xref: /openbmc/u-boot/drivers/net/mvpp2.c (revision 747778cf)
1 /*
2  * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3  *
4  * Copyright (C) 2014 Marvell
5  *
6  * Marcin Wojtas <mw@semihalf.com>
7  *
8  * U-Boot version:
9  * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2. This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <net.h>
21 #include <netdev.h>
22 #include <config.h>
23 #include <malloc.h>
24 #include <asm/io.h>
25 #include <linux/errno.h>
26 #include <phy.h>
27 #include <miiphy.h>
28 #include <watchdog.h>
29 #include <asm/arch/cpu.h>
30 #include <asm/arch/soc.h>
31 #include <linux/compat.h>
32 #include <linux/mbus.h>
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 /* Some linux -> U-Boot compatibility stuff */
37 #define netdev_err(dev, fmt, args...)		\
38 	printf(fmt, ##args)
39 #define netdev_warn(dev, fmt, args...)		\
40 	printf(fmt, ##args)
41 #define netdev_info(dev, fmt, args...)		\
42 	printf(fmt, ##args)
43 #define netdev_dbg(dev, fmt, args...)		\
44 	printf(fmt, ##args)
45 
46 #define ETH_ALEN	6		/* Octets in one ethernet addr	*/
47 
48 #define __verify_pcpu_ptr(ptr)						\
49 do {									\
50 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
51 	(void)__vpp_verify;						\
52 } while (0)
53 
54 #define VERIFY_PERCPU_PTR(__p)						\
55 ({									\
56 	__verify_pcpu_ptr(__p);						\
57 	(typeof(*(__p)) __kernel __force *)(__p);			\
58 })
59 
60 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
61 #define smp_processor_id()	0
62 #define num_present_cpus()	1
63 #define for_each_present_cpu(cpu)			\
64 	for ((cpu) = 0; (cpu) < 1; (cpu)++)
65 
66 #define NET_SKB_PAD	max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
67 
68 #define CONFIG_NR_CPUS		1
69 #define ETH_HLEN		ETHER_HDR_SIZE	/* Total octets in header */
70 
71 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
72 #define WRAP			(2 + ETH_HLEN + 4 + 32)
73 #define MTU			1500
74 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
75 
76 #define MVPP2_SMI_TIMEOUT			10000
77 
78 /* RX Fifo Registers */
79 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
80 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
81 #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
82 #define MVPP2_RX_FIFO_INIT_REG			0x64
83 
84 /* RX DMA Top Registers */
85 #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
86 #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
87 #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
88 #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
89 #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
90 #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
91 #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
92 #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
93 #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
94 #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
95 #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
96 #define     MVPP2_RXQ_POOL_LONG_OFFS		24
97 #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
98 #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
99 #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
100 #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
101 #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
102 
103 /* Parser Registers */
104 #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
105 #define     MVPP2_PRS_PORT_LU_MAX		0xf
106 #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
107 #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
108 #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
109 #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
110 #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
111 #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
112 #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
113 #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
114 #define MVPP2_PRS_TCAM_IDX_REG			0x1100
115 #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
116 #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
117 #define MVPP2_PRS_SRAM_IDX_REG			0x1200
118 #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
119 #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
120 #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
121 
122 /* Classifier Registers */
123 #define MVPP2_CLS_MODE_REG			0x1800
124 #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
125 #define MVPP2_CLS_PORT_WAY_REG			0x1810
126 #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
127 #define MVPP2_CLS_LKP_INDEX_REG			0x1814
128 #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
129 #define MVPP2_CLS_LKP_TBL_REG			0x1818
130 #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
131 #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
132 #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
133 #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
134 #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
135 #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
136 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
137 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
138 #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
139 #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
140 #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
141 #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
142 
143 /* Descriptor Manager Top Registers */
144 #define MVPP2_RXQ_NUM_REG			0x2040
145 #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
146 #define     MVPP22_DESC_ADDR_OFFS		8
147 #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
148 #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
149 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
150 #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
151 #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
152 #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
153 #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
154 #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
155 #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
156 #define MVPP2_RXQ_THRESH_REG			0x204c
157 #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
158 #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
159 #define MVPP2_RXQ_INDEX_REG			0x2050
160 #define MVPP2_TXQ_NUM_REG			0x2080
161 #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
162 #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
163 #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
164 #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
165 #define MVPP2_TXQ_THRESH_REG			0x2094
166 #define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
167 #define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
168 #define MVPP2_TXQ_INDEX_REG			0x2098
169 #define MVPP2_TXQ_PREF_BUF_REG			0x209c
170 #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
171 #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
172 #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
173 #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
174 #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
175 #define MVPP2_TXQ_PENDING_REG			0x20a0
176 #define     MVPP2_TXQ_PENDING_MASK		0x3fff
177 #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
178 #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
179 #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
180 #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
181 #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
182 #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
183 #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
184 #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
185 #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
186 #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
187 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
188 #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
189 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
190 #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
191 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
192 #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
193 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
194 
195 /* MBUS bridge registers */
196 #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
197 #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
198 #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
199 #define MVPP2_BASE_ADDR_ENABLE			0x4060
200 
201 /* AXI Bridge Registers */
202 #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
203 #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
204 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
205 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
206 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
207 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
208 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
209 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
210 #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
211 #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
212 #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
213 #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
214 
215 /* Values for AXI Bridge registers */
216 #define MVPP22_AXI_ATTR_CACHE_OFFS		0
217 #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
218 
219 #define MVPP22_AXI_CODE_CACHE_OFFS		0
220 #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
221 
222 #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
223 #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
224 #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
225 
226 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
227 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
228 
229 /* Interrupt Cause and Mask registers */
230 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
231 #define MVPP21_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
232 
233 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG          0x5400
234 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
235 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
236 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
237 
238 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
239 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK   0x380
240 
241 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG     0x5404
242 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK    0x1f
243 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK      0xf00
244 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET    8
245 
246 #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
247 #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
248 #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
249 #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
250 #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
251 #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
252 #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
253 #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
254 #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
255 #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
256 #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
257 #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
258 #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
259 #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
260 #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
261 #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
262 #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
263 #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
264 
265 /* Buffer Manager registers */
266 #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
267 #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
268 #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
269 #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
270 #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
271 #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
272 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
273 #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
274 #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
275 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
276 #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
277 #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
278 #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
279 #define     MVPP2_BM_START_MASK			BIT(0)
280 #define     MVPP2_BM_STOP_MASK			BIT(1)
281 #define     MVPP2_BM_STATE_MASK			BIT(4)
282 #define     MVPP2_BM_LOW_THRESH_OFFS		8
283 #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
284 #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
285 						MVPP2_BM_LOW_THRESH_OFFS)
286 #define     MVPP2_BM_HIGH_THRESH_OFFS		16
287 #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
288 #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
289 						MVPP2_BM_HIGH_THRESH_OFFS)
290 #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
291 #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
292 #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
293 #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
294 #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
295 #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
296 #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
297 #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
298 #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
299 #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
300 #define MVPP2_BM_ADDR_HIGH_ALLOC		0x6444
301 #define     MVPP2_BM_ADDR_HIGH_PHYS_MASK	0xff
302 #define     MVPP2_BM_ADDR_HIGH_VIRT_MASK	0xff00
303 #define     MVPP2_BM_ADDR_HIGH_VIRT_SHIFT	8
304 #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
305 #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
306 #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
307 #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
308 #define MVPP2_BM_VIRT_RLS_REG			0x64c0
309 #define MVPP21_BM_MC_RLS_REG			0x64c4
310 #define     MVPP2_BM_MC_ID_MASK			0xfff
311 #define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
312 #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
313 #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
314 #define	    MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
315 #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
316 #define MVPP22_BM_MC_RLS_REG			0x64d4
317 
318 /* TX Scheduler registers */
319 #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
320 #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
321 #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
322 #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
323 #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
324 #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
325 #define MVPP2_TXP_SCHED_MTU_REG			0x801c
326 #define     MVPP2_TXP_MTU_MAX			0x7FFFF
327 #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
328 #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
329 #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
330 #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
331 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
332 #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
333 #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
334 #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
335 #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
336 #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
337 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
338 #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
339 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
340 #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
341 
342 /* TX general registers */
343 #define MVPP2_TX_SNOOP_REG			0x8800
344 #define MVPP2_TX_PORT_FLUSH_REG			0x8810
345 #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
346 
347 /* LMS registers */
348 #define MVPP2_SRC_ADDR_MIDDLE			0x24
349 #define MVPP2_SRC_ADDR_HIGH			0x28
350 #define MVPP2_PHY_AN_CFG0_REG			0x34
351 #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
352 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
353 #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
354 
355 /* Per-port registers */
356 #define MVPP2_GMAC_CTRL_0_REG			0x0
357 #define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
358 #define      MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
359 #define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
360 #define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
361 #define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
362 #define MVPP2_GMAC_CTRL_1_REG			0x4
363 #define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
364 #define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
365 #define      MVPP2_GMAC_PCS_LB_EN_BIT		6
366 #define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
367 #define      MVPP2_GMAC_SA_LOW_OFFS		7
368 #define MVPP2_GMAC_CTRL_2_REG			0x8
369 #define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
370 #define      MVPP2_GMAC_SGMII_MODE_MASK		BIT(0)
371 #define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
372 #define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
373 #define      MVPP2_GMAC_PORT_DIS_PADING_MASK	BIT(5)
374 #define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
375 #define      MVPP2_GMAC_CLK_125_BYPS_EN_MASK	BIT(9)
376 #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
377 #define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
378 #define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
379 #define      MVPP2_GMAC_EN_PCS_AN		BIT(2)
380 #define      MVPP2_GMAC_AN_BYPASS_EN		BIT(3)
381 #define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
382 #define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
383 #define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
384 #define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
385 #define      MVPP2_GMAC_EN_FC_AN		BIT(11)
386 #define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
387 #define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
388 #define      MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG	BIT(15)
389 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
390 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
391 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
392 #define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
393 					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
394 #define MVPP2_GMAC_CTRL_4_REG			0x90
395 #define      MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK	BIT(0)
396 #define      MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK	BIT(5)
397 #define      MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK	BIT(6)
398 #define      MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK	BIT(7)
399 
400 /*
401  * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
402  * relative to port->base.
403  */
404 
405 /* Port Mac Control0 */
406 #define MVPP22_XLG_CTRL0_REG			0x100
407 #define      MVPP22_XLG_PORT_EN			BIT(0)
408 #define      MVPP22_XLG_MAC_RESETN		BIT(1)
409 #define      MVPP22_XLG_RX_FC_EN		BIT(7)
410 #define      MVPP22_XLG_MIBCNT_DIS		BIT(13)
411 /* Port Mac Control1 */
412 #define MVPP22_XLG_CTRL1_REG			0x104
413 #define      MVPP22_XLG_MAX_RX_SIZE_OFFS	0
414 #define      MVPP22_XLG_MAX_RX_SIZE_MASK	0x1fff
415 /* Port Interrupt Mask */
416 #define MVPP22_XLG_INTERRUPT_MASK_REG		0x118
417 #define      MVPP22_XLG_INTERRUPT_LINK_CHANGE	BIT(1)
418 /* Port Mac Control3 */
419 #define MVPP22_XLG_CTRL3_REG			0x11c
420 #define      MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
421 #define      MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
422 #define      MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC	(1 << 13)
423 /* Port Mac Control4 */
424 #define MVPP22_XLG_CTRL4_REG			0x184
425 #define      MVPP22_XLG_FORWARD_802_3X_FC_EN	BIT(5)
426 #define      MVPP22_XLG_FORWARD_PFC_EN		BIT(6)
427 #define      MVPP22_XLG_MODE_DMA_1G		BIT(12)
428 #define      MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK	BIT(14)
429 
430 /* XPCS registers */
431 
432 /* Global Configuration 0 */
433 #define MVPP22_XPCS_GLOBAL_CFG_0_REG		0x0
434 #define      MVPP22_XPCS_PCSRESET		BIT(0)
435 #define      MVPP22_XPCS_PCSMODE_OFFS		3
436 #define      MVPP22_XPCS_PCSMODE_MASK		(0x3 << \
437 						 MVPP22_XPCS_PCSMODE_OFFS)
438 #define      MVPP22_XPCS_LANEACTIVE_OFFS	5
439 #define      MVPP22_XPCS_LANEACTIVE_MASK	(0x3 << \
440 						 MVPP22_XPCS_LANEACTIVE_OFFS)
441 
442 /* MPCS registers */
443 
444 #define PCS40G_COMMON_CONTROL			0x14
445 #define      FORWARD_ERROR_CORRECTION_MASK	BIT(1)
446 
447 #define PCS_CLOCK_RESET				0x14c
448 #define      TX_SD_CLK_RESET_MASK		BIT(0)
449 #define      RX_SD_CLK_RESET_MASK		BIT(1)
450 #define      MAC_CLK_RESET_MASK			BIT(2)
451 #define      CLK_DIVISION_RATIO_OFFS		4
452 #define      CLK_DIVISION_RATIO_MASK		(0x7 << CLK_DIVISION_RATIO_OFFS)
453 #define      CLK_DIV_PHASE_SET_MASK		BIT(11)
454 
455 /* System Soft Reset 1 */
456 #define GOP_SOFT_RESET_1_REG			0x108
457 #define     NETC_GOP_SOFT_RESET_OFFS		6
458 #define     NETC_GOP_SOFT_RESET_MASK		(0x1 << \
459 						 NETC_GOP_SOFT_RESET_OFFS)
460 
461 /* Ports Control 0 */
462 #define NETCOMP_PORTS_CONTROL_0_REG		0x110
463 #define     NETC_BUS_WIDTH_SELECT_OFFS		1
464 #define     NETC_BUS_WIDTH_SELECT_MASK		(0x1 << \
465 						 NETC_BUS_WIDTH_SELECT_OFFS)
466 #define     NETC_GIG_RX_DATA_SAMPLE_OFFS	29
467 #define     NETC_GIG_RX_DATA_SAMPLE_MASK	(0x1 << \
468 						 NETC_GIG_RX_DATA_SAMPLE_OFFS)
469 #define     NETC_CLK_DIV_PHASE_OFFS		31
470 #define     NETC_CLK_DIV_PHASE_MASK		(0x1 << NETC_CLK_DIV_PHASE_OFFS)
471 /* Ports Control 1 */
472 #define NETCOMP_PORTS_CONTROL_1_REG		0x114
473 #define     NETC_PORTS_ACTIVE_OFFSET(p)		(0 + p)
474 #define     NETC_PORTS_ACTIVE_MASK(p)		(0x1 << \
475 						 NETC_PORTS_ACTIVE_OFFSET(p))
476 #define     NETC_PORT_GIG_RF_RESET_OFFS(p)	(28 + p)
477 #define     NETC_PORT_GIG_RF_RESET_MASK(p)	(0x1 << \
478 						 NETC_PORT_GIG_RF_RESET_OFFS(p))
479 #define NETCOMP_CONTROL_0_REG			0x120
480 #define     NETC_GBE_PORT0_SGMII_MODE_OFFS	0
481 #define     NETC_GBE_PORT0_SGMII_MODE_MASK	(0x1 << \
482 						 NETC_GBE_PORT0_SGMII_MODE_OFFS)
483 #define     NETC_GBE_PORT1_SGMII_MODE_OFFS	1
484 #define     NETC_GBE_PORT1_SGMII_MODE_MASK	(0x1 << \
485 						 NETC_GBE_PORT1_SGMII_MODE_OFFS)
486 #define     NETC_GBE_PORT1_MII_MODE_OFFS	2
487 #define     NETC_GBE_PORT1_MII_MODE_MASK	(0x1 << \
488 						 NETC_GBE_PORT1_MII_MODE_OFFS)
489 
490 #define MVPP22_SMI_MISC_CFG_REG			(MVPP22_SMI + 0x04)
491 #define      MVPP22_SMI_POLLING_EN		BIT(10)
492 
493 #define MVPP22_SMI_PHY_ADDR_REG(port)		(MVPP22_SMI + 0x04 + \
494 						 (0x4 * (port)))
495 
496 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
497 
498 /* Descriptor ring Macros */
499 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
500 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
501 
502 /* SMI: 0xc0054 -> offset 0x54 to lms_base */
503 #define MVPP21_SMI				0x0054
504 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
505 #define MVPP22_SMI				0x1200
506 #define     MVPP2_PHY_REG_MASK			0x1f
507 /* SMI register fields */
508 #define     MVPP2_SMI_DATA_OFFS			0	/* Data */
509 #define     MVPP2_SMI_DATA_MASK			(0xffff << MVPP2_SMI_DATA_OFFS)
510 #define     MVPP2_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
511 #define     MVPP2_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
512 #define     MVPP2_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
513 #define     MVPP2_SMI_OPCODE_READ		(1 << MVPP2_SMI_OPCODE_OFFS)
514 #define     MVPP2_SMI_READ_VALID		(1 << 27)	/* Read Valid */
515 #define     MVPP2_SMI_BUSY			(1 << 28)	/* Busy */
516 
517 #define     MVPP2_PHY_ADDR_MASK			0x1f
518 #define     MVPP2_PHY_REG_MASK			0x1f
519 
520 /* Additional PPv2.2 offsets */
521 #define MVPP22_MPCS				0x007000
522 #define MVPP22_XPCS				0x007400
523 #define MVPP22_PORT_BASE			0x007e00
524 #define MVPP22_PORT_OFFSET			0x001000
525 #define MVPP22_RFU1				0x318000
526 
527 /* Maximum number of ports */
528 #define MVPP22_GOP_MAC_NUM			4
529 
530 /* Sets the field located at the specified in data */
531 #define MVPP2_RGMII_TX_FIFO_MIN_TH		0x41
532 #define MVPP2_SGMII_TX_FIFO_MIN_TH		0x5
533 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH		0xb
534 
535 /* Net Complex */
536 enum mv_netc_topology {
537 	MV_NETC_GE_MAC2_SGMII		=	BIT(0),
538 	MV_NETC_GE_MAC3_SGMII		=	BIT(1),
539 	MV_NETC_GE_MAC3_RGMII		=	BIT(2),
540 };
541 
542 enum mv_netc_phase {
543 	MV_NETC_FIRST_PHASE,
544 	MV_NETC_SECOND_PHASE,
545 };
546 
547 enum mv_netc_sgmii_xmi_mode {
548 	MV_NETC_GBE_SGMII,
549 	MV_NETC_GBE_XMII,
550 };
551 
552 enum mv_netc_mii_mode {
553 	MV_NETC_GBE_RGMII,
554 	MV_NETC_GBE_MII,
555 };
556 
557 enum mv_netc_lanes {
558 	MV_NETC_LANE_23,
559 	MV_NETC_LANE_45,
560 };
561 
562 /* Various constants */
563 
564 /* Coalescing */
565 #define MVPP2_TXDONE_COAL_PKTS_THRESH	15
566 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
567 #define MVPP2_RX_COAL_PKTS		32
568 #define MVPP2_RX_COAL_USEC		100
569 
570 /* The two bytes Marvell header. Either contains a special value used
571  * by Marvell switches when a specific hardware mode is enabled (not
572  * supported by this driver) or is filled automatically by zeroes on
573  * the RX side. Those two bytes being at the front of the Ethernet
574  * header, they allow to have the IP header aligned on a 4 bytes
575  * boundary automatically: the hardware skips those two bytes on its
576  * own.
