return 0;
5293 		}
5294 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5295 	} while (tx_done);
5296 
5297 	timeout = 0;
5298 	do {
5299 		if (timeout++ > 10000) {
5300 			printf("timeout: packet not sent\n");
5301 			return 0;
5302 		}
5303 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5304 	} while (!tx_done);
5305 
5306 	return 0;
5307 }
5308 
5309 static int mvpp2_start(struct udevice *dev)
5310 {
5311 	struct eth_pdata *pdata = dev_get_platdata(dev);
5312 	struct mvpp2_port *port = dev_get_priv(dev);
5313 
5314 	/* Load current MAC address */
5315 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5316 
5317 	/* Reconfigure parser accept the original MAC address */
5318 	mvpp2_prs_update_mac_da(port, port->dev_addr);
5319 
5320 	switch (port->phy_interface) {
5321 	case PHY_INTERFACE_MODE_RGMII:
5322 	case PHY_INTERFACE_MODE_RGMII_ID:
5323 	case PHY_INTERFACE_MODE_SGMII:
5324 		mvpp2_port_power_up(port);
5325 	default:
5326 		break;
5327 	}
5328 
5329 	mvpp2_open(dev, port);
5330 
5331 	return 0;
5332 }
5333 
5334 static void mvpp2_stop(struct udevice *dev)
5335 {
5336 	struct mvpp2_port *port = dev_get_priv(dev);
5337 
5338 	mvpp2_stop_dev(port);
5339 	mvpp2_cleanup_rxqs(port);
5340 	mvpp2_cleanup_txqs(port);
5341 }
5342 
5343 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port)
5344 {
5345 	writel(port->phyaddr, port->priv->iface_base +
5346 	       MVPP22_SMI_PHY_ADDR_REG(port->gop_id));
5347 
5348 	return 0;
5349 }
5350 
5351 static int mvpp2_base_probe(struct udevice *dev)
5352 {
5353 	struct mvpp2 *priv = dev_get_priv(dev);
5354 	struct mii_dev *bus;
5355 	void *bd_space;
5356 	u32 size = 0;
5357 	int i;
5358 
5359 	/* Save hw-version */
5360 	priv->hw_version = dev_get_driver_data(dev);
5361 
5362 	/*
5363 	 * U-Boot special buffer handling:
5364 	 *
5365 	 * Allocate buffer area for descs and rx_buffers. This is only
5366 	 * done once for all interfaces. As only one interface can
5367 	 * be active. Make this area DMA-safe by disabling the D-cache
5368 	 */
5369 
5370 	/* Align buffer area for descs and rx_buffers to 1MiB */
5371 	bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5372 	mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5373 					BD_SPACE, DCACHE_OFF);
5374 
5375 	buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5376 	size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5377 
5378 	buffer_loc.tx_descs =
5379 		(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5380 	size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5381 
5382 	buffer_loc.rx_descs =
5383 		(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5384 	size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5385 
5386 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5387 		buffer_loc.bm_pool[i] =
5388 			(unsigned long *)((unsigned long)bd_space + size);
5389 		if (priv->hw_version == MVPP21)
5390 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5391 		else
5392 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5393 	}
5394 
5395 	for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5396 		buffer_loc.rx_buffer[i] =
5397 			(unsigned long *)((unsigned long)bd_space + size);
5398 		size += RX_BUFFER_SIZE;
5399 	}
5400 
5401 	/* Clear the complete area so that all descriptors are cleared */
5402 	memset(bd_space, 0, size);
5403 
5404 	/* Save base addresses for later use */
5405 	priv->base = (void *)devfdt_get_addr_index(dev, 0);
5406 	if (IS_ERR(priv->base))
5407 		return PTR_ERR(priv->base);
5408 
5409 	if (priv->hw_version == MVPP21) {
5410 		priv->lms_base = (void *)devfdt_get_addr_index(dev, 1);
5411 		if (IS_ERR(priv->lms_base))
5412 			return PTR_ERR(priv->lms_base);
5413 
5414 		priv->mdio_base = priv->lms_base + MVPP21_SMI;
5415 	} else {
5416 		priv->iface_base = (void *)devfdt_get_addr_index(dev, 1);
5417 		if (IS_ERR(priv->iface_base))
5418 			return PTR_ERR(priv->iface_base);
5419 
5420 		priv->mdio_base = priv->iface_base + MVPP22_SMI;
5421 
5422 		/* Store common base addresses for all ports */
5423 		priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5424 		priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5425 		priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5426 	}
5427 
5428 	if (priv->hw_version == MVPP21)
5429 		priv->max_port_rxqs = 8;
5430 	else
5431 		priv->max_port_rxqs = 32;
5432 
5433 	/* Finally create and register the MDIO bus driver */
5434 	bus = mdio_alloc();
5435 	if (!bus) {
5436 		printf("Failed to allocate MDIO bus\n");
5437 		return -ENOMEM;
5438 	}
5439 
5440 	bus->read = mpp2_mdio_read;
5441 	bus->write = mpp2_mdio_write;
5442 	snprintf(bus->name, sizeof(bus->name), dev->name);
5443 	bus->priv = (void *)priv;
5444 	priv->bus = bus;
5445 
5446 	return mdio_register(bus);
5447 }
5448 
5449 static int mvpp2_probe(struct udevice *dev)
5450 {
5451 	struct mvpp2_port *port = dev_get_priv(dev);