577  */
578 #define MVPP2_MH_SIZE			2
579 #define MVPP2_ETH_TYPE_LEN		2
580 #define MVPP2_PPPOE_HDR_SIZE		8
581 #define MVPP2_VLAN_TAG_LEN		4
582 
583 /* Lbtd 802.3 type */
584 #define MVPP2_IP_LBDT_TYPE		0xfffa
585 
586 #define MVPP2_CPU_D_CACHE_LINE_SIZE	32
587 #define MVPP2_TX_CSUM_MAX_SIZE		9800
588 
589 /* Timeout constants */
590 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
591 #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
592 
593 #define MVPP2_TX_MTU_MAX		0x7ffff
594 
595 /* Maximum number of T-CONTs of PON port */
596 #define MVPP2_MAX_TCONT			16
597 
598 /* Maximum number of supported ports */
599 #define MVPP2_MAX_PORTS			4
600 
601 /* Maximum number of TXQs used by single port */
602 #define MVPP2_MAX_TXQ			8
603 
604 /* Default number of TXQs in use */
605 #define MVPP2_DEFAULT_TXQ		1
606 
607 /* Dfault number of RXQs in use */
608 #define MVPP2_DEFAULT_RXQ		1
609 #define CONFIG_MV_ETH_RXQ		8	/* increment by 8 */
610 
611 /* Max number of Rx descriptors */
612 #define MVPP2_MAX_RXD			16
613 
614 /* Max number of Tx descriptors */
615 #define MVPP2_MAX_TXD			16
616 
617 /* Amount of Tx descriptors that can be reserved at once by CPU */
618 #define MVPP2_CPU_DESC_CHUNK		64
619 
620 /* Max number of Tx descriptors in each aggregated queue */
621 #define MVPP2_AGGR_TXQ_SIZE		256
622 
623 /* Descriptor aligned size */
624 #define MVPP2_DESC_ALIGNED_SIZE		32
625 
626 /* Descriptor alignment mask */
627 #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
628 
629 /* RX FIFO constants */
630 #define MVPP21_RX_FIFO_PORT_DATA_SIZE		0x2000
631 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE		0x80
632 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE	0x8000
633 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE	0x2000
634 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE	0x1000
635 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE	0x200
636 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE	0x80
637 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE	0x40
638 #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
639 
640 /* TX general registers */
641 #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port)	(0x8860 + ((eth_tx_port) << 2))
642 #define MVPP22_TX_FIFO_SIZE_MASK		0xf
643 
644 /* TX FIFO constants */
645 #define MVPP2_TX_FIFO_DATA_SIZE_10KB		0xa
646 #define MVPP2_TX_FIFO_DATA_SIZE_3KB		0x3
647 
648 /* RX buffer constants */
649 #define MVPP2_SKB_SHINFO_SIZE \
650 	0
651 
652 #define MVPP2_RX_PKT_SIZE(mtu) \
653 	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
654 	      ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
655 
656 #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
657 #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
658 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
659 	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
660 
661 #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
662 
663 /* IPv6 max L3 address size */
664 #define MVPP2_MAX_L3_ADDR_SIZE		16
665 
666 /* Port flags */
667 #define MVPP2_F_LOOPBACK		BIT(0)
668 
669 /* Marvell tag types */
670 enum mvpp2_tag_type {
671 	MVPP2_TAG_TYPE_NONE = 0,
672 	MVPP2_TAG_TYPE_MH   = 1,
673 	MVPP2_TAG_TYPE_DSA  = 2,
674 	MVPP2_TAG_TYPE_EDSA = 3,
675 	MVPP2_TAG_TYPE_VLAN = 4,
676 	MVPP2_TAG_TYPE_LAST = 5
677 };
678 
679 /* Parser constants */
680 #define MVPP2_PRS_TCAM_SRAM_SIZE	256
681 #define MVPP2_PRS_TCAM_WORDS		6
682 #define MVPP2_PRS_SRAM_WORDS		4
683 #define MVPP2_PRS_FLOW_ID_SIZE		64
684 #define MVPP2_PRS_FLOW_ID_MASK		0x3f
685 #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
686 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
687 #define MVPP2_PRS_IPV4_HEAD		0x40
688 #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
689 #define MVPP2_PRS_IPV4_MC		0xe0
690 #define MVPP2_PRS_IPV4_MC_MASK		0xf0
691 #define MVPP2_PRS_IPV4_BC_MASK		0xff
692 #define MVPP2_PRS_IPV4_IHL		0x5
693 #define MVPP2_PRS_IPV4_IHL_MASK		0xf
694 #define MVPP2_PRS_IPV6_MC		0xff
695 #define MVPP2_PRS_IPV6_MC_MASK		0xff
696 #define MVPP2_PRS_IPV6_HOP_MASK		0xff
697 #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
698 #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
699 #define MVPP2_PRS_DBL_VLANS_MAX		100
700 
701 /* Tcam structure:
702  * - lookup ID - 4 bits
703  * - port ID - 1 byte
704  * - additional information - 1 byte
705  * - header data - 8 bytes
706  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
707  */
708 #define MVPP2_PRS_AI_BITS			8
709 #define MVPP2_PRS_PORT_MASK			0xff
710 #define MVPP2_PRS_LU_MASK			0xf
711 #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
712 				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
713 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
714 					      (((offs) * 2) - ((offs) % 2)  + 2)
715 #define MVPP2_PRS_TCAM_AI_BYTE			16
716 #define MVPP2_PRS_TCAM_PORT_BYTE		17
717 #define MVPP2_PRS_TCAM_LU_BYTE			20
718 #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
719 #define MVPP2_PRS_TCAM_INV_WORD			5
720 /* Tcam entries ID */
721 #define MVPP2_PE_DROP_ALL		0
722 #define MVPP2_PE_FIRST_FREE_TID		1
723 #define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
724 #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
725 #define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
726 #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
727 #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
728 #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
729 #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
730 #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
731 #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
732 #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
733 #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
734 #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
735 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
736 #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
737 #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
738 #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
739 #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
740 #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
741 #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
742 #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
743 #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
744 #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
745 #define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
746 #define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
747 #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
748 
749 /* Sram structure
750  * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
751  */
752 #define MVPP2_PRS_SRAM_RI_OFFS			0
753 #define MVPP2_PRS_SRAM_RI_WORD			0
754 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
755 #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
756 #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
757 #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
758 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
759 #define MVPP2_PRS_SRAM_UDF_OFFS			73
760 #define MVPP2_PRS_SRAM_UDF_BITS			8
761 #define MVPP2_PRS_SRAM_UDF_MASK			0xff
762 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
763 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
764 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
765 #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
766 #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
767 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
768 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
769 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
770 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
771 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
772 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
773 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
774 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
775 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
776 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
777 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
778 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
779 #define MVPP2_PRS_SRAM_AI_OFFS			90
780 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
781 #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
782 #define MVPP2_PRS_SRAM_AI_MASK			0xff
783 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
784 #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
785 #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
786 #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
787 
788 /* Sram result info bits assignment */
789 #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
790 #define MVPP2_PRS_RI_DSA_MASK			0x2
791 #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
792 #define MVPP2_PRS_RI_VLAN_NONE			0x0
793 #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
794 #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
795 #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
796 #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
797 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
798 #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
799 #define MVPP2_PRS_RI_L2_UCAST			0x0
800 #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
801 #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
802 #define MVPP2_PRS_RI_PPPOE_MASK			0x800
803 #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
804 #define MVPP2_PRS_RI_L3_UN			0x0
805 #define MVPP2_PRS_RI_L3_IP4			BIT(12)
806 #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
807 #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
808 #define MVPP2_PRS_RI_L3_IP6			BIT(14)
809 #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
810 #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
811 #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
812 #define MVPP2_PRS_RI_L3_UCAST			0x0
813 #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
814 #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
815 #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
816 #define MVPP2_PRS_RI_UDF3_MASK			0x300000
817 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
818 #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
819 #define MVPP2_PRS_RI_L4_TCP			BIT(22)
820 #define MVPP2_PRS_RI_L4_UDP			BIT(23)
821 #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
822 #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
823 #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
824 #define MVPP2_PRS_RI_DROP_MASK			0x80000000
825 
826 /* Sram additional info bits assignment */
827 #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
828 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
829 #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
830 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
831 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
832 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
833 #define MVPP2_PRS_SINGLE_VLAN_AI		0
834 #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
835 
836 /* DSA/EDSA type */
837 #define MVPP2_PRS_TAGGED		true
838 #define MVPP2_PRS_UNTAGGED		false
839 #define MVPP2_PRS_EDSA			true
840 #define MVPP2_PRS_DSA			false
841 
842 /* MAC entries, shadow udf */
843 enum mvpp2_prs_udf {
844 	MVPP2_PRS_UDF_MAC_DEF,
845 	MVPP2_PRS_UDF_MAC_RANGE,
846 	MVPP2_PRS_UDF_L2_DEF,
847 	MVPP2_PRS_UDF_L2_DEF_COPY,
848 	MVPP2_PRS_UDF_L2_USER,
849 };
850 
851 /* Lookup ID */
852 enum mvpp2_prs_lookup {
853 	MVPP2_PRS_LU_MH,
854 	MVPP2_PRS_LU_MAC,
855 	MVPP2_PRS_LU_DSA,
856 	MVPP2_PRS_LU_VLAN,
857 	MVPP2_PRS_LU_L2,
858 	MVPP2_PRS_LU_PPPOE,
859 	MVPP2_PRS_LU_IP4,
860 	MVPP2_PRS_LU_IP6,
861 	MVPP2_PRS_LU_FLOWS,
862 	MVPP2_PRS_LU_LAST,
863 };
864 
865 /* L3 cast enum */
866 enum mvpp2_prs_l3_cast {
867 	MVPP2_PRS_L3_UNI_CAST,
868 	MVPP2_PRS_L3_MULTI_CAST,
869 	MVPP2_PRS_L3_BROAD_CAST
870 };
871 
872 /* Classifier constants */
873 #define MVPP2_CLS_FLOWS_TBL_SIZE	512
874 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
875 #define MVPP2_CLS_LKP_TBL_SIZE		64
876 
877 /* BM constants */
878 #define MVPP2_BM_POOLS_NUM		1
879 #define MVPP2_BM_LONG_BUF_NUM		16
880 #define MVPP2_BM_SHORT_BUF_NUM		16
881 #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
882 #define MVPP2_BM_POOL_PTR_ALIGN		128
883 #define MVPP2_BM_SWF_LONG_POOL(port)	0
884 
885 /* BM cookie (32 bits) definition */
886 #define MVPP2_BM_COOKIE_POOL_OFFS	8
887 #define MVPP2_BM_COOKIE_CPU_OFFS	24
888 
889 /* BM short pool packet size
890  * These value assure that for SWF the total number
891  * of bytes allocated for each buffer will be 512
892  */
893 #define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
894 
895 enum mvpp2_bm_type {
896 	MVPP2_BM_FREE,
897 	MVPP2_BM_SWF_LONG,
898 	MVPP2_BM_SWF_SHORT
899 };
900 
901 /* Definitions */
902 
903 /* Shared Packet Processor resources */
904 struct mvpp2 {
905 	/* Shared registers' base addresses */
906 	void __iomem *base;
907 	void __iomem *lms_base;
908 	void __iomem *iface_base;
909 	void __iomem *mdio_base;
910 
911 	void __iomem *mpcs_base;
912 	void __iomem *xpcs_base;
913 	void __iomem *rfu1_base;
914 
915 	u32 netc_config;
916 
917 	/* List of pointers to port structures */
918 	struct mvpp2_port **port_list;
919 
920 	/* Aggregated TXQs */
921 	struct mvpp2_tx_queue *aggr_txqs;
922 
923 	/* BM pools */
924 	struct mvpp2_bm_pool *bm_pools;
925 
926 	/* PRS shadow table */
927 	struct mvpp2_prs_shadow *prs_shadow;
928 	/* PRS auxiliary table for double vlan entries control */
929 	bool *prs_double_vlans;
930 
931 	/* Tclk value */
932 	u32 tclk;
933 
934 	/* HW version */
935 	enum { MVPP21, MVPP22 } hw_version;
936 
937 	/* Maximum number of RXQs per port */
938 	unsigned int max_port_rxqs;
939 
940 	struct mii_dev *bus;
941 
942 	int probe_done;
943 };
944 
945 struct mvpp2_pcpu_stats {
946 	u64	rx_packets;
947 	u64	rx_bytes;
948 	u64	tx_packets;
949 	u64	tx_bytes;
950 };
951 
952 struct mvpp2_port {
953 	u8 id;
954 
955 	/* Index of the port from the "group of ports" complex point
956 	 * of view
957 	 */
958 	int gop_id;
959 
960 	int irq;
961 
962 	struct mvpp2 *priv;
963 
964 	/* Per-port registers' base address */
965 	void __iomem *base;
966 
967 	struct mvpp2_rx_queue **rxqs;
968 	struct mvpp2_tx_queue **txqs;
969 
970 	int pkt_size;
971 
972 	u32 pending_cause_rx;
973 
974 	/* Per-CPU port control */
975 	struct mvpp2_port_pcpu __percpu *pcpu;
976 
977 	/* Flags */
978 	unsigned long flags;
979 
980 	u16 tx_ring_size;
981 	u16 rx_ring_size;
982 	struct mvpp2_pcpu_stats __percpu *stats;
983 
984 	struct phy_device *phy_dev;
985 	phy_interface_t phy_interface;
986 	int phy_node;
987 	int phyaddr;
988 	int init;
989 	unsigned int link;
990 	unsigned int duplex;
991 	unsigned int speed;
992 
993 	unsigned int phy_speed;		/* SGMII 1Gbps vs 2.5Gbps */
994 
995 	struct mvpp2_bm_pool *pool_long;
996 	struct mvpp2_bm_pool *pool_short;
997 
998 	/* Index of first port's physical RXQ */
999 	u8 first_rxq;
1000 
1001 	u8 dev_addr[ETH_ALEN];
1002 };
1003 
1004 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
1005  * layout of the transmit and reception DMA descriptors, and their
1006  * layout is therefore defined by the hardware design
1007  */
1008 
1009 #define MVPP2_TXD_L3_OFF_SHIFT		0
1010 #define MVPP2_TXD_IP_HLEN_SHIFT		8
1011 #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
1012 #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
1013 #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
1014 #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
1015 #define MVPP2_TXD_L4_UDP		BIT(24)
1016 #define MVPP2_TXD_L3_IP6		BIT(26)
1017 #define MVPP2_TXD_L_DESC		BIT(28)
1018 #define MVPP2_TXD_F_DESC		BIT(29)
1019 
1020 #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
1021 #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
1022 #define MVPP2_RXD_ERR_CRC		0x0
1023 #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
1024 #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
1025 #define MVPP2_RXD_BM_POOL_ID_OFFS	16
1026 #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
1027 #define MVPP2_RXD_HWF_SYNC		BIT(21)
1028 #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
1029 #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
1030 #define MVPP2_RXD_L4_TCP		BIT(25)
1031 #define MVPP2_RXD_L4_UDP		BIT(26)
1032 #define MVPP2_RXD_L3_IP4		BIT(28)
1033 #define MVPP2_RXD_L3_IP6		BIT(30)
1034 #define MVPP2_RXD_BUF_HDR		BIT(31)
1035 
1036 /* HW TX descriptor for PPv2.1 */
1037 struct mvpp21_tx_desc {
1038 	u32 command;		/* Options used by HW for packet transmitting.*/
1039 	u8  packet_offset;	/* the offset from the buffer beginning	*/
1040 	u8  phys_txq;		/* destination queue ID			*/
1041 	u16 data_size;		/* data size of transmitted packet in bytes */
1042 	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
1043 	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
1044 	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
1045 	u32 reserved2;		/* reserved (for future use)		*/
1046 };
1047 
1048 /* HW RX descriptor for PPv2.1 */
1049 struct mvpp21_rx_desc {
1050 	u32 status;		/* info about received packet		*/
1051 	u16 reserved1;		/* parser_info (for future use, PnC)	*/
1052 	u16 data_size;		/* size of received packet in bytes	*/
1053 	u32 buf_dma_addr;	/* physical address of the buffer	*/
1054 	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
1055 	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
1056 	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
1057 	u8  reserved4;		/* bm_qset (for future use, BM)		*/
1058 	u8  reserved5;
1059 	u16 reserved6;		/* classify_info (for future use, PnC)	*/
1060 	u32 reserved7;		/* flow_id (for future use, PnC) */
1061 	u32 reserved8;
1062 };
1063 
1064 /* HW TX descriptor for PPv2.2 */
1065 struct mvpp22_tx_desc {
1066 	u32 command;
1067 	u8  packet_offset;
1068 	u8  phys_txq;
1069 	u16 data_size;
1070 	u64 reserved1;
1071 	u64 buf_dma_addr_ptp;
1072 	u64 buf_cookie_misc;
1073 };
1074 
1075 /* HW RX descriptor for PPv2.2 */
1076 struct mvpp22_rx_desc {
1077 	u32 status;
1078 	u16 reserved1;
1079 	u16 data_size;
1080 	u32 reserved2;
1081 	u32 reserved3;
1082 	u64 buf_dma_addr_key_hash;
1083 	u64 buf_cookie_misc;
1084 };
1085 
1086 /* Opaque type used by the driver to manipulate the HW TX and RX
1087  * descriptors
1088  */
1089 struct mvpp2_tx_desc {
1090 	union {
1091 		struct mvpp21_tx_desc pp21;
1092 		struct mvpp22_tx_desc pp22;
1093 	};
1094 };
1095 
1096 struct mvpp2_rx_desc {
1097 	union {
1098 		struct mvpp21_rx_desc pp21;
1099 		struct mvpp22_rx_desc pp22;
1100 	};
1101 };
1102 
1103 /* Per-CPU Tx queue control */
1104 struct mvpp2_txq_pcpu {
1105 	int cpu;
1106 
1107 	/* Number of Tx DMA descriptors in the descriptor ring */
1108 	int size;
1109 
1110 	/* Number of currently used Tx DMA descriptor in the
1111 	 * descriptor ring
1112 	 */
1113 	int count;
1114 
1115 	/* Number of Tx DMA descriptors reserved for each CPU */
1116 	int reserved_num;
1117 
1118 	/* Index of last TX DMA descriptor that was inserted */
1119 	int txq_put_index;
1120 
1121 	/* Index of the TX DMA descriptor to be cleaned up */
1122 	int txq_get_index;
1123 };
1124 
1125 struct mvpp2_tx_queue {
1126 	/* Physical number of this Tx queue */
1127 	u8 id;
1128 
1129 	/* Logical number of this Tx queue */
1130 	u8 log_id;
1131 
1132 	/* Number of Tx DMA descriptors in the descriptor ring */
1133 	int size;
1134 
1135 	/* Number of currently used Tx DMA descriptor in the descriptor ring */
1136 	int count;
1137 
1138 	/* Per-CPU control of physical Tx queues */
1139 	struct mvpp2_txq_pcpu __percpu *pcpu;
1140 
1141 	u32 done_pkts_coal;
1142 
1143 	/* Virtual address of thex Tx DMA descriptors array */
1144 	struct mvpp2_tx_desc *descs;
1145 
1146 	/* DMA address of the Tx DMA descriptors array */
1147 	dma_addr_t descs_dma;
1148 
1149 	/* Index of the last Tx DMA descriptor */
1150 	int last_desc;
1151 
1152 	/* Index of the next Tx DMA descriptor to process */
1153 	int next_desc_to_proc;
1154 };
1155 
1156 struct mvpp2_rx_queue {
1157 	/* RX queue number, in the range 0-31 for physical RXQs */
1158 	u8 id;
1159 
1160 	/* Num of rx descriptors in the rx descriptor ring */
1161 	int size;
1162 
1163 	u32 pkts_coal;
1164 	u32 time_coal;
1165 
1166 	/* Virtual address of the RX DMA descriptors array */
1167 	struct mvpp2_rx_desc *descs;
1168 
1169 	/* DMA address of the RX DMA descriptors array */
1170 	dma_addr_t descs_dma;
1171 
1172 	/* Index of the last RX DMA descriptor */
1173 	int last_desc;
1174 
1175 	/* Index of the next RX DMA descriptor to process */
1176 	int next_desc_to_proc;
1177 
1178 	/* ID of port to which physical RXQ is mapped */
1179 	int port;
1180 
1181 	/* Port's logic RXQ number to which physical RXQ is mapped */
1182 	int logic_rxq;
1183 };
1184 
1185 union mvpp2_prs_tcam_entry {
1186 	u32 word[MVPP2_PRS_TCAM_WORDS];
1187 	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
1188 };
1189 
1190 union mvpp2_prs_sram_entry {
1191 	u32 word[MVPP2_PRS_SRAM_WORDS];
1192 	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
1193 };
1194 
1195 struct mvpp2_prs_entry {
1196 	u32 index;
1197 	union mvpp2_prs_tcam_entry tcam;
1198 	union mvpp2_prs_sram_entry sram;
1199 };
1200 
1201 struct mvpp2_prs_shadow {
1202 	bool valid;
1203 	bool finish;
1204 
1205 	/* Lookup ID */
1206 	int lu;
1207 
1208 	/* User defined offset */
1209 	int udf;
1210 
1211 	/* Result info */
1212 	u32 ri;
1213 	u32 ri_mask;
1214 };
1215 
1216 struct mvpp2_cls_flow_entry {
1217 	u32 index;
1218 	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1219 };
1220 
1221 struct mvpp2_cls_lookup_entry {
1222 	u32 lkpid;
1223 	u32 way;
1224 	u32 data;
1225 };
1226 
1227 struct mvpp2_bm_pool {
1228 	/* Pool number in the range 0-7 */
1229 	int id;
1230 	enum mvpp2_bm_type type;
1231 
1232 	/* Buffer Pointers Pool External (BPPE) size */
1233 	int size;
1234 	/* Number of buffers for this pool */
1235 	int buf_num;
1236 	/* Pool buffer size */
1237 	int buf_size;
1238 	/* Packet size */
1239 	int pkt_size;
1240 
1241 	/* BPPE virtual base address */
1242 	unsigned long *virt_addr;
1243 	/* BPPE DMA base address */
1244 	dma_addr_t dma_addr;
1245 
1246 	/* Ports using BM pool */
1247 	u32 port_map;
1248 };
1249 
1250 /* Static declaractions */
1251 
1252 /* Number of RXQs used by single port */
1253 static int rxq_number = MVPP2_DEFAULT_RXQ;
1254 /* Number of TXQs used by single port */
1255 static int txq_number = MVPP2_DEFAULT_TXQ;
1256 
1257 static int base_id;
1258 
1259 #define MVPP2_DRIVER_NAME "mvpp2"
1260 #define MVPP2_DRIVER_VERSION "1.0"
1261 
1262 /*
1263  * U-Boot internal data, mostly uncached buffers for descriptors and data
1264  */
1265 struct buffer_location {
1266 	struct mvpp2_tx_desc *aggr_tx_descs;
1267 	struct mvpp2_tx_desc *tx_descs;
1268 	struct mvpp2_rx_desc *rx_descs;
1269 	unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
1270 	unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
1271 	int first_rxq;
1272 };
1273 
1274 /*
1275  * All 4 interfaces use the same global buffer, since only one interface
1276  * can be enabled at once
1277  */
1278 static struct buffer_location buffer_loc;
1279 
1280 /*
1281  * Page table entries are set to 1MB, or multiples of 1MB
1282  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
1283  */
1284 #define BD_SPACE	(1 << 20)
1285 
1286 /* Utility/helper methods */
1287 
1288 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1289 {
1290 	writel(data, priv->base + offset);
1291 }
1292 
1293 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1294 {
1295 	return readl(priv->base + offset);
1296 }
1297 
1298 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1299 				      struct mvpp2_tx_desc *tx_desc,
1300 				      dma_addr_t dma_addr)
1301 {
1302 	if (port->priv->hw_version == MVPP21) {
1303 		tx_desc->pp21.buf_dma_addr = dma_addr;
1304 	} else {
1305 		u64 val = (u64)dma_addr;
1306 
1307 		tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1308 		tx_desc->pp22.buf_dma_addr_ptp |= val;
1309 	}
1310 }
1311 
1312 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1313 				  struct mvpp2_tx_desc *tx_desc,
1314 				  size_t size)
1315 {
1316 	if (port->priv->hw_version == MVPP21)
1317 		tx_desc->pp21.data_size = size;
1318 	else
1319 		tx_desc->pp22.data_size = size;
1320 }
1321 
1322 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1323 				 struct mvpp2_tx_desc *tx_desc,
1324 				 unsigned int txq)
1325 {
1326 	if (port->priv->hw_version == MVPP21)
1327 		tx_desc->pp21.phys_txq = txq;
1328 	else
1329 		tx_desc->pp22.phys_txq = txq;
1330 }
1331 
1332 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1333 				 struct mvpp2_tx_desc *tx_desc,
1334 				 unsigned int command)
1335 {
1336 	if (port->priv->hw_version == MVPP21)
1337 		tx_desc->pp21.command = command;
1338 	else
1339 		tx_desc->pp22.command = command;
1340 }
1341 
1342 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1343 				    struct mvpp2_tx_desc *tx_desc,
1344 				    unsigned int offset)
1345 {
1346 	if (port->priv->hw_version == MVPP21)
1347 		tx_desc->pp21.packet_offset = offset;
1348 	else
1349 		tx_desc->pp22.packet_offset = offset;
1350 }
1351 
1352 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1353 					    struct mvpp2_rx_desc *rx_desc)
1354 {
1355 	if (port->priv->hw_version == MVPP21)
1356 		return rx_desc->pp21.buf_dma_addr;
1357 	else
1358 		return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1359 }
1360 
1361 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1362 					     struct mvpp2_rx_desc *rx_desc)
1363 {
1364 	if (port->priv->hw_version == MVPP21)
1365 		return rx_desc->pp21.buf_cookie;
1366 	else
1367 		return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1368 }
1369 
1370 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1371 				    struct mvpp2_rx_desc *rx_desc)
1372 {
1373 	if (port->priv->hw_version == MVPP21)
1374 		return rx_desc->pp21.data_size;
1375 	else
1376 		return rx_desc->pp22.data_size;
1377 }
1378 
1379 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1380 				   struct mvpp2_rx_desc *rx_desc)
1381 {
1382 	if (port->priv->hw_version == MVPP21)
1383 		return rx_desc->pp21.status;
1384 	else
1385 		return rx_desc->pp22.status;
1386 }
1387 
1388 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1389 {
1390 	txq_pcpu->txq_get_index++;
1391 	if (txq_pcpu->txq_get_index == txq_pcpu->size)
1392 		txq_pcpu->txq_get_index = 0;
1393 }
1394 
1395 /* Get number of physical egress port */
1396 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1397 {
1398 	return MVPP2_MAX_TCONT + port->id;
1399 }
1400 
1401 /* Get number of physical TXQ */
1402 static inline int mvpp2_txq_phys(int port, int txq)
1403 {
1404 	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1405 }
1406 
1407 /* Parser configuration routines */
1408 
1409 /* Update parser tcam and sram hw entries */
1410 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1411 {
1412 	int i;
1413 
1414 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1415 		return -EINVAL;
1416 
1417 	/* Clear entry invalidation bit */
1418 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1419 
1420 	/* Write tcam index - indirect access */
1421 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1422 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1423 		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1424 
1425 	/* Write sram index - indirect access */
1426 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1427 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1428 		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1429 
1430 	return 0;
1431 }
1432 
1433 /* Read tcam entry from hw */
1434 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1435 {
1436 	int i;
1437 
1438 	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1439 		return -EINVAL;
1440 
1441 	/* Write tcam index - indirect access */
1442 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1443 
1444 	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1445 			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1446 	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1447 		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1448 
1449 	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1450 		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1451 
1452 	/* Write sram index - indirect access */
1453 	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1454 	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1455 		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1456 
1457 	return 0;
1458 }
1459 
1460 /* Invalidate tcam hw entry */
1461 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1462 {
1463 	/* Write index - indirect access */
1464 	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1465 	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1466 		    MVPP2_PRS_TCAM_INV_MASK);
1467 }
1468 
1469 /* Enable shadow table entry and set its lookup ID */
1470 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1471 {
1472 	priv->prs_shadow[index].valid = true;
1473 	priv->prs_shadow[index].lu = lu;
1474 }
1475 
1476 /* Update ri fields in shadow table entry */
1477 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1478 				    unsigned int ri, unsigned int ri_mask)
1479 {
1480 	priv->prs_shadow[index].ri_mask = ri_mask;
1481 	priv->prs_shadow[index].ri = ri;
1482 }
1483 
1484 /* Update lookup field in tcam sw entry */
1485 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1486 {
1487 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1488 
1489 	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1490 	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1491 }
1492 
1493 /* Update mask for single port in tcam sw entry */
1494 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1495 				    unsigned int port, bool add)
1496 {
1497 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1498 
1499 	if (add)
1500 		pe->tcam.byte[enable_off] &= ~(1 << port);
1501 	else
1502 		pe->tcam.byte[enable_off] |= 1 << port;
1503 }
1504 
1505 /* Update port map in tcam sw entry */
1506 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1507 					unsigned int ports)
1508 {
1509 	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1510 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1511 
1512 	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1513 	pe->tcam.byte[enable_off] &= ~port_mask;
1514 	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1515 }
1516 
1517 /* Obtain port map from tcam sw entry */
1518 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1519 {
1520 	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1521 
1522 	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1523 }
1524 
1525 /* Set byte of data and its enable bits in tcam sw entry */
1526 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1527 					 unsigned int offs, unsigned char byte,
1528 					 unsigned char enable)
1529 {
1530 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1531 	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1532 }
1533 
1534 /* Get byte of data and its enable bits from tcam sw entry */
1535 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1536 					 unsigned int offs, unsigned char *byte,
1537 					 unsigned char *enable)
1538 {
1539 	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1540 	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1541 }
1542 
1543 /* Set ethertype in tcam sw entry */
1544 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1545 				  unsigned short ethertype)
1546 {
1547 	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1548 	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1549 }
1550 
1551 /* Set bits in sram sw entry */
1552 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1553 				    int val)
1554 {
1555 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1556 }
1557 
1558 /* Clear bits in sram sw entry */
1559 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1560 				      int val)
1561 {
1562 	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1563 }
1564 
1565 /* Update ri bits in sram sw entry */
1566 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1567 				     unsigned int bits, unsigned int mask)
1568 {
1569 	unsigned int i;
1570 
1571 	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1572 		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1573 
1574 		if (!(mask & BIT(i)))
1575 			continue;
1576 
1577 		if (bits & BIT(i))
1578 			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1579 		else
1580 			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1581 
1582 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1583 	}
1584 }
1585 
1586 /* Update ai bits in sram sw entry */
1587 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1588 				     unsigned int bits, unsigned int mask)
1589 {
1590 	unsigned int i;
1591 	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1592 
1593 	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1594 
1595 		if (!(mask & BIT(i)))
1596 			continue;
1597 
1598 		if (bits & BIT(i))
1599 			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1600 		else
1601 			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1602 
1603 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1604 	}
1605 }
1606 
1607 /* Read ai bits from sram sw entry */
1608 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1609 {
1610 	u8 bits;
1611 	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1612 	int ai_en_off = ai_off + 1;
1613 	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1614 
1615 	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1616 	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1617 
1618 	return bits;
1619 }
1620 
1621 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1622  * lookup interation
1623  */
1624 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1625 				       unsigned int lu)
1626 {
1627 	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1628 
1629 	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1630 				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1631 	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1632 }
1633 
1634 /* In the sram sw entry set sign and value of the next lookup offset
1635  * and the offset value generated to the classifier
1636  */
1637 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1638 				     unsigned int op)
1639 {
1640 	/* Set sign */
1641 	if (shift < 0) {
1642 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1643 		shift = 0 - shift;
1644 	} else {
1645 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1646 	}
1647 
1648 	/* Set value */
1649 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1650 							   (unsigned char)shift;
1651 
1652 	/* Reset and set operation */
1653 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1654 				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1655 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1656 
1657 	/* Set base offset as current */
1658 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1659 }
1660 
1661 /* In the sram sw entry set sign and value of the user defined offset
1662  * generated to the classifier
1663  */
1664 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1665 				      unsigned int type, int offset,
1666 				      unsigned int op)
1667 {
1668 	/* Set sign */
1669 	if (offset < 0) {
1670 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1671 		offset = 0 - offset;
1672 	} else {
1673 		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1674 	}
1675 
1676 	/* Set value */
1677 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1678 				  MVPP2_PRS_SRAM_UDF_MASK);
1679 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1680 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1681 					MVPP2_PRS_SRAM_UDF_BITS)] &=
1682 	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1683 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1684 					MVPP2_PRS_SRAM_UDF_BITS)] |=
1685 				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1686 
1687 	/* Set offset type */
1688 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1689 				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1690 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1691 
1692 	/* Set offset operation */
1693 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1694 				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1695 	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1696 
1697 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1698 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1699 					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1700 				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1701 
1702 	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1703 					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1704 			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1705 
1706 	/* Set base offset as current */
1707 	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1708 }
1709 
1710 /* Find parser flow entry */
1711 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1712 {
1713 	struct mvpp2_prs_entry *pe;
1714 	int tid;
1715 
1716 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1717 	if (!pe)
1718 		return NULL;
1719 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1720 
1721 	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1722 	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1723 		u8 bits;
1724 
1725 		if (!priv->prs_shadow[tid].valid ||
1726 		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1727 			continue;
1728 
1729 		pe->index = tid;
1730 		mvpp2_prs_hw_read(priv, pe);
1731 		bits = mvpp2_prs_sram_ai_get(pe);
1732 
1733 		/* Sram store classification lookup ID in AI bits [5:0] */
1734 		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1735 			return pe;
1736 	}
1737 	kfree(pe);
1738 
1739 	return NULL;
1740 }
1741 
1742 /* Return first free tcam index, seeking from start to end */
1743 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1744 				     unsigned char end)
1745 {
1746 	int tid;
1747 
1748 	if (start > end)
1749 		swap(start, end);
1750 
1751 	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1752 		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1753 
1754 	for (tid = start; tid <= end; tid++) {
1755 		if (!priv->prs_shadow[tid].valid)
1756 			return tid;
1757 	}
1758 
1759 	return -EINVAL;
1760 }
1761 
1762 /* Enable/disable dropping all mac da's */
1763 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1764 {
1765 	struct mvpp2_prs_entry pe;
1766 
1767 	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1768 		/* Entry exist - update port only */
1769 		pe.index = MVPP2_PE_DROP_ALL;
1770 		mvpp2_prs_hw_read(priv, &pe);
1771 	} else {
1772 		/* Entry doesn't exist - create new */
1773 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1774 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1775 		pe.index = MVPP2_PE_DROP_ALL;
1776 
1777 		/* Non-promiscuous mode for all ports - DROP unknown packets */
1778 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1779 					 MVPP2_PRS_RI_DROP_MASK);
1780 
1781 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1782 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1783 
1784 		/* Update shadow table */
1785 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1786 
1787 		/* Mask all ports */
1788 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1789 	}
1790 
1791 	/* Update port mask */
1792 	mvpp2_prs_tcam_port_set(&pe, port, add);
1793 
1794 	mvpp2_prs_hw_write(priv, &pe);
1795 }
1796 
1797 /* Set port to promiscuous mode */
1798 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1799 {
1800 	struct mvpp2_prs_entry pe;
1801 
1802 	/* Promiscuous mode - Accept unknown packets */
1803 
1804 	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1805 		/* Entry exist - update port only */
1806 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1807 		mvpp2_prs_hw_read(priv, &pe);
1808 	} else {
1809 		/* Entry doesn't exist - create new */
1810 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1811 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1812 		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1813 
1814 		/* Continue - set next lookup */
1815 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1816 
1817 		/* Set result info bits */
1818 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1819 					 MVPP2_PRS_RI_L2_CAST_MASK);
1820 
1821 		/* Shift to ethertype */
1822 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1823 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1824 
1825 		/* Mask all ports */
1826 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1827 
1828 		/* Update shadow table */
1829 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1830 	}
1831 
1832 	/* Update port mask */
1833 	mvpp2_prs_tcam_port_set(&pe, port, add);
1834 
1835 	mvpp2_prs_hw_write(priv, &pe);
1836 }
1837 
1838 /* Accept multicast */
1839 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1840 				    bool add)
1841 {
1842 	struct mvpp2_prs_entry pe;
1843 	unsigned char da_mc;
1844 
1845 	/* Ethernet multicast address first byte is
1846 	 * 0x01 for IPv4 and 0x33 for IPv6
1847 	 */
1848 	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1849 
1850 	if (priv->prs_shadow[index].valid) {
1851 		/* Entry exist - update port only */
1852 		pe.index = index;
1853 		mvpp2_prs_hw_read(priv, &pe);
1854 	} else {
1855 		/* Entry doesn't exist - create new */
1856 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1857 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1858 		pe.index = index;
1859 
1860 		/* Continue - set next lookup */
1861 		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1862 
1863 		/* Set result info bits */
1864 		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1865 					 MVPP2_PRS_RI_L2_CAST_MASK);
1866 
1867 		/* Update tcam entry data first byte */
1868 		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1869 
1870 		/* Shift to ethertype */
1871 		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1872 					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1873 
1874 		/* Mask all ports */
1875 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1876 
1877 		/* Update shadow table */
1878 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1879 	}
1880 
1881 	/* Update port mask */
1882 	mvpp2_prs_tcam_port_set(&pe, port, add);
1883 
1884 	mvpp2_prs_hw_write(priv, &pe);
1885 }
1886 
1887 /* Parser per-port initialization */
1888 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
1889 				   int lu_max, int offset)
1890 {
1891 	u32 val;
1892 
1893 	/* Set lookup ID */
1894 	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
1895 	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
1896 	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
1897 	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
1898 
1899 	/* Set maximum number of loops for packet received from port */
1900 	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
1901 	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
1902 	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
1903 	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
1904 
1905 	/* Set initial offset for packet header extraction for the first
1906 	 * searching loop
1907 	 */
1908 	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
1909 	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
1910 	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
1911 	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
1912 }
1913 
1914 /* Default flow entries initialization for all ports */
1915 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
1916 {
1917 	struct mvpp2_prs_entry pe;
1918 	int port;
1919 
1920 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
1921 		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1922 		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1923 		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
1924 
1925 		/* Mask all ports */
1926 		mvpp2_prs_tcam_port_map_set(&pe, 0);
1927 
1928 		/* Set flow ID*/
1929 		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
1930 		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
1931 
1932 		/* Update shadow table and hw entry */
1933 		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
1934 		mvpp2_prs_hw_write(priv, &pe);
1935 	}
1936 }
1937 
1938 /* Set default entry for Marvell Header field */
1939 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
1940 {
1941 	struct mvpp2_prs_entry pe;
1942 
1943 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1944 
1945 	pe.index = MVPP2_PE_MH_DEFAULT;
1946 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
1947 	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
1948 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1949 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
1950 
1951 	/* Unmask all ports */
1952 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1953 
1954 	/* Update shadow table and hw entry */
1955 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
1956 	mvpp2_prs_hw_write(priv, &pe);
1957 }
1958 
1959 /* Set default entires (place holder) for promiscuous, non-promiscuous and
1960  * multicast MAC addresses
1961  */
1962 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
1963 {
1964 	struct mvpp2_prs_entry pe;
1965 
1966 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1967 
1968 	/* Non-promiscuous mode for all ports - DROP unknown packets */
1969 	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
1970 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1971 
1972 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1973 				 MVPP2_PRS_RI_DROP_MASK);
1974 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1975 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1976 
1977 	/* Unmask all ports */
1978 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1979 
1980 	/* Update shadow table and hw entry */
1981 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1982 	mvpp2_prs_hw_write(priv, &pe);
1983 
1984 	/* place holders only - no ports */
1985 	mvpp2_prs_mac_drop_all_set(priv, 0, false);
1986 	mvpp2_prs_mac_promisc_set(priv, 0, false);
1987 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
1988 	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
1989 }
1990 
1991 /* Match basic ethertypes */
1992 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
1993 {
1994 	struct mvpp2_prs_entry pe;
1995 	int tid;
1996 
1997 	/* Ethertype: PPPoE */
1998 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1999 					MVPP2_PE_LAST_FREE_TID);
2000 	if (tid < 0)
2001 		return tid;
2002 
2003 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2004 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2005 	pe.index = tid;
2006 
2007 	mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
2008 
2009 	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2010 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2011 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2012 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2013 				 MVPP2_PRS_RI_PPPOE_MASK);
2014 
2015 	/* Update shadow table and hw entry */
2016 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2017 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2018 	priv->prs_shadow[pe.index].finish = false;
2019 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2020 				MVPP2_PRS_RI_PPPOE_MASK);
2021 	mvpp2_prs_hw_write(priv, &pe);
2022 
2023 	/* Ethertype: ARP */
2024 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2025 					MVPP2_PE_LAST_FREE_TID);
2026 	if (tid < 0)
2027 		return tid;
2028 
2029 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2030 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2031 	pe.index = tid;
2032 
2033 	mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
2034 
2035 	/* Generate flow in the next iteration*/
2036 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2037 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2038 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2039 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2040 	/* Set L3 offset */
2041 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2042 				  MVPP2_ETH_TYPE_LEN,
2043 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2044 
2045 	/* Update shadow table and hw entry */
2046 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2047 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2048 	priv->prs_shadow[pe.index].finish = true;
2049 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2050 				MVPP2_PRS_RI_L3_PROTO_MASK);
2051 	mvpp2_prs_hw_write(priv, &pe);
2052 
2053 	/* Ethertype: LBTD */
2054 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2055 					MVPP2_PE_LAST_FREE_TID);
2056 	if (tid < 0)
2057 		return tid;
2058 
2059 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2060 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2061 	pe.index = tid;
2062 
2063 	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2064 
2065 	/* Generate flow in the next iteration*/
2066 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2067 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2068 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2069 				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2070 				 MVPP2_PRS_RI_CPU_CODE_MASK |