5452 	struct mvpp2 *priv = dev_get_priv(dev->parent);
5453 	int err;
5454 
5455 	/* Only call the probe function for the parent once */
5456 	if (!priv->probe_done)
5457 		err = mvpp2_base_probe(dev->parent);
5458 
5459 	port->priv = dev_get_priv(dev->parent);
5460 
5461 	err = phy_info_parse(dev, port);
5462 	if (err)
5463 		return err;
5464 
5465 	/*
5466 	 * We need the port specific io base addresses at this stage, since
5467 	 * gop_port_init() accesses these registers
5468 	 */
5469 	if (priv->hw_version == MVPP21) {
5470 		int priv_common_regs_num = 2;
5471 
5472 		port->base = (void __iomem *)devfdt_get_addr_index(
5473 			dev->parent, priv_common_regs_num + port->id);
5474 		if (IS_ERR(port->base))
5475 			return PTR_ERR(port->base);
5476 	} else {
5477 		port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5478 					      "gop-port-id", -1);
5479 		if (port->id == -1) {
5480 			dev_err(&pdev->dev, "missing gop-port-id value\n");
5481 			return -EINVAL;
5482 		}
5483 
5484 		port->base = priv->iface_base + MVPP22_PORT_BASE +
5485 			port->gop_id * MVPP22_PORT_OFFSET;
5486 
5487 		/* Set phy address of the port */
5488 		if(port->phy_node)
5489 			mvpp22_smi_phy_addr_cfg(port);
5490 
5491 		/* GoP Init */
5492 		gop_port_init(port);
5493 	}
5494 
5495 	if (!priv->probe_done) {
5496 		/* Initialize network controller */
5497 		err = mvpp2_init(dev, priv);
5498 		if (err < 0) {
5499 			dev_err(&pdev->dev, "failed to initialize controller\n");
5500 			return err;
5501 		}
5502 		priv->num_ports = 0;
5503 		priv->probe_done = 1;
5504 	}
5505 
5506 	err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5507 	if (err)
5508 		return err;
5509 
5510 	if (priv->hw_version == MVPP22) {
5511 		priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5512 							   port->phy_interface);
5513 
5514 		/* Netcomplex configurations for all ports */
5515 		gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5516 		gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5517 	}
5518 
5519 	return 0;
5520 }
5521 
5522 /*
5523  * Empty BM pool and stop its activity before the OS is started
5524  */
5525 static int mvpp2_remove(struct udevice *dev)
5526 {
5527 	struct mvpp2_port *port = dev_get_priv(dev);
5528 	struct mvpp2 *priv = port->priv;
5529 	int i;
5530 
5531 	priv->num_ports--;
5532 
5533 	if (priv->num_ports)
5534 		return 0;
5535 
5536 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5537 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5538 
5539 	return 0;
5540 }
5541 
5542 static const struct eth_ops mvpp2_ops = {
5543 	.start		= mvpp2_start,
5544 	.send		= mvpp2_send,
5545 	.recv		= mvpp2_recv,
5546 	.stop		= mvpp2_stop,
5547 };
5548 
5549 static struct driver mvpp2_driver = {
5550 	.name	= "mvpp2",
5551 	.id	= UCLASS_ETH,
5552 	.probe	= mvpp2_probe,
5553 	.remove = mvpp2_remove,
5554 	.ops	= &mvpp2_ops,
5555 	.priv_auto_alloc_size = sizeof(struct mvpp2_port),
5556 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5557 	.flags	= DM_FLAG_ACTIVE_DMA,
5558 };
5559 
5560 /*
5561  * Use a MISC device to bind the n instances (child nodes) of the
5562  * network base controller in UCLASS_ETH.
5563  */
5564 static int mvpp2_base_bind(struct udevice *parent)
5565 {
5566 	const void *blob = gd->fdt_blob;
5567 	int node = dev_of_offset(parent);
5568 	struct uclass_driver *drv;
5569 	struct udevice *dev;
5570 	struct eth_pdata *plat;
5571 	char *name;
5572 	int subnode;
5573 	u32 id;
5574 	int base_id_add;
5575 
5576 	/* Lookup eth driver */
5577 	drv = lists_uclass_lookup(UCLASS_ETH);
5578 	if (!drv) {
5579 		puts("Cannot find eth driver\n");
5580 		return -ENOENT;
5581 	}
5582 
5583 	base_id_add = base_id;
5584 
5585 	fdt_for_each_subnode(subnode, blob, node) {
5586 		/* Increment base_id for all subnodes, also the disabled ones */
5587 		base_id++;
5588 
5589 		/* Skip disabled ports */
5590 		if (!fdtdec_get_is_enabled(blob, subnode))
5591 			continue;
5592 
5593 		plat = calloc(1, sizeof(*plat));
5594 		if (!plat)
5595 			return -ENOMEM;
5596 
5597 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
5598 		id += base_id_add;
5599 
5600 		name = calloc(1, 16);
5601 		sprintf(name, "mvpp2-%d", id);
5602 
5603 		/* Create child device UCLASS_ETH and bind it */
5604 		device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5605 		dev_set_of_offset(dev, subnode);
5606 	}
5607 
5608 	return 0;
5609 }
5610 
5611 static const struct udevice_id mvpp2_ids[] = {
5612 	{
5613 		.compatible = "marvell,armada-375-pp2",
5614 		.data = MVPP21,
5615 	},
5616 	{
5617 		.compatible = "marvell,armada-7k-pp22",
5618 		.data = MVPP22,
5619 	},
5620 	{ }
5621 };
5622 
5623 U_BOOT_DRIVER(mvpp2_base) = {
5624 	.name	= "mvpp2_base",
5625 	.id	= UCLASS_MISC,
5626 	.of_match = mvpp2_ids,
5627 	.bind	= mvpp2_base_bind,
5628 	.priv_auto_alloc_size = sizeof(struct mvpp2),
5629 };
5630