2071 				 MVPP2_PRS_RI_UDF3_MASK);
2072 	/* Set L3 offset */
2073 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2074 				  MVPP2_ETH_TYPE_LEN,
2075 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2076 
2077 	/* Update shadow table and hw entry */
2078 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2079 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2080 	priv->prs_shadow[pe.index].finish = true;
2081 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2082 				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2083 				MVPP2_PRS_RI_CPU_CODE_MASK |
2084 				MVPP2_PRS_RI_UDF3_MASK);
2085 	mvpp2_prs_hw_write(priv, &pe);
2086 
2087 	/* Ethertype: IPv4 without options */
2088 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2089 					MVPP2_PE_LAST_FREE_TID);
2090 	if (tid < 0)
2091 		return tid;
2092 
2093 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2094 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2095 	pe.index = tid;
2096 
2097 	mvpp2_prs_match_etype(&pe, 0, PROT_IP);
2098 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2099 				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2100 				     MVPP2_PRS_IPV4_HEAD_MASK |
2101 				     MVPP2_PRS_IPV4_IHL_MASK);
2102 
2103 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2104 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2105 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2106 	/* Skip eth_type + 4 bytes of IP header */
2107 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2108 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2109 	/* Set L3 offset */
2110 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2111 				  MVPP2_ETH_TYPE_LEN,
2112 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2113 
2114 	/* Update shadow table and hw entry */
2115 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2116 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2117 	priv->prs_shadow[pe.index].finish = false;
2118 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2119 				MVPP2_PRS_RI_L3_PROTO_MASK);
2120 	mvpp2_prs_hw_write(priv, &pe);
2121 
2122 	/* Ethertype: IPv4 with options */
2123 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2124 					MVPP2_PE_LAST_FREE_TID);
2125 	if (tid < 0)
2126 		return tid;
2127 
2128 	pe.index = tid;
2129 
2130 	/* Clear tcam data before updating */
2131 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2132 	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2133 
2134 	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2135 				     MVPP2_PRS_IPV4_HEAD,
2136 				     MVPP2_PRS_IPV4_HEAD_MASK);
2137 
2138 	/* Clear ri before updating */
2139 	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2140 	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2141 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2142 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2143 
2144 	/* Update shadow table and hw entry */
2145 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2146 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2147 	priv->prs_shadow[pe.index].finish = false;
2148 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2149 				MVPP2_PRS_RI_L3_PROTO_MASK);
2150 	mvpp2_prs_hw_write(priv, &pe);
2151 
2152 	/* Ethertype: IPv6 without options */
2153 	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2154 					MVPP2_PE_LAST_FREE_TID);
2155 	if (tid < 0)
2156 		return tid;
2157 
2158 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2159 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2160 	pe.index = tid;
2161 
2162 	mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
2163 
2164 	/* Skip DIP of IPV6 header */
2165 	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2166 				 MVPP2_MAX_L3_ADDR_SIZE,
2167 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2168 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2169 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2170 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2171 	/* Set L3 offset */
2172 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2173 				  MVPP2_ETH_TYPE_LEN,
2174 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2175 
2176 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2177 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2178 	priv->prs_shadow[pe.index].finish = false;
2179 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2180 				MVPP2_PRS_RI_L3_PROTO_MASK);
2181 	mvpp2_prs_hw_write(priv, &pe);
2182 
2183 	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2184 	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2185 	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2186 	pe.index = MVPP2_PE_ETH_TYPE_UN;
2187 
2188 	/* Unmask all ports */
2189 	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2190 
2191 	/* Generate flow in the next iteration*/
2192 	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2193 	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2194 	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2195 				 MVPP2_PRS_RI_L3_PROTO_MASK);
2196 	/* Set L3 offset even it's unknown L3 */
2197 	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2198 				  MVPP2_ETH_TYPE_LEN,
2199 				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2200 
2201 	/* Update shadow table and hw entry */
2202 	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2203 	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2204 	priv->prs_shadow[pe.index].finish = true;
2205 	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2206 				MVPP2_PRS_RI_L3_PROTO_MASK);
2207 	mvpp2_prs_hw_write(priv, &pe);
2208 
2209 	return 0;
2210 }
2211 
2212 /* Parser default initialization */
2213 static int mvpp2_prs_default_init(struct udevice *dev,
2214 				  struct mvpp2 *priv)
2215 {
2216 	int err, index, i;
2217 
2218 	/* Enable tcam table */
2219 	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2220 
2221 	/* Clear all tcam and sram entries */
2222 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2223 		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2224 		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2225 			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2226 
2227 		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2228 		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2229 			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2230 	}
2231 
2232 	/* Invalidate all tcam entries */
2233 	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2234 		mvpp2_prs_hw_inv(priv, index);
2235 
2236 	priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2237 					sizeof(struct mvpp2_prs_shadow),
2238 					GFP_KERNEL);
2239 	if (!priv->prs_shadow)
2240 		return -ENOMEM;
2241 
2242 	/* Always start from lookup = 0 */
2243 	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2244 		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2245 				       MVPP2_PRS_PORT_LU_MAX, 0);
2246 
2247 	mvpp2_prs_def_flow_init(priv);
2248 
2249 	mvpp2_prs_mh_init(priv);
2250 
2251 	mvpp2_prs_mac_init(priv);
2252 
2253 	err = mvpp2_prs_etype_init(priv);
2254 	if (err)
2255 		return err;
2256 
2257 	return 0;
2258 }
2259 
2260 /* Compare MAC DA with tcam entry data */
2261 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2262 				       const u8 *da, unsigned char *mask)
2263 {
2264 	unsigned char tcam_byte, tcam_mask;
2265 	int index;
2266 
2267 	for (index = 0; index < ETH_ALEN; index++) {
2268 		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2269 		if (tcam_mask != mask[index])
2270 			return false;
2271 
2272 		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2273 			return false;
2274 	}
2275 
2276 	return true;
2277 }
2278 
2279 /* Find tcam entry with matched pair <MAC DA, port> */
2280 static struct mvpp2_prs_entry *
2281 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2282 			    unsigned char *mask, int udf_type)
2283 {
2284 	struct mvpp2_prs_entry *pe;
2285 	int tid;
2286 
2287 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2288 	if (!pe)
2289 		return NULL;
2290 	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2291 
2292 	/* Go through the all entires with MVPP2_PRS_LU_MAC */
2293 	for (tid = MVPP2_PE_FIRST_FREE_TID;
2294 	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2295 		unsigned int entry_pmap;
2296 
2297 		if (!priv->prs_shadow[tid].valid ||
2298 		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2299 		    (priv->prs_shadow[tid].udf != udf_type))
2300 			continue;
2301 
2302 		pe->index = tid;
2303 		mvpp2_prs_hw_read(priv, pe);
2304 		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2305 
2306 		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2307 		    entry_pmap == pmap)
2308 			return pe;
2309 	}
2310 	kfree(pe);
2311 
2312 	return NULL;
2313 }
2314 
2315 /* Update parser's mac da entry */
2316 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2317 				   const u8 *da, bool add)
2318 {
2319 	struct mvpp2_prs_entry *pe;
2320 	unsigned int pmap, len, ri;
2321 	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2322 	int tid;
2323 
2324 	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
2325 	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
2326 					 MVPP2_PRS_UDF_MAC_DEF);
2327 
2328 	/* No such entry */
2329 	if (!pe) {
2330 		if (!add)
2331 			return 0;
2332 
2333 		/* Create new TCAM entry */
2334 		/* Find first range mac entry*/
2335 		for (tid = MVPP2_PE_FIRST_FREE_TID;
2336 		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
2337 			if (priv->prs_shadow[tid].valid &&
2338 			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
2339 			    (priv->prs_shadow[tid].udf ==
2340 						       MVPP2_PRS_UDF_MAC_RANGE))
2341 				break;
2342 
2343 		/* Go through the all entries from first to last */
2344 		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2345 						tid - 1);
2346 		if (tid < 0)
2347 			return tid;
2348 
2349 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2350 		if (!pe)
2351 			return -1;
2352 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2353 		pe->index = tid;
2354 
2355 		/* Mask all ports */
2356 		mvpp2_prs_tcam_port_map_set(pe, 0);
2357 	}
2358 
2359 	/* Update port mask */
2360 	mvpp2_prs_tcam_port_set(pe, port, add);
2361 
2362 	/* Invalidate the entry if no ports are left enabled */
2363 	pmap = mvpp2_prs_tcam_port_map_get(pe);
2364 	if (pmap == 0) {
2365 		if (add) {
2366 			kfree(pe);
2367 			return -1;
2368 		}
2369 		mvpp2_prs_hw_inv(priv, pe->index);
2370 		priv->prs_shadow[pe->index].valid = false;
2371 		kfree(pe);
2372 		return 0;
2373 	}
2374 
2375 	/* Continue - set next lookup */
2376 	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
2377 
2378 	/* Set match on DA */
2379 	len = ETH_ALEN;
2380 	while (len--)
2381 		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
2382 
2383 	/* Set result info bits */
2384 	ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
2385 
2386 	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2387 				 MVPP2_PRS_RI_MAC_ME_MASK);
2388 	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
2389 				MVPP2_PRS_RI_MAC_ME_MASK);
2390 
2391 	/* Shift to ethertype */
2392 	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
2393 				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2394 
2395 	/* Update shadow table and hw entry */
2396 	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
2397 	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
2398 	mvpp2_prs_hw_write(priv, pe);
2399 
2400 	kfree(pe);
2401 
2402 	return 0;
2403 }
2404 
2405 static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
2406 {
2407 	int err;
2408 
2409 	/* Remove old parser entry */
2410 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
2411 				      false);
2412 	if (err)
2413 		return err;
2414 
2415 	/* Add new parser entry */
2416 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
2417 	if (err)
2418 		return err;
2419 
2420 	/* Set addr in the device */
2421 	memcpy(port->dev_addr, da, ETH_ALEN);
2422 
2423 	return 0;
2424 }
2425 
2426 /* Set prs flow for the port */
2427 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
2428 {
2429 	struct mvpp2_prs_entry *pe;
2430 	int tid;
2431 
2432 	pe = mvpp2_prs_flow_find(port->priv, port->id);
2433 
2434 	/* Such entry not exist */
2435 	if (!pe) {
2436 		/* Go through the all entires from last to first */
2437 		tid = mvpp2_prs_tcam_first_free(port->priv,
2438 						MVPP2_PE_LAST_FREE_TID,
2439 					       MVPP2_PE_FIRST_FREE_TID);
2440 		if (tid < 0)
2441 			return tid;
2442 
2443 		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2444 		if (!pe)
2445 			return -ENOMEM;
2446 
2447 		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
2448 		pe->index = tid;
2449 
2450 		/* Set flow ID*/
2451 		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
2452 		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2453 
2454 		/* Update shadow table */
2455 		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
2456 	}
2457 
2458 	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
2459 	mvpp2_prs_hw_write(port->priv, pe);
2460 	kfree(pe);
2461 
2462 	return 0;
2463 }
2464 
2465 /* Classifier configuration routines */
2466 
2467 /* Update classification flow table registers */
2468 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
2469 				 struct mvpp2_cls_flow_entry *fe)
2470 {
2471 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
2472 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
2473 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
2474 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
2475 }
2476 
2477 /* Update classification lookup table register */
2478 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
2479 				   struct mvpp2_cls_lookup_entry *le)
2480 {
2481 	u32 val;
2482 
2483 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
2484 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
2485 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
2486 }
2487 
2488 /* Classifier default initialization */
2489 static void mvpp2_cls_init(struct mvpp2 *priv)
2490 {
2491 	struct mvpp2_cls_lookup_entry le;
2492 	struct mvpp2_cls_flow_entry fe;
2493 	int index;
2494 
2495 	/* Enable classifier */
2496 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
2497 
2498 	/* Clear classifier flow table */
2499 	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
2500 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
2501 		fe.index = index;
2502 		mvpp2_cls_flow_write(priv, &fe);
2503 	}
2504 
2505 	/* Clear classifier lookup table */
2506 	le.data = 0;
2507 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
2508 		le.lkpid = index;
2509 		le.way = 0;
2510 		mvpp2_cls_lookup_write(priv, &le);
2511 
2512 		le.way = 1;
2513 		mvpp2_cls_lookup_write(priv, &le);
2514 	}
2515 }
2516 
2517 static void mvpp2_cls_port_config(struct mvpp2_port *port)
2518 {
2519 	struct mvpp2_cls_lookup_entry le;
2520 	u32 val;
2521 
2522 	/* Set way for the port */
2523 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
2524 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
2525 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
2526 
2527 	/* Pick the entry to be accessed in lookup ID decoding table
2528 	 * according to the way and lkpid.
2529 	 */
2530 	le.lkpid = port->id;
2531 	le.way = 0;
2532 	le.data = 0;
2533 
2534 	/* Set initial CPU queue for receiving packets */
2535 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
2536 	le.data |= port->first_rxq;
2537 
2538 	/* Disable classification engines */
2539 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
2540 
2541 	/* Update lookup ID table entry */
2542 	mvpp2_cls_lookup_write(port->priv, &le);
2543 }
2544 
2545 /* Set CPU queue number for oversize packets */
2546 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
2547 {
2548 	u32 val;
2549 
2550 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
2551 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
2552 
2553 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
2554 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
2555 
2556 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
2557 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
2558 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
2559 }
2560 
2561 /* Buffer Manager configuration routines */
2562 
2563 /* Create pool */
2564 static int mvpp2_bm_pool_create(struct udevice *dev,
2565 				struct mvpp2 *priv,
2566 				struct mvpp2_bm_pool *bm_pool, int size)
2567 {
2568 	u32 val;
2569 
2570 	/* Number of buffer pointers must be a multiple of 16, as per
2571 	 * hardware constraints
2572 	 */
2573 	if (!IS_ALIGNED(size, 16))
2574 		return -EINVAL;
2575 
2576 	bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
2577 	bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
2578 	if (!bm_pool->virt_addr)
2579 		return -ENOMEM;
2580 
2581 	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
2582 			MVPP2_BM_POOL_PTR_ALIGN)) {
2583 		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
2584 			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
2585 		return -ENOMEM;
2586 	}
2587 
2588 	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
2589 		    lower_32_bits(bm_pool->dma_addr));
2590 	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
2591 
2592 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2593 	val |= MVPP2_BM_START_MASK;
2594 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2595 
2596 	bm_pool->type = MVPP2_BM_FREE;
2597 	bm_pool->size = size;
2598 	bm_pool->pkt_size = 0;
2599 	bm_pool->buf_num = 0;
2600 
2601 	return 0;
2602 }
2603 
2604 /* Set pool buffer size */
2605 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
2606 				      struct mvpp2_bm_pool *bm_pool,
2607 				      int buf_size)
2608 {
2609 	u32 val;
2610 
2611 	bm_pool->buf_size = buf_size;
2612 
2613 	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
2614 	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
2615 }
2616 
2617 /* Free all buffers from the pool */
2618 static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
2619 			       struct mvpp2_bm_pool *bm_pool)
2620 {
2621 	int i;
2622 
2623 	for (i = 0; i < bm_pool->buf_num; i++) {
2624 		/* Allocate buffer back from the buffer manager */
2625 		mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
2626 	}
2627 
2628 	bm_pool->buf_num = 0;
2629 }
2630 
2631 /* Cleanup pool */
2632 static int mvpp2_bm_pool_destroy(struct udevice *dev,
2633 				 struct mvpp2 *priv,
2634 				 struct mvpp2_bm_pool *bm_pool)
2635 {
2636 	u32 val;
2637 
2638 	mvpp2_bm_bufs_free(dev, priv, bm_pool);
2639 	if (bm_pool->buf_num) {
2640 		dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
2641 		return 0;
2642 	}
2643 
2644 	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
2645 	val |= MVPP2_BM_STOP_MASK;
2646 	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
2647 
2648 	return 0;
2649 }
2650 
2651 static int mvpp2_bm_pools_init(struct udevice *dev,
2652 			       struct mvpp2 *priv)
2653 {
2654 	int i, err, size;
2655 	struct mvpp2_bm_pool *bm_pool;
2656 
2657 	/* Create all pools with maximum size */
2658 	size = MVPP2_BM_POOL_SIZE_MAX;
2659 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2660 		bm_pool = &priv->bm_pools[i];
2661 		bm_pool->id = i;
2662 		err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
2663 		if (err)
2664 			goto err_unroll_pools;
2665 		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
2666 	}
2667 	return 0;
2668 
2669 err_unroll_pools:
2670 	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
2671 	for (i = i - 1; i >= 0; i--)
2672 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
2673 	return err;
2674 }
2675 
2676 static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
2677 {
2678 	int i, err;
2679 
2680 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
2681 		/* Mask BM all interrupts */
2682 		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
2683 		/* Clear BM cause register */
2684 		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
2685 	}
2686 
2687 	/* Allocate and initialize BM pools */
2688 	priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
2689 				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
2690 	if (!priv->bm_pools)
2691 		return -ENOMEM;
2692 
2693 	err = mvpp2_bm_pools_init(dev, priv);
2694 	if (err < 0)
2695 		return err;
2696 	return 0;
2697 }
2698 
2699 /* Attach long pool to rxq */
2700 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
2701 				    int lrxq, int long_pool)
2702 {
2703 	u32 val, mask;
2704 	int prxq;
2705 
2706 	/* Get queue physical ID */
2707 	prxq = port->rxqs[lrxq]->id;
2708 
2709 	if (port->priv->hw_version == MVPP21)
2710 		mask = MVPP21_RXQ_POOL_LONG_MASK;
2711 	else
2712 		mask = MVPP22_RXQ_POOL_LONG_MASK;
2713 
2714 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
2715 	val &= ~mask;
2716 	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
2717 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
2718 }
2719 
2720 /* Set pool number in a BM cookie */
2721 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
2722 {
2723 	u32 bm;
2724 
2725 	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
2726 	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
2727 
2728 	return bm;
2729 }
2730 
2731 /* Get pool number from a BM cookie */
2732 static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
2733 {
2734 	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
2735 }
2736 
2737 /* Release buffer to BM */
2738 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
2739 				     dma_addr_t buf_dma_addr,
2740 				     unsigned long buf_phys_addr)
2741 {
2742 	if (port->priv->hw_version == MVPP22) {
2743 		u32 val = 0;
2744 
2745 		if (sizeof(dma_addr_t) == 8)
2746 			val |= upper_32_bits(buf_dma_addr) &
2747 				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
2748 
2749 		if (sizeof(phys_addr_t) == 8)
2750 			val |= (upper_32_bits(buf_phys_addr)
2751 				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
2752 				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
2753 
2754 		mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
2755 	}
2756 
2757 	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
2758 	 * returned in the "cookie" field of the RX
2759 	 * descriptor. Instead of storing the virtual address, we
2760 	 * store the physical address
2761 	 */
2762 	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
2763 	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
2764 }
2765 
2766 /* Refill BM pool */
2767 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
2768 			      dma_addr_t dma_addr,
2769 			      phys_addr_t phys_addr)
2770 {
2771 	int pool = mvpp2_bm_cookie_pool_get(bm);
2772 
2773 	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
2774 }
2775 
2776 /* Allocate buffers for the pool */
2777 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
2778 			     struct mvpp2_bm_pool *bm_pool, int buf_num)
2779 {
2780 	int i;
2781 
2782 	if (buf_num < 0 ||
2783 	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
2784 		netdev_err(port->dev,
2785 			   "cannot allocate %d buffers for pool %d\n",
2786 			   buf_num, bm_pool->id);
2787 		return 0;
2788 	}
2789 
2790 	for (i = 0; i < buf_num; i++) {
2791 		mvpp2_bm_pool_put(port, bm_pool->id,
2792 				  (dma_addr_t)buffer_loc.rx_buffer[i],
2793 				  (unsigned long)buffer_loc.rx_buffer[i]);
2794 
2795 	}
2796 
2797 	/* Update BM driver with number of buffers added to pool */
2798 	bm_pool->buf_num += i;
2799 
2800 	return i;
2801 }
2802 
2803 /* Notify the driver that BM pool is being used as specific type and return the
2804  * pool pointer on success
2805  */
2806 static struct mvpp2_bm_pool *
2807 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
2808 		  int pkt_size)
2809 {
2810 	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
2811 	int num;
2812 
2813 	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
2814 		netdev_err(port->dev, "mixing pool types is forbidden\n");
2815 		return NULL;
2816 	}
2817 
2818 	if (new_pool->type == MVPP2_BM_FREE)
2819 		new_pool->type = type;
2820 
2821 	/* Allocate buffers in case BM pool is used as long pool, but packet
2822 	 * size doesn't match MTU or BM pool hasn't being used yet
2823 	 */
2824 	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
2825 	    (new_pool->pkt_size == 0)) {
2826 		int pkts_num;
2827 
2828 		/* Set default buffer number or free all the buffers in case
2829 		 * the pool is not empty
2830 		 */
2831 		pkts_num = new_pool->buf_num;
2832 		if (pkts_num == 0)
2833 			pkts_num = type == MVPP2_BM_SWF_LONG ?
2834 				   MVPP2_BM_LONG_BUF_NUM :
2835 				   MVPP2_BM_SHORT_BUF_NUM;
2836 		else
2837 			mvpp2_bm_bufs_free(NULL,
2838 					   port->priv, new_pool);
2839 
2840 		new_pool->pkt_size = pkt_size;
2841 
2842 		/* Allocate buffers for this pool */
2843 		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
2844 		if (num != pkts_num) {
2845 			dev_err(dev, "pool %d: %d of %d allocated\n",
2846 				new_pool->id, num, pkts_num);
2847 			return NULL;
2848 		}
2849 	}
2850 
2851 	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
2852 				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
2853 
2854 	return new_pool;
2855 }
2856 
2857 /* Initialize pools for swf */
2858 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
2859 {
2860 	int rxq;
2861 
2862 	if (!port->pool_long) {
2863 		port->pool_long =
2864 		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
2865 					 MVPP2_BM_SWF_LONG,
2866 					 port->pkt_size);
2867 		if (!port->pool_long)
2868 			return -ENOMEM;
2869 
2870 		port->pool_long->port_map |= (1 << port->id);
2871 
2872 		for (rxq = 0; rxq < rxq_number; rxq++)
2873 			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
2874 	}
2875 
2876 	return 0;
2877 }
2878 
2879 /* Port configuration routines */
2880 
2881 static void mvpp2_port_mii_set(struct mvpp2_port *port)
2882 {
2883 	u32 val;
2884 
2885 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2886 
2887 	switch (port->phy_interface) {
2888 	case PHY_INTERFACE_MODE_SGMII:
2889 		val |= MVPP2_GMAC_INBAND_AN_MASK;
2890 		break;
2891 	case PHY_INTERFACE_MODE_RGMII:
2892 	case PHY_INTERFACE_MODE_RGMII_ID:
2893 		val |= MVPP2_GMAC_PORT_RGMII_MASK;
2894 	default:
2895 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
2896 	}
2897 
2898 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2899 }
2900 
2901 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
2902 {
2903 	u32 val;
2904 
2905 	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2906 	val |= MVPP2_GMAC_FC_ADV_EN;
2907 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
2908 }
2909 
2910 static void mvpp2_port_enable(struct mvpp2_port *port)
2911 {
2912 	u32 val;
2913 
2914 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2915 	val |= MVPP2_GMAC_PORT_EN_MASK;
2916 	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
2917 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2918 }
2919 
2920 static void mvpp2_port_disable(struct mvpp2_port *port)
2921 {
2922 	u32 val;
2923 
2924 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2925 	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
2926 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2927 }
2928 
2929 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
2930 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
2931 {
2932 	u32 val;
2933 
2934 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
2935 		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
2936 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2937 }
2938 
2939 /* Configure loopback port */
2940 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
2941 {
2942 	u32 val;
2943 
2944 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
2945 
2946 	if (port->speed == 1000)
2947 		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
2948 	else
2949 		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
2950 
2951 	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
2952 		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
2953 	else
2954 		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
2955 
2956 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
2957 }
2958 
2959 static void mvpp2_port_reset(struct mvpp2_port *port)
2960 {
2961 	u32 val;
2962 
2963 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2964 		    ~MVPP2_GMAC_PORT_RESET_MASK;
2965 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2966 
2967 	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
2968 	       MVPP2_GMAC_PORT_RESET_MASK)
2969 		continue;
2970 }
2971 
2972 /* Change maximum receive size of the port */
2973 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
2974 {
2975 	u32 val;
2976 
2977 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
2978 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
2979 	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
2980 		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
2981 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
2982 }
2983 
2984 /* PPv2.2 GoP/GMAC config */
2985 
2986 /* Set the MAC to reset or exit from reset */
2987 static int gop_gmac_reset(struct mvpp2_port *port, int reset)
2988 {
2989 	u32 val;
2990 
2991 	/* read - modify - write */
2992 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
2993 	if (reset)
2994 		val |= MVPP2_GMAC_PORT_RESET_MASK;
2995 	else
2996 		val &= ~MVPP2_GMAC_PORT_RESET_MASK;
2997 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
2998 
2999 	return 0;
3000 }
3001 
3002 /*
3003  * gop_gpcs_mode_cfg
3004  *
3005  * Configure port to working with Gig PCS or don't.
3006  */
3007 static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
3008 {
3009 	u32 val;
3010 
3011 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3012 	if (en)
3013 		val |= MVPP2_GMAC_PCS_ENABLE_MASK;
3014 	else
3015 		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3016 	/* enable / disable PCS on this port */
3017 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3018 
3019 	return 0;
3020 }
3021 
3022 static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
3023 {
3024 	u32 val;
3025 
3026 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3027 	if (en)
3028 		val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3029 	else
3030 		val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
3031 	/* enable / disable PCS on this port */
3032 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3033 
3034 	return 0;
3035 }
3036 
3037 static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port)
3038 {
3039 	u32 val, thresh;
3040 
3041 	/*
3042 	 * Configure minimal level of the Tx FIFO before the lower part
3043 	 * starts to read a packet
3044 	 */
3045 	thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
3046 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3047 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3048 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3049 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3050 
3051 	/* Disable bypass of sync module */
3052 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3053 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3054 	/* configure DP clock select according to mode */
3055 	val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3056 	/* configure QSGMII bypass according to mode */
3057 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3058 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3059 
3060 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3061 	val |= MVPP2_GMAC_PORT_DIS_PADING_MASK;
3062 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3063 
3064 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3065 	/*
3066 	 * Configure GIG MAC to 1000Base-X mode connected to a fiber
3067 	 * transceiver
3068 	 */
3069 	val |= MVPP2_GMAC_PORT_TYPE_MASK;
3070 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3071 
3072 	/* configure AN 0x9268 */
3073 	val = MVPP2_GMAC_EN_PCS_AN |
3074 		MVPP2_GMAC_AN_BYPASS_EN |
3075 		MVPP2_GMAC_CONFIG_MII_SPEED  |
3076 		MVPP2_GMAC_CONFIG_GMII_SPEED     |
3077 		MVPP2_GMAC_FC_ADV_EN    |
3078 		MVPP2_GMAC_CONFIG_FULL_DUPLEX |
3079 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3080 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3081 }
3082 
3083 static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
3084 {
3085 	u32 val, thresh;
3086 
3087 	/*
3088 	 * Configure minimal level of the Tx FIFO before the lower part
3089 	 * starts to read a packet
3090 	 */
3091 	thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
3092 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3093 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3094 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3095 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3096 
3097 	/* Disable bypass of sync module */
3098 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3099 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3100 	/* configure DP clock select according to mode */
3101 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3102 	/* configure QSGMII bypass according to mode */
3103 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3104 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3105 
3106 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3107 	val |= MVPP2_GMAC_PORT_DIS_PADING_MASK;
3108 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3109 
3110 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3111 	/* configure GIG MAC to SGMII mode */
3112 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3113 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3114 
3115 	/* configure AN */
3116 	val = MVPP2_GMAC_EN_PCS_AN |
3117 		MVPP2_GMAC_AN_BYPASS_EN |
3118 		MVPP2_GMAC_AN_SPEED_EN  |
3119 		MVPP2_GMAC_EN_FC_AN     |
3120 		MVPP2_GMAC_AN_DUPLEX_EN |
3121 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3122 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3123 }
3124 
3125 static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
3126 {
3127 	u32 val, thresh;
3128 
3129 	/*
3130 	 * Configure minimal level of the Tx FIFO before the lower part
3131 	 * starts to read a packet
3132 	 */
3133 	thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
3134 	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3135 	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3136 	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
3137 	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3138 
3139 	/* Disable bypass of sync module */
3140 	val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
3141 	val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
3142 	/* configure DP clock select according to mode */
3143 	val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
3144 	val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
3145 	val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
3146 	writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
3147 
3148 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3149 	val &= ~MVPP2_GMAC_PORT_DIS_PADING_MASK;
3150 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3151 
3152 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3153 	/* configure GIG MAC to SGMII mode */
3154 	val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
3155 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3156 
3157 	/* configure AN 0xb8e8 */
3158 	val = MVPP2_GMAC_AN_BYPASS_EN |
3159 		MVPP2_GMAC_AN_SPEED_EN   |
3160 		MVPP2_GMAC_EN_FC_AN      |
3161 		MVPP2_GMAC_AN_DUPLEX_EN  |
3162 		MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
3163 	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3164 }
3165 
3166 /* Set the internal mux's to the required MAC in the GOP */
3167 static int gop_gmac_mode_cfg(struct mvpp2_port *port)
3168 {
3169 	u32 val;
3170 
3171 	/* Set TX FIFO thresholds */
3172 	switch (port->phy_interface) {
3173 	case PHY_INTERFACE_MODE_SGMII:
3174 		if (port->phy_speed == 2500)
3175 			gop_gmac_sgmii2_5_cfg(port);
3176 		else
3177 			gop_gmac_sgmii_cfg(port);
3178 		break;
3179 
3180 	case PHY_INTERFACE_MODE_RGMII:
3181 	case PHY_INTERFACE_MODE_RGMII_ID:
3182 		gop_gmac_rgmii_cfg(port);
3183 		break;
3184 
3185 	default:
3186 		return -1;
3187 	}
3188 
3189 	/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
3190 	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3191 	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3192 	val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
3193 	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3194 
3195 	/* PeriodicXonEn disable */
3196 	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3197 	val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3198 	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3199 
3200 	return 0;
3201 }
3202 
3203 static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
3204 {
3205 	u32 val;
3206 
3207 	/* relevant only for MAC0 (XLG0 and GMAC0) */
3208 	if (port->gop_id > 0)
3209 		return;
3210 
3211 	/* configure 1Gig MAC mode */
3212 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3213 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3214 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
3215 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3216 }
3217 
3218 static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
3219 {
3220 	u32 val;
3221 
3222 	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3223 	if (reset)
3224 		val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
3225 	else
3226 		val |= MVPP2_GMAC_SGMII_MODE_MASK;
3227 	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3228 
3229 	return 0;
3230 }
3231 
3232 /* Set the internal mux's to the required PCS in the PI */
3233 static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes)
3234 {
3235 	u32 val;
3236 	int lane;
3237 
3238 	switch (num_of_lanes) {
3239 	case 1:
3240 		lane = 0;
3241 		break;
3242 	case 2:
3243 		lane = 1;
3244 		break;
3245 	case 4:
3246 		lane = 2;
3247 		break;
3248 	default:
3249 		return -1;
3250 	}
3251 
3252 	/* configure XG MAC mode */
3253 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3254 	val &= ~MVPP22_XPCS_PCSMODE_OFFS;
3255 	val &= ~MVPP22_XPCS_LANEACTIVE_MASK;
3256 	val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS;
3257 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3258 
3259 	return 0;
3260 }
3261 
3262 static int gop_mpcs_mode(struct mvpp2_port *port)
3263 {
3264 	u32 val;
3265 
3266 	/* configure PCS40G COMMON CONTROL */
3267 	val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3268 	val &= ~FORWARD_ERROR_CORRECTION_MASK;
3269 	writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL);
3270 
3271 	/* configure PCS CLOCK RESET */
3272 	val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET);
3273 	val &= ~CLK_DIVISION_RATIO_MASK;
3274 	val |= 1 << CLK_DIVISION_RATIO_OFFS;
3275 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3276 
3277 	val &= ~CLK_DIV_PHASE_SET_MASK;
3278 	val |= MAC_CLK_RESET_MASK;
3279 	val |= RX_SD_CLK_RESET_MASK;
3280 	val |= TX_SD_CLK_RESET_MASK;
3281 	writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET);
3282 
3283 	return 0;
3284 }
3285 
3286 /* Set the internal mux's to the required MAC in the GOP */
3287 static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
3288 {
3289 	u32 val;
3290 
3291 	/* configure 10G MAC mode */
3292 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3293 	val |= MVPP22_XLG_RX_FC_EN;
3294 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3295 
3296 	val = readl(port->base + MVPP22_XLG_CTRL3_REG);
3297 	val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
3298 	val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
3299 	writel(val, port->base + MVPP22_XLG_CTRL3_REG);
3300 
3301 	/* read - modify - write */
3302 	val = readl(port->base + MVPP22_XLG_CTRL4_REG);
3303 	val &= ~MVPP22_XLG_MODE_DMA_1G;
3304 	val |= MVPP22_XLG_FORWARD_PFC_EN;
3305 	val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
3306 	val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
3307 	writel(val, port->base + MVPP22_XLG_CTRL4_REG);
3308 
3309 	/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
3310 	val = readl(port->base + MVPP22_XLG_CTRL1_REG);
3311 	val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
3312 	val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
3313 	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
3314 
3315 	/* unmask link change interrupt */
3316 	val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3317 	val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
3318 	val |= 1; /* unmask summary bit */
3319 	writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
3320 
3321 	return 0;
3322 }
3323 
3324 /* Set PCS to reset or exit from reset */
3325 static int gop_xpcs_reset(struct mvpp2_port *port, int reset)
3326 {
3327 	u32 val;
3328 
3329 	/* read - modify - write */
3330 	val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3331 	if (reset)
3332 		val &= ~MVPP22_XPCS_PCSRESET;
3333 	else
3334 		val |= MVPP22_XPCS_PCSRESET;
3335 	writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG);
3336 
3337 	return 0;
3338 }
3339 
3340 /* Set the MAC to reset or exit from reset */
3341 static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
3342 {
3343 	u32 val;
3344 
3345 	/* read - modify - write */
3346 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3347 	if (reset)
3348 		val &= ~MVPP22_XLG_MAC_RESETN;
3349 	else
3350 		val |= MVPP22_XLG_MAC_RESETN;
3351 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3352 
3353 	return 0;
3354 }
3355 
3356 /*
3357  * gop_port_init
3358  *
3359  * Init physical port. Configures the port mode and all it's elements
3360  * accordingly.
3361  * Does not verify that the selected mode/port number is valid at the
3362  * core level.
3363  */
3364 static int gop_port_init(struct mvpp2_port *port)
3365 {
3366 	int mac_num = port->gop_id;
3367 	int num_of_act_lanes;
3368 
3369 	if (mac_num >= MVPP22_GOP_MAC_NUM) {
3370 		netdev_err(NULL, "%s: illegal port number %d", __func__,
3371 			   mac_num);
3372 		return -1;
3373 	}
3374 
3375 	switch (port->phy_interface) {
3376 	case PHY_INTERFACE_MODE_RGMII:
3377 	case PHY_INTERFACE_MODE_RGMII_ID:
3378 		gop_gmac_reset(port, 1);
3379 
3380 		/* configure PCS */
3381 		gop_gpcs_mode_cfg(port, 0);
3382 		gop_bypass_clk_cfg(port, 1);
3383 
3384 		/* configure MAC */
3385 		gop_gmac_mode_cfg(port);
3386 		/* pcs unreset */
3387 		gop_gpcs_reset(port, 0);
3388 
3389 		/* mac unreset */
3390 		gop_gmac_reset(port, 0);
3391 		break;
3392 
3393 	case PHY_INTERFACE_MODE_SGMII:
3394 		/* configure PCS */
3395 		gop_gpcs_mode_cfg(port, 1);
3396 
3397 		/* configure MAC */
3398 		gop_gmac_mode_cfg(port);
3399 		/* select proper Mac mode */
3400 		gop_xlg_2_gig_mac_cfg(port);
3401 
3402 		/* pcs unreset */
3403 		gop_gpcs_reset(port, 0);
3404 		/* mac unreset */
3405 		gop_gmac_reset(port, 0);
3406 		break;
3407 
3408 	case PHY_INTERFACE_MODE_SFI:
3409 		num_of_act_lanes = 2;
3410 		mac_num = 0;
3411 		/* configure PCS */
3412 		gop_xpcs_mode(port, num_of_act_lanes);
3413 		gop_mpcs_mode(port);
3414 		/* configure MAC */
3415 		gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
3416 
3417 		/* pcs unreset */
3418 		gop_xpcs_reset(port, 0);
3419 
3420 		/* mac unreset */
3421 		gop_xlg_mac_reset(port, 0);
3422 		break;
3423 
3424 	default:
3425 		netdev_err(NULL, "%s: Requested port mode (%d) not supported\n",
3426 			   __func__, port->phy_interface);
3427 		return -1;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
3434 {
3435 	u32 val;
3436 
3437 	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
3438 	if (enable) {
3439 		/* Enable port and MIB counters update */
3440 		val |= MVPP22_XLG_PORT_EN;
3441 		val &= ~MVPP22_XLG_MIBCNT_DIS;
3442 	} else {
3443 		/* Disable port */
3444 		val &= ~MVPP22_XLG_PORT_EN;
3445 	}
3446 	writel(val, port->base + MVPP22_XLG_CTRL0_REG);
3447 }
3448 
3449 static void gop_port_enable(struct mvpp2_port *port, int enable)
3450 {
3451 	switch (port->phy_interface) {
3452 	case PHY_INTERFACE_MODE_RGMII:
3453 	case PHY_INTERFACE_MODE_RGMII_ID:
3454 	case PHY_INTERFACE_MODE_SGMII:
3455 		if (enable)
3456 			mvpp2_port_enable(port);
3457 		else
3458 			mvpp2_port_disable(port);
3459 		break;
3460 
3461 	case PHY_INTERFACE_MODE_SFI:
3462 		gop_xlg_mac_port_enable(port, enable);
3463 
3464 		break;
3465 	default:
3466 		netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__,
3467 			   port->phy_interface);
3468 		return;
3469 	}
3470 }
3471 
3472 /* RFU1 functions */
3473 static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
3474 {
3475 	return readl(priv->rfu1_base + offset);
3476 }
3477 
3478 static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
3479 {
3480 	writel(data, priv->rfu1_base + offset);
3481 }
3482 
3483 static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
3484 {
3485 	u32 val = 0;
3486 
3487 	if (gop_id == 2) {
3488 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3489 			val |= MV_NETC_GE_MAC2_SGMII;
3490 	}
3491 
3492 	if (gop_id == 3) {
3493 		if (phy_type == PHY_INTERFACE_MODE_SGMII)
3494 			val |= MV_NETC_GE_MAC3_SGMII;
3495 		else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
3496 			 phy_type == PHY_INTERFACE_MODE_RGMII_ID)
3497 			val |= MV_NETC_GE_MAC3_RGMII;
3498 	}
3499 
3500 	return val;
3501 }
3502 
3503 static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
3504 {
3505 	u32 reg;
3506 
3507 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3508 	reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
3509 
3510 	val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
3511 	val &= NETC_PORTS_ACTIVE_MASK(gop_id);
3512 
3513 	reg |= val;
3514 
3515 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3516 }
3517 
3518 static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
3519 {
3520 	u32 reg;
3521 
3522 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3523 	reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
3524 
3525 	val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
3526 	val &= NETC_GBE_PORT1_MII_MODE_MASK;
3527 
3528 	reg |= val;
3529 
3530 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3531 }
3532 
3533 static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
3534 {
3535 	u32 reg;
3536 
3537 	reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
3538 	reg &= ~NETC_GOP_SOFT_RESET_MASK;
3539 
3540 	val <<= NETC_GOP_SOFT_RESET_OFFS;
3541 	val &= NETC_GOP_SOFT_RESET_MASK;
3542 
3543 	reg |= val;
3544 
3545 	gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
3546 }
3547 
3548 static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
3549 {
3550 	u32 reg;
3551 
3552 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3553 	reg &= ~NETC_CLK_DIV_PHASE_MASK;
3554 
3555 	val <<= NETC_CLK_DIV_PHASE_OFFS;
3556 	val &= NETC_CLK_DIV_PHASE_MASK;
3557 
3558 	reg |= val;
3559 
3560 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3561 }
3562 
3563 static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
3564 {
3565 	u32 reg;
3566 
3567 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
3568 	reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
3569 
3570 	val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
3571 	val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
3572 
3573 	reg |= val;
3574 
3575 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
3576 }
3577 
3578 static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
3579 					   u32 val)
3580 {
3581 	u32 reg, mask, offset;
3582 
3583 	if (gop_id == 2) {
3584 		mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
3585 		offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
3586 	} else {
3587 		mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
3588 		offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
3589 	}
3590 	reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
3591 	reg &= ~mask;
3592 
3593 	val <<= offset;
3594 	val &= mask;
3595 
3596 	reg |= val;
3597 
3598 	gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
3599 }
3600 
3601 static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
3602 {
3603 	u32 reg;
3604 
3605 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3606 	reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
3607 
3608 	val <<= NETC_BUS_WIDTH_SELECT_OFFS;
3609 	val &= NETC_BUS_WIDTH_SELECT_MASK;
3610 
3611 	reg |= val;
3612 
3613 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3614 }
3615 
3616 static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
3617 {
3618 	u32 reg;
3619 
3620 	reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
3621 	reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
3622 
3623 	val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
3624 	val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
3625 
3626 	reg |= val;
3627 
3628 	gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
3629 }
3630 
3631 static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
3632 				  enum mv_netc_phase phase)
3633 {
3634 	switch (phase) {
3635 	case MV_NETC_FIRST_PHASE:
3636 		/* Set Bus Width to HB mode = 1 */
3637 		gop_netc_bus_width_select(priv, 1);
3638 		/* Select RGMII mode */
3639 		gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
3640 		break;
3641 
3642 	case MV_NETC_SECOND_PHASE:
3643 		/* De-assert the relevant port HB reset */
3644 		gop_netc_port_rf_reset(priv, gop_id, 1);
3645 		break;
3646 	}
3647 }
3648 
3649 static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
3650 				  enum mv_netc_phase phase)
3651 {
3652 	switch (phase) {
3653 	case MV_NETC_FIRST_PHASE:
3654 		/* Set Bus Width to HB mode = 1 */
3655 		gop_netc_bus_width_select(priv, 1);
3656 		/* Select SGMII mode */
3657 		if (gop_id >= 1) {
3658 			gop_netc_gbe_sgmii_mode_select(priv, gop_id,
3659 						       MV_NETC_GBE_SGMII);
3660 		}
3661 
3662 		/* Configure the sample stages */
3663 		gop_netc_sample_stages_timing(priv, 0);
3664 		/* Configure the ComPhy Selector */
3665 		/* gop_netc_com_phy_selector_config(netComplex); */
3666 		break;
3667 
3668 	case MV_NETC_SECOND_PHASE:
3669 		/* De-assert the relevant port HB reset */
3670 		gop_netc_port_rf_reset(priv, gop_id, 1);
3671 		break;
3672 	}
3673 }
3674 
3675 static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
3676 {
3677 	u32 c = priv->netc_config;
3678 
3679 	if (c & MV_NETC_GE_MAC2_SGMII)
3680 		gop_netc_mac_to_sgmii(priv, 2, phase);
3681 	else
3682 		gop_netc_mac_to_xgmii(priv, 2, phase);
3683 
3684 	if (c & MV_NETC_GE_MAC3_SGMII) {
3685 		gop_netc_mac_to_sgmii(priv, 3, phase);
3686 	} else {
3687 		gop_netc_mac_to_xgmii(priv, 3, phase);
3688 		if (c & MV_NETC_GE_MAC3_RGMII)
3689 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
3690 		else
3691 			gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
3692 	}
3693 
3694 	/* Activate gop ports 0, 2, 3 */
3695 	gop_netc_active_port(priv, 0, 1);
3696 	gop_netc_active_port(priv, 2, 1);
3697 	gop_netc_active_port(priv, 3, 1);
3698 
3699 	if (phase == MV_NETC_SECOND_PHASE) {
3700 		/* Enable the GOP internal clock logic */
3701 		gop_netc_gop_clock_logic_set(priv, 1);
3702 		/* De-assert GOP unit reset */
3703 		gop_netc_gop_reset(priv, 1);
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 /* Set defaults to the MVPP2 port */
3710 static void mvpp2_defaults_set(struct mvpp2_port *port)
3711 {
3712 	int tx_port_num, val, queue, ptxq, lrxq;
3713 
3714 	if (port->priv->hw_version == MVPP21) {
3715 		/* Configure port to loopback if needed */
3716 		if (port->flags & MVPP2_F_LOOPBACK)
3717 			mvpp2_port_loopback_set(port);
3718 
3719 		/* Update TX FIFO MIN Threshold */
3720 		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3721 		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3722 		/* Min. TX threshold must be less than minimal packet length */
3723 		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3724 		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3725 	}
3726 
3727 	/* Disable Legacy WRR, Disable EJP, Release from reset */
3728 	tx_port_num = mvpp2_egress_port(port);
3729 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3730 		    tx_port_num);
3731 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3732 
3733 	/* Close bandwidth for all queues */
3734 	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3735 		ptxq = mvpp2_txq_phys(port->id, queue);
3736 		mvpp2_write(port->priv,
3737 			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3738 	}
3739 
3740 	/* Set refill period to 1 usec, refill tokens
3741 	 * and bucket size to maximum
3742 	 */
3743 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
3744 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3745 	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3746 	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3747 	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3748 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3749 	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3750 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3751 
3752 	/* Set MaximumLowLatencyPacketSize value to 256 */
3753 	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3754 		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3755 		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3756 
3757 	/* Enable Rx cache snoop */
3758 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3759 		queue = port->rxqs[lrxq]->id;
3760 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3761 		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3762 			   MVPP2_SNOOP_BUF_HDR_MASK;
3763 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3764 	}
3765 }
3766 
3767 /* Enable/disable receiving packets */
3768 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3769 {
3770 	u32 val;
3771 	int lrxq, queue;
3772 
3773 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3774 		queue = port->rxqs[lrxq]->id;
3775 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3776 		val &= ~MVPP2_RXQ_DISABLE_MASK;
3777 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3778 	}
3779 }
3780 
3781 static void mvpp2_ingress_disable(struct mvpp2_port *port)
3782 {
3783 	u32 val;
3784 	int lrxq, queue;
3785 
3786 	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3787 		queue = port->rxqs[lrxq]->id;
3788 		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3789 		val |= MVPP2_RXQ_DISABLE_MASK;
3790 		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3791 	}
3792 }
3793 
3794 /* Enable transmit via physical egress queue
3795  * - HW starts take descriptors from DRAM
3796  */
3797 static void mvpp2_egress_enable(struct mvpp2_port *port)
3798 {
3799 	u32 qmap;
3800 	int queue;
3801 	int tx_port_num = mvpp2_egress_port(port);
3802 
3803 	/* Enable all initialized TXs. */
3804 	qmap = 0;
3805 	for (queue = 0; queue < txq_number; queue++) {
3806 		struct mvpp2_tx_queue *txq = port->txqs[queue];
3807 
3808 		if (txq->descs != NULL)
3809 			qmap |= (1 << queue);
3810 	}
3811 
3812 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3813 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
3814 }
3815 
3816 /* Disable transmit via physical egress queue
3817  * - HW doesn't take descriptors from DRAM
3818  */
3819 static void mvpp2_egress_disable(struct mvpp2_port *port)
3820 {
3821 	u32 reg_data;
3822 	int delay;
3823 	int tx_port_num = mvpp2_egress_port(port);
3824 
3825 	/* Issue stop command for active channels only */
3826 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3827 	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
3828 		    MVPP2_TXP_SCHED_ENQ_MASK;
3829 	if (reg_data != 0)
3830 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
3831 			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
3832 
3833 	/* Wait for all Tx activity to terminate. */
3834 	delay = 0;
3835 	do {
3836 		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
3837 			netdev_warn(port->dev,
3838 				    "Tx stop timed out, status=0x%08x\n",
3839 				    reg_data);
3840 			break;
3841 		}
3842 		mdelay(1);
3843 		delay++;
3844 
3845 		/* Check port TX Command register that all
3846 		 * Tx queues are stopped
3847 		 */
3848 		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
3849 	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
3850 }
3851 
3852 /* Rx descriptors helper methods */
3853 
3854 /* Get number of Rx descriptors occupied by received packets */
3855 static inline int
3856 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
3857 {
3858 	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
3859 
3860 	return val & MVPP2_RXQ_OCCUPIED_MASK;
3861 }
3862 
3863 /* Update Rx queue status with the number of occupied and available
3864  * Rx descriptor slots.
3865  */
3866 static inline void
3867 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
3868 			int used_count, int free_count)
3869 {
3870 	/* Decrement the number of used descriptors and increment count
3871 	 * increment the number of free descriptors.
3872 	 */
3873 	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
3874 
3875 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
3876 }
3877 
3878 /* Get pointer to next RX descriptor to be processed by SW */
3879 static inline struct mvpp2_rx_desc *
3880 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
3881 {
3882 	int rx_desc = rxq->next_desc_to_proc;
3883 
3884 	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
3885 	prefetch(rxq->descs + rxq->next_desc_to_proc);
3886 	return rxq->descs + rx_desc;
3887 }
3888 
3889 /* Set rx queue offset */
3890 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
3891 				 int prxq, int offset)
3892 {
3893 	u32 val;
3894 
3895 	/* Convert offset from bytes to units of 32 bytes */
3896 	offset = offset >> 5;
3897 
3898 	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3899 	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
3900 
3901 	/* Offset is in */
3902 	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
3903 		    MVPP2_RXQ_PACKET_OFFSET_MASK);
3904 
3905 	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3906 }
3907 
3908 /* Obtain BM cookie information from descriptor */
3909 static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
3910 				 struct mvpp2_rx_desc *rx_desc)
3911 {
3912 	int cpu = smp_processor_id();
3913 	int pool;
3914 
3915 	pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
3916 		MVPP2_RXD_BM_POOL_ID_MASK) >>
3917 		MVPP2_RXD_BM_POOL_ID_OFFS;
3918 
3919 	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
3920 	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
3921 }
3922 
3923 /* Tx descriptors helper methods */
3924 
3925 /* Get number of Tx descriptors waiting to be transmitted by HW */
3926 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
3927 				       struct mvpp2_tx_queue *txq)
3928 {
3929 	u32 val;
3930 
3931 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
3932 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
3933 
3934 	return val & MVPP2_TXQ_PENDING_MASK;
3935 }
3936 
3937 /* Get pointer to next Tx descriptor to be processed (send) by HW */
3938 static struct mvpp2_tx_desc *
3939 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
3940 {
3941 	int tx_desc = txq->next_desc_to_proc;
3942 
3943 	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
3944 	return txq->descs + tx_desc;
3945 }
3946 
3947 /* Update HW with number of aggregated Tx descriptors to be sent */
3948 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
3949 {
3950 	/* aggregated access - relevant TXQ number is written in TX desc */
3951 	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
3952 }
3953 
3954 /* Get number of sent descriptors and decrement counter.
3955  * The number of sent descriptors is returned.
3956  * Per-CPU access
3957  */
3958 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
3959 					   struct mvpp2_tx_queue *txq)
3960 {
3961 	u32 val;
3962 
3963 	/* Reading status reg resets transmitted descriptor counter */
3964 	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
3965 
3966 	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
3967 		MVPP2_TRANSMITTED_COUNT_OFFSET;
3968 }
3969 
3970 static void mvpp2_txq_sent_counter_clear(void *arg)
3971 {
3972 	struct mvpp2_port *port = arg;
3973 	int queue;
3974 
3975 	for (queue = 0; queue < txq_number; queue++) {
3976 		int id = port->txqs[queue]->id;
3977 
3978 		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
3979 	}
3980 }
3981 
3982 /* Set max sizes for Tx queues */
3983 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
3984 {
3985 	u32	val, size, mtu;
3986 	int	txq, tx_port_num;
3987 
3988 	mtu = port->pkt_size * 8;
3989 	if (mtu > MVPP2_TXP_MTU_MAX)
3990 		mtu = MVPP2_TXP_MTU_MAX;
3991 
3992 	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
3993 	mtu = 3 * mtu;
3994 
3995 	/* Indirect access to registers */
3996 	tx_port_num = mvpp2_egress_port(port);
3997 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
3998 
3999 	/* Set MTU */
4000 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4001 	val &= ~MVPP2_TXP_MTU_MAX;
4002 	val |= mtu;
4003 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4004 
4005 	/* TXP token size and all TXQs token size must be larger that MTU */
4006 	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4007 	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4008 	if (size < mtu) {
4009 		size = mtu;
4010 		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4011 		val |= size;
4012 		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4013 	}
4014 
4015 	for (txq = 0; txq < txq_number; txq++) {
4016 		val = mvpp2_read(port->priv,
4017 				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4018 		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4019 
4020 		if (size < mtu) {
4021 			size = mtu;
4022 			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4023 			val |= size;
4024 			mvpp2_write(port->priv,
4025 				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4026 				    val);
4027 		}
4028 	}
4029 }
4030 
4031 /* Free Tx queue skbuffs */
4032 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4033 				struct mvpp2_tx_queue *txq,
4034 				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4035 {
4036 	int i;
4037 
4038 	for (i = 0; i < num; i++)
4039 		mvpp2_txq_inc_get(txq_pcpu);
4040 }
4041 
4042 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4043 							u32 cause)
4044 {
4045 	int queue = fls(cause) - 1;
4046 
4047 	return port->rxqs[queue];
4048 }
4049 
4050 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4051 							u32 cause)
4052 {
4053 	int queue = fls(cause) - 1;
4054 
4055 	return port->txqs[queue];
4056 }
4057 
4058 /* Rx/Tx queue initialization/cleanup methods */
4059 
4060 /* Allocate and initialize descriptors for aggr TXQ */
4061 static int mvpp2_aggr_txq_init(struct udevice *dev,
4062 			       struct mvpp2_tx_queue *aggr_txq,
4063 			       int desc_num, int cpu,
4064 			       struct mvpp2 *priv)
4065 {
4066 	u32 txq_dma;
4067 
4068 	/* Allocate memory for TX descriptors */
4069 	aggr_txq->descs = buffer_loc.aggr_tx_descs;
4070 	aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
4071 	if (!aggr_txq->descs)
4072 		return -ENOMEM;
4073 
4074 	/* Make sure descriptor address is cache line size aligned  */
4075 	BUG_ON(aggr_txq->descs !=
4076 	       PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4077 
4078 	aggr_txq->last_desc = aggr_txq->size - 1;
4079 
4080 	/* Aggr TXQ no reset WA */
4081 	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4082 						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4083 
4084 	/* Set Tx descriptors queue starting address indirect
4085 	 * access
4086 	 */
4087 	if (priv->hw_version == MVPP21)
4088 		txq_dma = aggr_txq->descs_dma;
4089 	else
4090 		txq_dma = aggr_txq->descs_dma >>
4091 			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4092 
4093 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4094 	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4095 
4096 	return 0;
4097 }
4098 
4099 /* Create a specified Rx queue */
4100 static int mvpp2_rxq_init(struct mvpp2_port *port,
4101 			  struct mvpp2_rx_queue *rxq)
4102 
4103 {
4104 	u32 rxq_dma;
4105 
4106 	rxq->size = port->rx_ring_size;
4107 
4108 	/* Allocate memory for RX descriptors */
4109 	rxq->descs = buffer_loc.rx_descs;
4110 	rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
4111 	if (!rxq->descs)
4112 		return -ENOMEM;
4113 
4114 	BUG_ON(rxq->descs !=
4115 	       PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4116 
4117 	rxq->last_desc = rxq->size - 1;
4118 
4119 	/* Zero occupied and non-occupied counters - direct access */
4120 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4121 
4122 	/* Set Rx descriptors queue starting address - indirect access */
4123 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4124 	if (port->priv->hw_version == MVPP21)
4125 		rxq_dma = rxq->descs_dma;
4126 	else
4127 		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4128 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4129 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4130 	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4131 
4132 	/* Set Offset */
4133 	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4134 
4135 	/* Add number of descriptors ready for receiving packets */
4136 	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4137 
4138 	return 0;
4139 }
4140 
4141 /* Push packets received by the RXQ to BM pool */
4142 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4143 				struct mvpp2_rx_queue *rxq)
4144 {
4145 	int rx_received, i;
4146 
4147 	rx_received = mvpp2_rxq_received(port, rxq->id);
4148 	if (!rx_received)
4149 		return;
4150 
4151 	for (i = 0; i < rx_received; i++) {
4152 		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4153 		u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
4154 
4155 		mvpp2_pool_refill(port, bm,
4156 				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4157 				  mvpp2_rxdesc_cookie_get(port, rx_desc));
4158 	}
4159 	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4160 }
4161 
4162 /* Cleanup Rx queue */
4163 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4164 			     struct mvpp2_rx_queue *rxq)
4165 {
4166 	mvpp2_rxq_drop_pkts(port, rxq);
4167 
4168 	rxq->descs             = NULL;
4169 	rxq->last_desc         = 0;
4170 	rxq->next_desc_to_proc = 0;
4171 	rxq->descs_dma         = 0;
4172 
4173 	/* Clear Rx descriptors queue starting address and size;
4174 	 * free descriptor number
4175 	 */
4176 	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4177 	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4178 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4179 	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4180 }
4181 
4182 /* Create and initialize a Tx queue */
4183 static int mvpp2_txq_init(struct mvpp2_port *port,
4184 			  struct mvpp2_tx_queue *txq)
4185 {
4186 	u32 val;
4187 	int cpu, desc, desc_per_txq, tx_port_num;
4188 	struct mvpp2_txq_pcpu *txq_pcpu;
4189 
4190 	txq->size = port->tx_ring_size;
4191 
4192 	/* Allocate memory for Tx descriptors */
4193 	txq->descs = buffer_loc.tx_descs;
4194 	txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
4195 	if (!txq->descs)
4196 		return -ENOMEM;
4197 
4198 	/* Make sure descriptor address is cache line size aligned  */
4199 	BUG_ON(txq->descs !=
4200 	       PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4201 
4202 	txq->last_desc = txq->size - 1;
4203 
4204 	/* Set Tx descriptors queue starting address - indirect access */
4205 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4206 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
4207 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4208 					     MVPP2_TXQ_DESC_SIZE_MASK);
4209 	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4210 	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4211 		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4212 	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4213 	val &= ~MVPP2_TXQ_PENDING_MASK;
4214 	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4215 
4216 	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4217 	 * for each existing TXQ.
4218 	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4219 	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4220 	 */
4221 	desc_per_txq = 16;
4222 	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4223 	       (txq->log_id * desc_per_txq);
4224 
4225 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4226 		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4227 		    MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
4228 
4229 	/* WRR / EJP configuration - indirect access */
4230 	tx_port_num = mvpp2_egress_port(port);
4231 	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4232 
4233 	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4234 	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4235 	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4236 	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4237 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4238 
4239 	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4240 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4241 		    val);
4242 
4243 	for_each_present_cpu(cpu) {
4244 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4245 		txq_pcpu->size = txq->size;
4246 	}
4247 
4248 	return 0;
4249 }
4250 
4251 /* Free allocated TXQ resources */
4252 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4253 			     struct mvpp2_tx_queue *txq)
4254 {
4255 	txq->descs             = NULL;
4256 	txq->last_desc         = 0;
4257 	txq->next_desc_to_proc = 0;
4258 	txq->descs_dma         = 0;
4259 
4260 	/* Set minimum bandwidth for disabled TXQs */
4261 	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4262 
4263 	/* Set Tx descriptors queue starting address and size */
4264 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4265 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4266 	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4267 }
4268 
4269 /* Cleanup Tx ports */
4270 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4271 {
4272 	struct mvpp2_txq_pcpu *txq_pcpu;
4273 	int delay, pending, cpu;
4274 	u32 val;
4275 
4276 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4277 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4278 	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4279 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4280 
4281 	/* The napi queue has been stopped so wait for all packets
4282 	 * to be transmitted.
4283 	 */
4284 	delay = 0;
4285 	do {
4286 		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4287 			netdev_warn(port->dev,
4288 				    "port %d: cleaning queue %d timed out\n",
4289 				    port->id, txq->log_id);
4290 			break;
4291 		}
4292 		mdelay(1);
4293 		delay++;
4294 
4295 		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4296 	} while (pending);
4297 
4298 	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4299 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4300 
4301 	for_each_present_cpu(cpu) {
4302 		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4303 
4304 		/* Release all packets */
4305 		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4306 
4307 		/* Reset queue */
4308 		txq_pcpu->count = 0;
4309 		txq_pcpu->txq_put_index = 0;
4310 		txq_pcpu->txq_get_index = 0;
4311 	}
4312 }
4313 
4314 /* Cleanup all Tx queues */
4315 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4316 {
4317 	struct mvpp2_tx_queue *txq;
4318 	int queue;
4319 	u32 val;
4320 
4321 	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4322 
4323 	/* Reset Tx ports and delete Tx queues */
4324 	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4325 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4326 
4327 	for (queue = 0; queue < txq_number; queue++) {
4328 		txq = port->txqs[queue];
4329 		mvpp2_txq_clean(port, txq);
4330 		mvpp2_txq_deinit(port, txq);
4331 	}
4332 
4333 	mvpp2_txq_sent_counter_clear(port);
4334 
4335 	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4336 	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4337 }
4338 
4339 /* Cleanup all Rx queues */
4340 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4341 {
4342 	int queue;
4343 
4344 	for (queue = 0; queue < rxq_number; queue++)
4345 		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4346 }
4347 
4348 /* Init all Rx queues for port */
4349 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4350 {
4351 	int queue, err;
4352 
4353 	for (queue = 0; queue < rxq_number; queue++) {
4354 		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4355 		if (err)
4356 			goto err_cleanup;
4357 	}
4358 	return 0;
4359 
4360 err_cleanup:
4361 	mvpp2_cleanup_rxqs(port);
4362 	return err;
4363 }
4364 
4365 /* Init all tx queues for port */
4366 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4367 {
4368 	struct mvpp2_tx_queue *txq;
4369 	int queue, err;
4370 
4371 	for (queue = 0; queue < txq_number; queue++) {
4372 		txq = port->txqs[queue];
4373 		err = mvpp2_txq_init(port, txq);
4374 		if (err)
4375 			goto err_cleanup;
4376 	}
4377 
4378 	mvpp2_txq_sent_counter_clear(port);
4379 	return 0;
4380 
4381 err_cleanup:
4382 	mvpp2_cleanup_txqs(port);
4383 	return err;
4384 }
4385 
4386 /* Adjust link */
4387 static void mvpp2_link_event(struct mvpp2_port *port)
4388 {
4389 	struct phy_device *phydev = port->phy_dev;
4390 	int status_change = 0;
4391 	u32 val;
4392 
4393 	if (phydev->link) {
4394 		if ((port->speed != phydev->speed) ||
4395 		    (port->duplex != phydev->duplex)) {
4396 			u32 val;
4397 
4398 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4399 			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4400 				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4401 				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4402 				 MVPP2_GMAC_AN_SPEED_EN |
4403 				 MVPP2_GMAC_AN_DUPLEX_EN);
4404 
4405 			if (phydev->duplex)
4406 				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4407 
4408 			if (phydev->speed == SPEED_1000)
4409 				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4410 			else if (phydev->speed == SPEED_100)
4411 				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4412 
4413 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4414 
4415 			port->duplex = phydev->duplex;
4416 			port->speed  = phydev->speed;
4417 		}
4418 	}
4419 
4420 	if (phydev->link != port->link) {
4421 		if (!phydev->link) {
4422 			port->duplex = -1;
4423 			port->speed = 0;
4424 		}
4425 
4426 		port->link = phydev->link;
4427 		status_change = 1;
4428 	}
4429 
4430 	if (status_change) {
4431 		if (phydev->link) {
4432 			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4433 			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4434 				MVPP2_GMAC_FORCE_LINK_DOWN);
4435 			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4436 			mvpp2_egress_enable(port);
4437 			mvpp2_ingress_enable(port);
4438 		} else {
4439 			mvpp2_ingress_disable(port);
4440 			mvpp2_egress_disable(port);
4441 		}
4442 	}
4443 }
4444 
4445 /* Main RX/TX processing routines */
4446 
4447 /* Display more error info */
4448 static void mvpp2_rx_error(struct mvpp2_port *port,
4449 			   struct mvpp2_rx_desc *rx_desc)
4450 {
4451 	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4452 	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
4453 
4454 	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4455 	case MVPP2_RXD_ERR_CRC:
4456 		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
4457 			   status, sz);
4458 		break;
4459 	case MVPP2_RXD_ERR_OVERRUN:
4460 		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
4461 			   status, sz);
4462 		break;
4463 	case MVPP2_RXD_ERR_RESOURCE:
4464 		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
4465 			   status, sz);
4466 		break;
4467 	}
4468 }
4469 
4470 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4471 static int mvpp2_rx_refill(struct mvpp2_port *port,
4472 			   struct mvpp2_bm_pool *bm_pool,
4473 			   u32 bm, dma_addr_t dma_addr)
4474 {
4475 	mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
4476 	return 0;
4477 }
4478 
4479 /* Set hw internals when starting port */
4480 static void mvpp2_start_dev(struct mvpp2_port *port)
4481 {
4482 	mvpp2_gmac_max_rx_size_set(port);
4483 	mvpp2_txp_max_tx_size_set(port);
4484 
4485 	if (port->priv->hw_version == MVPP21)
4486 		mvpp2_port_enable(port);
4487 	else
4488 		gop_port_enable(port, 1);
4489 }
4490 
4491 /* Set hw internals when stopping port */
4492 static void mvpp2_stop_dev(struct mvpp2_port *port)
4493 {
4494 	/* Stop new packets from arriving to RXQs */
4495 	mvpp2_ingress_disable(port);
4496 
4497 	mvpp2_egress_disable(port);
4498 
4499 	if (port->priv->hw_version == MVPP21)
4500 		mvpp2_port_disable(port);
4501 	else
4502 		gop_port_enable(port, 0);
4503 }
4504 
4505 static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
4506 {
4507 	struct phy_device *phy_dev;
4508 
4509 	if (!port->init || port->link == 0) {
4510 		phy_dev = phy_connect(port->priv->bus, port->phyaddr, dev,
4511 				      port->phy_interface);
4512 		port->phy_dev = phy_dev;
4513 		if (!phy_dev) {
4514 			netdev_err(port->dev, "cannot connect to phy\n");
4515 			return -ENODEV;
4516 		}
4517 		phy_dev->supported &= PHY_GBIT_FEATURES;
4518 		phy_dev->advertising = phy_dev->supported;
4519 
4520 		port->phy_dev = phy_dev;
4521 		port->link    = 0;
4522 		port->duplex  = 0;
4523 		port->speed   = 0;
4524 
4525 		phy_config(phy_dev);
4526 		phy_startup(phy_dev);
4527 		if (!phy_dev->link) {
4528 			printf("%s: No link\n", phy_dev->dev->name);
4529 			return -1;
4530 		}
4531 
4532 		port->init = 1;
4533 	} else {
4534 		mvpp2_egress_enable(port);
4535 		mvpp2_ingress_enable(port);
4536 	}
4537 
4538 	return 0;
4539 }
4540 
4541 static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
4542 {
4543 	unsigned char mac_bcast[ETH_ALEN] = {
4544 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4545 	int err;
4546 
4547 	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
4548 	if (err) {
4549 		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
4550 		return err;
4551 	}
4552 	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
4553 				      port->dev_addr, true);
4554 	if (err) {
4555 		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
4556 		return err;
4557 	}
4558 	err = mvpp2_prs_def_flow(port);
4559 	if (err) {
4560 		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
4561 		return err;
4562 	}
4563 
4564 	/* Allocate the Rx/Tx queues */
4565 	err = mvpp2_setup_rxqs(port);
4566 	if (err) {
4567 		netdev_err(port->dev, "cannot allocate Rx queues\n");
4568 		return err;
4569 	}
4570 
4571 	err = mvpp2_setup_txqs(port);
4572 	if (err) {
4573 		netdev_err(port->dev, "cannot allocate Tx queues\n");
4574 		return err;
4575 	}
4576 
4577 	err = mvpp2_phy_connect(dev, port);
4578 	if (err < 0)
4579 		return err;
4580 
4581 	mvpp2_link_event(port);
4582 
4583 	mvpp2_start_dev(port);
4584 
4585 	return 0;
4586 }
4587 
4588 /* No Device ops here in U-Boot */
4589 
4590 /* Driver initialization */
4591 
4592 static void mvpp2_port_power_up(struct mvpp2_port *port)
4593 {
4594 	struct mvpp2 *priv = port->priv;
4595 
4596 	/* On PPv2.2 the GoP / interface configuration has already been done */
4597 	if (priv->hw_version == MVPP21)
4598 		mvpp2_port_mii_set(port);
4599 	mvpp2_port_periodic_xon_disable(port);
4600 	if (priv->hw_version == MVPP21)
4601 		mvpp2_port_fc_adv_enable(port);
4602 	mvpp2_port_reset(port);
4603 }
4604 
4605 /* Initialize port HW */
4606 static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
4607 {
4608 	struct mvpp2 *priv = port->priv;
4609 	struct mvpp2_txq_pcpu *txq_pcpu;
4610 	int queue, cpu, err;
4611 
4612 	if (port->first_rxq + rxq_number >
4613 	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
4614 		return -EINVAL;
4615 
4616 	/* Disable port */
4617 	mvpp2_egress_disable(port);
4618 	if (priv->hw_version == MVPP21)
4619 		mvpp2_port_disable(port);
4620 	else
4621 		gop_port_enable(port, 0);
4622 
4623 	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
4624 				  GFP_KERNEL);
4625 	if (!port->txqs)
4626 		return -ENOMEM;
4627 
4628 	/* Associate physical Tx queues to this port and initialize.
4629 	 * The mapping is predefined.
4630 	 */
4631 	for (queue = 0; queue < txq_number; queue++) {
4632 		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
4633 		struct mvpp2_tx_queue *txq;
4634 
4635 		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
4636 		if (!txq)
4637 			return -ENOMEM;
4638 
4639 		txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
4640 					 GFP_KERNEL);
4641 		if (!txq->pcpu)
4642 			return -ENOMEM;
4643 
4644 		txq->id = queue_phy_id;
4645 		txq->log_id = queue;
4646 		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
4647 		for_each_present_cpu(cpu) {
4648 			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4649 			txq_pcpu->cpu = cpu;
4650 		}
4651 
4652 		port->txqs[queue] = txq;
4653 	}
4654 
4655 	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
4656 				  GFP_KERNEL);
4657 	if (!port->rxqs)
4658 		return -ENOMEM;
4659 
4660 	/* Allocate and initialize Rx queue for this port */
4661 	for (queue = 0; queue < rxq_number; queue++) {
4662 		struct mvpp2_rx_queue *rxq;
4663 
4664 		/* Map physical Rx queue to port's logical Rx queue */
4665 		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
4666 		if (!rxq)
4667 			return -ENOMEM;
4668 		/* Map this Rx queue to a physical queue */
4669 		rxq->id = port->first_rxq + queue;
4670 		rxq->port = port->id;
4671 		rxq->logic_rxq = queue;
4672 
4673 		port->rxqs[queue] = rxq;
4674 	}
4675 
4676 	/* Configure Rx queue group interrupt for this port */
4677 	if (priv->hw_version == MVPP21) {
4678 		mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
4679 			    CONFIG_MV_ETH_RXQ);
4680 	} else {
4681 		u32 val;
4682 
4683 		val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
4684 		mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
4685 
4686 		val = (CONFIG_MV_ETH_RXQ <<
4687 		       MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
4688 		mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
4689 	}
4690 
4691 	/* Create Rx descriptor rings */
4692 	for (queue = 0; queue < rxq_number; queue++) {
4693 		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
4694 
4695 		rxq->size = port->rx_ring_size;
4696 		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
4697 		rxq->time_coal = MVPP2_RX_COAL_USEC;
4698 	}
4699 
4700 	mvpp2_ingress_disable(port);
4701 
4702 	/* Port default configuration */
4703 	mvpp2_defaults_set(port);
4704 
4705 	/* Port's classifier configuration */
4706 	mvpp2_cls_oversize_rxq_set(port);
4707 	mvpp2_cls_port_config(port);
4708 
4709 	/* Provide an initial Rx packet size */
4710 	port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
4711 
4712 	/* Initialize pools for swf */
4713 	err = mvpp2_swf_bm_pool_init(port);
4714 	if (err)
4715 		return err;
4716 
4717 	return 0;
4718 }
4719 
4720 static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
4721 {
4722 	int port_node = dev_of_offset(dev);
4723 	const char *phy_mode_str;
4724 	int phy_node;
4725 	u32 id;
4726 	u32 phyaddr;
4727 	int phy_mode = -1;
4728 
4729 	phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
4730 	if (phy_node < 0) {
4731 		dev_err(&pdev->dev, "missing phy\n");
4732 		return -ENODEV;
4733 	}
4734 
4735 	phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL);
4736 	if (phy_mode_str)
4737 		phy_mode = phy_get_interface_by_name(phy_mode_str);
4738 	if (phy_mode == -1) {
4739 		dev_err(&pdev->dev, "incorrect phy mode\n");
4740 		return -EINVAL;
4741 	}
4742 
4743 	id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
4744 	if (id == -1) {
4745 		dev_err(&pdev->dev, "missing port-id value\n");
4746 		return -EINVAL;
4747 	}
4748 
4749 	/*
4750 	 * ToDo:
4751 	 * Not sure if this DT property "phy-speed" will get accepted, so
4752 	 * this might change later
4753 	 */
4754 	/* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */
4755 	port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node,
4756 					 "phy-speed", 1000);
4757 
4758 	phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0);
4759 
4760 	port->id = id;
4761 	if (port->priv->hw_version == MVPP21)
4762 		port->first_rxq = port->id * rxq_number;
4763 	else
4764 		port->first_rxq = port->id * port->priv->max_port_rxqs;
4765 	port->phy_node = phy_node;
4766 	port->phy_interface = phy_mode;
4767 	port->phyaddr = phyaddr;
4768 
4769 	return 0;
4770 }
4771 
4772 /* Ports initialization */
4773 static int mvpp2_port_probe(struct udevice *dev,
4774 			    struct mvpp2_port *port,
4775 			    int port_node,
4776 			    struct mvpp2 *priv)
4777 {
4778 	int err;
4779 
4780 	port->tx_ring_size = MVPP2_MAX_TXD;
4781 	port->rx_ring_size = MVPP2_MAX_RXD;
4782 
4783 	err = mvpp2_port_init(dev, port);
4784 	if (err < 0) {
4785 		dev_err(&pdev->dev, "failed to init port %d\n", port->id);
4786 		return err;
4787 	}
4788 	mvpp2_port_power_up(port);
4789 
4790 	priv->port_list[port->id] = port;
4791 	return 0;
4792 }
4793 
4794 /* Initialize decoding windows */
4795 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
4796 				    struct mvpp2 *priv)
4797 {
4798 	u32 win_enable;
4799 	int i;
4800 
4801 	for (i = 0; i < 6; i++) {
4802 		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
4803 		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
4804 
4805 		if (i < 4)
4806 			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
4807 	}
4808 
4809 	win_enable = 0;
4810 
4811 	for (i = 0; i < dram->num_cs; i++) {
4812 		const struct mbus_dram_window *cs = dram->cs + i;
4813 
4814 		mvpp2_write(priv, MVPP2_WIN_BASE(i),
4815 			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
4816 			    dram->mbus_dram_target_id);
4817 
4818 		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
4819 			    (cs->size - 1) & 0xffff0000);
4820 
4821 		win_enable |= (1 << i);
4822 	}
4823 
4824 	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
4825 }
4826 
4827 /* Initialize Rx FIFO's */
4828 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
4829 {
4830 	int port;
4831 
4832 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4833 		if (priv->hw_version == MVPP22) {
4834 			if (port == 0) {
4835 				mvpp2_write(priv,
4836 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4837 					    MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
4838 				mvpp2_write(priv,
4839 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4840 					    MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
4841 			} else if (port == 1) {
4842 				mvpp2_write(priv,
4843 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4844 					    MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
4845 				mvpp2_write(priv,
4846 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4847 					    MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
4848 			} else {
4849 				mvpp2_write(priv,
4850 					    MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4851 					    MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
4852 				mvpp2_write(priv,
4853 					    MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4854 					    MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
4855 			}
4856 		} else {
4857 			mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
4858 				    MVPP21_RX_FIFO_PORT_DATA_SIZE);
4859 			mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
4860 				    MVPP21_RX_FIFO_PORT_ATTR_SIZE);
4861 		}
4862 	}
4863 
4864 	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
4865 		    MVPP2_RX_FIFO_PORT_MIN_PKT);
4866 	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
4867 }
4868 
4869 /* Initialize Tx FIFO's */
4870 static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
4871 {
4872 	int port, val;
4873 
4874 	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
4875 		/* Port 0 supports 10KB TX FIFO */
4876 		if (port == 0) {
4877 			val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
4878 				MVPP22_TX_FIFO_SIZE_MASK;
4879 		} else {
4880 			val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
4881 				MVPP22_TX_FIFO_SIZE_MASK;
4882 		}
4883 		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
4884 	}
4885 }
4886 
4887 static void mvpp2_axi_init(struct mvpp2 *priv)
4888 {
4889 	u32 val, rdval, wrval;
4890 
4891 	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
4892 
4893 	/* AXI Bridge Configuration */
4894 
4895 	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
4896 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4897 	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4898 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4899 
4900 	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
4901 		<< MVPP22_AXI_ATTR_CACHE_OFFS;
4902 	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4903 		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
4904 
4905 	/* BM */
4906 	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
4907 	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
4908 
4909 	/* Descriptors */
4910 	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
4911 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
4912 	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
4913 	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
4914 
4915 	/* Buffer Data */
4916 	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
4917 	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
4918 
4919 	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
4920 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4921 	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
4922 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4923 	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
4924 	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
4925 
4926 	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
4927 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4928 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4929 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4930 
4931 	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
4932 
4933 	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
4934 		<< MVPP22_AXI_CODE_CACHE_OFFS;
4935 	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
4936 		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
4937 
4938 	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
4939 }
4940 
4941 /* Initialize network controller common part HW */
4942 static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
4943 {
4944 	const struct mbus_dram_target_info *dram_target_info;
4945 	int err, i;
4946 	u32 val;
4947 
4948 	/* Checks for hardware constraints (U-Boot uses only one rxq) */
4949 	if ((rxq_number > priv->max_port_rxqs) ||
4950 	    (txq_number > MVPP2_MAX_TXQ)) {
4951 		dev_err(&pdev->dev, "invalid queue size parameter\n");
4952 		return -EINVAL;
4953 	}
4954 
4955 	/* MBUS windows configuration */
4956 	dram_target_info = mvebu_mbus_dram_info();
4957 	if (dram_target_info)
4958 		mvpp2_conf_mbus_windows(dram_target_info, priv);
4959 
4960 	if (priv->hw_version == MVPP22)
4961 		mvpp2_axi_init(priv);
4962 
4963 	if (priv->hw_version == MVPP21) {
4964 		/* Disable HW PHY polling */
4965 		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4966 		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
4967 		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
4968 	} else {
4969 		/* Enable HW PHY polling */
4970 		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
4971 		val |= MVPP22_SMI_POLLING_EN;
4972 		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
4973 	}
4974 
4975 	/* Allocate and initialize aggregated TXQs */
4976 	priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
4977 				       sizeof(struct mvpp2_tx_queue),
4978 				       GFP_KERNEL);
4979 	if (!priv->aggr_txqs)
4980 		return -ENOMEM;
4981 
4982 	for_each_present_cpu(i) {
4983 		priv->aggr_txqs[i].id = i;
4984 		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
4985 		err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
4986 					  MVPP2_AGGR_TXQ_SIZE, i, priv);
4987 		if (err < 0)
4988 			return err;
4989 	}
4990 
4991 	/* Rx Fifo Init */
4992 	mvpp2_rx_fifo_init(priv);
4993 
4994 	/* Tx Fifo Init */
4995 	if (priv->hw_version == MVPP22)
4996 		mvpp2_tx_fifo_init(priv);
4997 
4998 	/* Reset Rx queue group interrupt configuration */
4999 	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
5000 		if (priv->hw_version == MVPP21) {
5001 			mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
5002 				    CONFIG_MV_ETH_RXQ);
5003 			continue;
5004 		} else {
5005 			u32 val;
5006 
5007 			val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
5008 			mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
5009 
5010 			val = (CONFIG_MV_ETH_RXQ <<
5011 			       MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
5012 			mvpp2_write(priv,
5013 				    MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
5014 		}
5015 	}
5016 
5017 	if (priv->hw_version == MVPP21)
5018 		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
5019 		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
5020 
5021 	/* Allow cache snoop when transmiting packets */
5022 	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
5023 
5024 	/* Buffer Manager initialization */
5025 	err = mvpp2_bm_init(dev, priv);
5026 	if (err < 0)
5027 		return err;
5028 
5029 	/* Parser default initialization */
5030 	err = mvpp2_prs_default_init(dev, priv);
5031 	if (err < 0)
5032 		return err;
5033 
5034 	/* Classifier default initialization */
5035 	mvpp2_cls_init(priv);
5036 
5037 	return 0;
5038 }
5039 
5040 /* SMI / MDIO functions */
5041 
5042 static int smi_wait_ready(struct mvpp2 *priv)
5043 {
5044 	u32 timeout = MVPP2_SMI_TIMEOUT;
5045 	u32 smi_reg;
5046 
5047 	/* wait till the SMI is not busy */
5048 	do {
5049 		/* read smi register */
5050 		smi_reg = readl(priv->mdio_base);
5051 		if (timeout-- == 0) {
5052 			printf("Error: SMI busy timeout\n");
5053 			return -EFAULT;
5054 		}
5055 	} while (smi_reg & MVPP2_SMI_BUSY);
5056 
5057 	return 0;
5058 }
5059 
5060 /*
5061  * mpp2_mdio_read - miiphy_read callback function.
5062  *
5063  * Returns 16bit phy register value, or 0xffff on error
5064  */
5065 static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
5066 {
5067 	struct mvpp2 *priv = bus->priv;
5068 	u32 smi_reg;
5069 	u32 timeout;
5070 
5071 	/* check parameters */
5072 	if (addr > MVPP2_PHY_ADDR_MASK) {
5073 		printf("Error: Invalid PHY address %d\n", addr);
5074 		return -EFAULT;
5075 	}
5076 
5077 	if (reg > MVPP2_PHY_REG_MASK) {
5078 		printf("Err: Invalid register offset %d\n", reg);
5079 		return -EFAULT;
5080 	}
5081 
5082 	/* wait till the SMI is not busy */
5083 	if (smi_wait_ready(priv) < 0)
5084 		return -EFAULT;
5085 
5086 	/* fill the phy address and regiser offset and read opcode */
5087 	smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5088 		| (reg << MVPP2_SMI_REG_ADDR_OFFS)
5089 		| MVPP2_SMI_OPCODE_READ;
5090 
5091 	/* write the smi register */
5092 	writel(smi_reg, priv->mdio_base);
5093 
5094 	/* wait till read value is ready */
5095 	timeout = MVPP2_SMI_TIMEOUT;
5096 
5097 	do {
5098 		/* read smi register */
5099 		smi_reg = readl(priv->mdio_base);
5100 		if (timeout-- == 0) {
5101 			printf("Err: SMI read ready timeout\n");
5102 			return -EFAULT;
5103 		}
5104 	} while (!(smi_reg & MVPP2_SMI_READ_VALID));
5105 
5106 	/* Wait for the data to update in the SMI register */
5107 	for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++)
5108 		;
5109 
5110 	return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK;
5111 }
5112 
5113 /*
5114  * mpp2_mdio_write - miiphy_write callback function.
5115  *
5116  * Returns 0 if write succeed, -EINVAL on bad parameters
5117  * -ETIME on timeout
5118  */
5119 static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
5120 			   u16 value)
5121 {
5122 	struct mvpp2 *priv = bus->priv;
5123 	u32 smi_reg;
5124 
5125 	/* check parameters */
5126 	if (addr > MVPP2_PHY_ADDR_MASK) {
5127 		printf("Error: Invalid PHY address %d\n", addr);
5128 		return -EFAULT;
5129 	}
5130 
5131 	if (reg > MVPP2_PHY_REG_MASK) {
5132 		printf("Err: Invalid register offset %d\n", reg);
5133 		return -EFAULT;
5134 	}
5135 
5136 	/* wait till the SMI is not busy */
5137 	if (smi_wait_ready(priv) < 0)
5138 		return -EFAULT;
5139 
5140 	/* fill the phy addr and reg offset and write opcode and data */
5141 	smi_reg = value << MVPP2_SMI_DATA_OFFS;
5142 	smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS)
5143 		| (reg << MVPP2_SMI_REG_ADDR_OFFS);
5144 	smi_reg &= ~MVPP2_SMI_OPCODE_READ;
5145 
5146 	/* write the smi register */
5147 	writel(smi_reg, priv->mdio_base);
5148 
5149 	return 0;
5150 }
5151 
5152 static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
5153 {
5154 	struct mvpp2_port *port = dev_get_priv(dev);
5155 	struct mvpp2_rx_desc *rx_desc;
5156 	struct mvpp2_bm_pool *bm_pool;
5157 	dma_addr_t dma_addr;
5158 	u32 bm, rx_status;
5159 	int pool, rx_bytes, err;
5160 	int rx_received;
5161 	struct mvpp2_rx_queue *rxq;
5162 	u32 cause_rx_tx, cause_rx, cause_misc;
5163 	u8 *data;
5164 
5165 	cause_rx_tx = mvpp2_read(port->priv,
5166 				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5167 	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5168 	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5169 	if (!cause_rx_tx && !cause_misc)
5170 		return 0;
5171 
5172 	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5173 
5174 	/* Process RX packets */
5175 	cause_rx |= port->pending_cause_rx;
5176 	rxq = mvpp2_get_rx_queue(port, cause_rx);
5177 
5178 	/* Get number of received packets and clamp the to-do */
5179 	rx_received = mvpp2_rxq_received(port, rxq->id);
5180 
5181 	/* Return if no packets are received */
5182 	if (!rx_received)
5183 		return 0;
5184 
5185 	rx_desc = mvpp2_rxq_next_desc_get(rxq);
5186 	rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5187 	rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5188 	rx_bytes -= MVPP2_MH_SIZE;
5189 	dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5190 
5191 	bm = mvpp2_bm_cookie_build(port, rx_desc);
5192 	pool = mvpp2_bm_cookie_pool_get(bm);
5193 	bm_pool = &port->priv->bm_pools[pool];
5194 
5195 	/* In case of an error, release the requested buffer pointer
5196 	 * to the Buffer Manager. This request process is controlled
5197 	 * by the hardware, and the information about the buffer is
5198 	 * comprised by the RX descriptor.
5199 	 */
5200 	if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5201 		mvpp2_rx_error(port, rx_desc);
5202 		/* Return the buffer to the pool */
5203 		mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
5204 		return 0;
5205 	}
5206 
5207 	err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
5208 	if (err) {
5209 		netdev_err(port->dev, "failed to refill BM pools\n");
5210 		return 0;
5211 	}
5212 
5213 	/* Update Rx queue management counters */
5214 	mb();
5215 	mvpp2_rxq_status_update(port, rxq->id, 1, 1);
5216 
5217 	/* give packet to stack - skip on first n bytes */
5218 	data = (u8 *)dma_addr + 2 + 32;
5219 
5220 	if (rx_bytes <= 0)
5221 		return 0;
5222 
5223 	/*
5224 	 * No cache invalidation needed here, since the rx_buffer's are
5225 	 * located in a uncached memory region
5226 	 */
5227 	*packetp = data;
5228 
5229 	return rx_bytes;
5230 }
5231 
5232 /* Drain Txq */
5233 static void mvpp2_txq_drain(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
5234 			    int enable)
5235 {
5236 	u32 val;
5237 
5238 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5239 	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
5240 	if (enable)
5241 		val |= MVPP2_TXQ_DRAIN_EN_MASK;
5242 	else
5243 		val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5244 	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
5245 }
5246 
5247 static int mvpp2_send(struct udevice *dev, void *packet, int length)
5248 {
5249 	struct mvpp2_port *port = dev_get_priv(dev);
5250 	struct mvpp2_tx_queue *txq, *aggr_txq;
5251 	struct mvpp2_tx_desc *tx_desc;
5252 	int tx_done;
5253 	int timeout;
5254 
5255 	txq = port->txqs[0];
5256 	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5257 
5258 	/* Get a descriptor for the first part of the packet */
5259 	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5260 	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5261 	mvpp2_txdesc_size_set(port, tx_desc, length);
5262 	mvpp2_txdesc_offset_set(port, tx_desc,
5263 				(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
5264 	mvpp2_txdesc_dma_addr_set(port, tx_desc,
5265 				  (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
5266 	/* First and Last descriptor */
5267 	mvpp2_txdesc_cmd_set(port, tx_desc,
5268 			     MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
5269 			     | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
5270 
5271 	/* Flush tx data */
5272 	flush_dcache_range((unsigned long)packet,
5273 			   (unsigned long)packet + ALIGN(length, PKTALIGN));
5274 
5275 	/* Enable transmit */
5276 	mb();
5277 	mvpp2_aggr_txq_pend_desc_add(port, 1);
5278 
5279 	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
5280 
5281 	timeout = 0;
5282 	do {
5283 		if (timeout++ > 10000) {
5284 			printf("timeout: packet not sent from aggregated to phys TXQ\n");
5285 			return 0;
5286 		}
5287 		tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
5288 	} while (tx_done);
5289 
5290 	/* Enable TXQ drain */
5291 	mvpp2_txq_drain(port, txq, 1);
5292 
5293 	timeout = 0;
5294 	do {
5295 		if (timeout++ > 10000) {
5296 			printf("timeout: packet not sent\n");
5297 			return 0;
5298 		}
5299 		tx_done = mvpp2_txq_sent_desc_proc(port, txq);
5300 	} while (!tx_done);
5301 
5302 	/* Disable TXQ drain */
5303 	mvpp2_txq_drain(port, txq, 0);
5304 
5305 	return 0;
5306 }
5307 
5308 static int mvpp2_start(struct udevice *dev)
5309 {
5310 	struct eth_pdata *pdata = dev_get_platdata(dev);
5311 	struct mvpp2_port *port = dev_get_priv(dev);
5312 
5313 	/* Load current MAC address */
5314 	memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
5315 
5316 	/* Reconfigure parser accept the original MAC address */
5317 	mvpp2_prs_update_mac_da(port, port->dev_addr);
5318 
5319 	mvpp2_port_power_up(port);
5320 
5321 	mvpp2_open(dev, port);
5322 
5323 	return 0;
5324 }
5325 
5326 static void mvpp2_stop(struct udevice *dev)
5327 {
5328 	struct mvpp2_port *port = dev_get_priv(dev);
5329 
5330 	mvpp2_stop_dev(port);
5331 	mvpp2_cleanup_rxqs(port);
5332 	mvpp2_cleanup_txqs(port);
5333 }
5334 
5335 static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port)
5336 {
5337 	writel(port->phyaddr, port->priv->iface_base +
5338 	       MVPP22_SMI_PHY_ADDR_REG(port->gop_id));
5339 
5340 	return 0;
5341 }
5342 
5343 static int mvpp2_base_probe(struct udevice *dev)
5344 {
5345 	struct mvpp2 *priv = dev_get_priv(dev);
5346 	struct mii_dev *bus;
5347 	void *bd_space;
5348 	u32 size = 0;
5349 	int i;
5350 
5351 	/* Save hw-version */
5352 	priv->hw_version = dev_get_driver_data(dev);
5353 
5354 	/*
5355 	 * U-Boot special buffer handling:
5356 	 *
5357 	 * Allocate buffer area for descs and rx_buffers. This is only
5358 	 * done once for all interfaces. As only one interface can
5359 	 * be active. Make this area DMA-safe by disabling the D-cache
5360 	 */
5361 
5362 	/* Align buffer area for descs and rx_buffers to 1MiB */
5363 	bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
5364 	mmu_set_region_dcache_behaviour((unsigned long)bd_space,
5365 					BD_SPACE, DCACHE_OFF);
5366 
5367 	buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
5368 	size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
5369 
5370 	buffer_loc.tx_descs =
5371 		(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
5372 	size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
5373 
5374 	buffer_loc.rx_descs =
5375 		(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
5376 	size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
5377 
5378 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
5379 		buffer_loc.bm_pool[i] =
5380 			(unsigned long *)((unsigned long)bd_space + size);
5381 		if (priv->hw_version == MVPP21)
5382 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
5383 		else
5384 			size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
5385 	}
5386 
5387 	for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
5388 		buffer_loc.rx_buffer[i] =
5389 			(unsigned long *)((unsigned long)bd_space + size);
5390 		size += RX_BUFFER_SIZE;
5391 	}
5392 
5393 	/* Clear the complete area so that all descriptors are cleared */
5394 	memset(bd_space, 0, size);
5395 
5396 	/* Save base addresses for later use */
5397 	priv->base = (void *)dev_get_addr_index(dev, 0);
5398 	if (IS_ERR(priv->base))
5399 		return PTR_ERR(priv->base);
5400 
5401 	if (priv->hw_version == MVPP21) {
5402 		priv->lms_base = (void *)dev_get_addr_index(dev, 1);
5403 		if (IS_ERR(priv->lms_base))
5404 			return PTR_ERR(priv->lms_base);
5405 
5406 		priv->mdio_base = priv->lms_base + MVPP21_SMI;
5407 	} else {
5408 		priv->iface_base = (void *)dev_get_addr_index(dev, 1);
5409 		if (IS_ERR(priv->iface_base))
5410 			return PTR_ERR(priv->iface_base);
5411 
5412 		priv->mdio_base = priv->iface_base + MVPP22_SMI;
5413 
5414 		/* Store common base addresses for all ports */
5415 		priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
5416 		priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
5417 		priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
5418 	}
5419 
5420 	if (priv->hw_version == MVPP21)
5421 		priv->max_port_rxqs = 8;
5422 	else
5423 		priv->max_port_rxqs = 32;
5424 
5425 	/* Finally create and register the MDIO bus driver */
5426 	bus = mdio_alloc();
5427 	if (!bus) {
5428 		printf("Failed to allocate MDIO bus\n");
5429 		return -ENOMEM;
5430 	}
5431 
5432 	bus->read = mpp2_mdio_read;
5433 	bus->write = mpp2_mdio_write;
5434 	snprintf(bus->name, sizeof(bus->name), dev->name);
5435 	bus->priv = (void *)priv;
5436 	priv->bus = bus;
5437 
5438 	return mdio_register(bus);
5439 }
5440 
5441 static int mvpp2_probe(struct udevice *dev)
5442 {
5443 	struct mvpp2_port *port = dev_get_priv(dev);
5444 	struct mvpp2 *priv = dev_get_priv(dev->parent);
5445 	int err;
5446 
5447 	/* Only call the probe function for the parent once */
5448 	if (!priv->probe_done) {
5449 		err = mvpp2_base_probe(dev->parent);
5450 		priv->probe_done = 1;
5451 	}
5452 
5453 	port->priv = dev_get_priv(dev->parent);
5454 
5455 	err = phy_info_parse(dev, port);
5456 	if (err)
5457 		return err;
5458 
5459 	/*
5460 	 * We need the port specific io base addresses at this stage, since
5461 	 * gop_port_init() accesses these registers
5462 	 */
5463 	if (priv->hw_version == MVPP21) {
5464 		int priv_common_regs_num = 2;
5465 
5466 		port->base = (void __iomem *)dev_get_addr_index(
5467 			dev->parent, priv_common_regs_num + port->id);
5468 		if (IS_ERR(port->base))
5469 			return PTR_ERR(port->base);
5470 	} else {
5471 		port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
5472 					      "gop-port-id", -1);
5473 		if (port->id == -1) {
5474 			dev_err(&pdev->dev, "missing gop-port-id value\n");
5475 			return -EINVAL;
5476 		}
5477 
5478 		port->base = priv->iface_base + MVPP22_PORT_BASE +
5479 			port->gop_id * MVPP22_PORT_OFFSET;
5480 
5481 		/* Set phy address of the port */
5482 		mvpp22_smi_phy_addr_cfg(port);
5483 
5484 		/* GoP Init */
5485 		gop_port_init(port);
5486 	}
5487 
5488 	/* Initialize network controller */
5489 	err = mvpp2_init(dev, priv);
5490 	if (err < 0) {
5491 		dev_err(&pdev->dev, "failed to initialize controller\n");
5492 		return err;
5493 	}
5494 
5495 	err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
5496 	if (err)
5497 		return err;
5498 
5499 	if (priv->hw_version == MVPP22) {
5500 		priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
5501 							   port->phy_interface);
5502 
5503 		/* Netcomplex configurations for all ports */
5504 		gop_netc_init(priv, MV_NETC_FIRST_PHASE);
5505 		gop_netc_init(priv, MV_NETC_SECOND_PHASE);
5506 	}
5507 
5508 	return 0;
5509 }
5510 
5511 /*
5512  * Empty BM pool and stop its activity before the OS is started
5513  */
5514 static int mvpp2_remove(struct udevice *dev)
5515 {
5516 	struct mvpp2_port *port = dev_get_priv(dev);
5517 	struct mvpp2 *priv = port->priv;
5518 	int i;
5519 
5520 	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
5521 		mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
5522 
5523 	return 0;
5524 }
5525 
5526 static const struct eth_ops mvpp2_ops = {
5527 	.start		= mvpp2_start,
5528 	.send		= mvpp2_send,
5529 	.recv		= mvpp2_recv,
5530 	.stop		= mvpp2_stop,
5531 };
5532 
5533 static struct driver mvpp2_driver = {
5534 	.name	= "mvpp2",
5535 	.id	= UCLASS_ETH,
5536 	.probe	= mvpp2_probe,
5537 	.remove = mvpp2_remove,
5538 	.ops	= &mvpp2_ops,
5539 	.priv_auto_alloc_size = sizeof(struct mvpp2_port),
5540 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
5541 	.flags	= DM_FLAG_ACTIVE_DMA,
5542 };
5543 
5544 /*
5545  * Use a MISC device to bind the n instances (child nodes) of the
5546  * network base controller in UCLASS_ETH.
5547  */
5548 static int mvpp2_base_bind(struct udevice *parent)
5549 {
5550 	const void *blob = gd->fdt_blob;
5551 	int node = dev_of_offset(parent);
5552 	struct uclass_driver *drv;
5553 	struct udevice *dev;
5554 	struct eth_pdata *plat;
5555 	char *name;
5556 	int subnode;
5557 	u32 id;
5558 	int base_id_add;
5559 
5560 	/* Lookup eth driver */
5561 	drv = lists_uclass_lookup(UCLASS_ETH);
5562 	if (!drv) {
5563 		puts("Cannot find eth driver\n");
5564 		return -ENOENT;
5565 	}
5566 
5567 	base_id_add = base_id;
5568 
5569 	fdt_for_each_subnode(subnode, blob, node) {
5570 		/* Increment base_id for all subnodes, also the disabled ones */
5571 		base_id++;
5572 
5573 		/* Skip disabled ports */
5574 		if (!fdtdec_get_is_enabled(blob, subnode))
5575 			continue;
5576 
5577 		plat = calloc(1, sizeof(*plat));
5578 		if (!plat)
5579 			return -ENOMEM;
5580 
5581 		id = fdtdec_get_int(blob, subnode, "port-id", -1);
5582 		id += base_id_add;
5583 
5584 		name = calloc(1, 16);
5585 		sprintf(name, "mvpp2-%d", id);
5586 
5587 		/* Create child device UCLASS_ETH and bind it */
5588 		device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev);
5589 		dev_set_of_offset(dev, subnode);
5590 	}
5591 
5592 	return 0;
5593 }
5594 
5595 static const struct udevice_id mvpp2_ids[] = {
5596 	{
5597 		.compatible = "marvell,armada-375-pp2",
5598 		.data = MVPP21,
5599 	},
5600 	{
5601 		.compatible = "marvell,armada-7k-pp22",
5602 		.data = MVPP22,
5603 	},
5604 	{ }
5605 };
5606 
5607 U_BOOT_DRIVER(mvpp2_base) = {
5608 	.name	= "mvpp2_base",
5609 	.id	= UCLASS_MISC,
5610 	.of_match = mvpp2_ids,
5611 	.bind	= mvpp2_base_bind,
5612 	.priv_auto_alloc_size = sizeof(struct mvpp2),
5613 };
5614