xref: /openbmc/u-boot/drivers/net/mvneta.c (revision 8ee59472)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4  *
5  * U-Boot version:
6  * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
7  *
8  * Based on the Linux version which is:
9  * Copyright (C) 2012 Marvell
10  *
11  * Rami Rosen <rosenr@marvell.com>
12  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
13  */
14 
15 #include <common.h>
16 #include <dm.h>
17 #include <net.h>
18 #include <netdev.h>
19 #include <config.h>
20 #include <malloc.h>
21 #include <asm/io.h>
22 #include <linux/errno.h>
23 #include <phy.h>
24 #include <miiphy.h>
25 #include <watchdog.h>
26 #include <asm/arch/cpu.h>
27 #include <asm/arch/soc.h>
28 #include <linux/compat.h>
29 #include <linux/mbus.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 #if !defined(CONFIG_PHYLIB)
34 # error Marvell mvneta requires PHYLIB
35 #endif
36 
37 /* Some linux -> U-Boot compatibility stuff */
38 #define netdev_err(dev, fmt, args...)		\
39 	printf(fmt, ##args)
40 #define netdev_warn(dev, fmt, args...)		\
41 	printf(fmt, ##args)
42 #define netdev_info(dev, fmt, args...)		\
43 	printf(fmt, ##args)
44 
45 #define CONFIG_NR_CPUS		1
46 #define ETH_HLEN		14	/* Total octets in header */
47 
48 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
49 #define WRAP			(2 + ETH_HLEN + 4 + 32)
50 #define MTU			1500
51 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
52 
53 #define MVNETA_SMI_TIMEOUT			10000
54 
55 /* Registers */
56 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
57 #define	     MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
58 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
59 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
60 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
61 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
62 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
63 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
64 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
65 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
66 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
67 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
68 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
69 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
70 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
71 #define MVNETA_PORT_RX_RESET                    0x1cc0
72 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
73 #define MVNETA_PHY_ADDR                         0x2000
74 #define      MVNETA_PHY_ADDR_MASK               0x1f
75 #define MVNETA_SMI                              0x2004
76 #define      MVNETA_PHY_REG_MASK                0x1f
77 /* SMI register fields */
78 #define     MVNETA_SMI_DATA_OFFS		0	/* Data */
79 #define     MVNETA_SMI_DATA_MASK		(0xffff << MVNETA_SMI_DATA_OFFS)
80 #define     MVNETA_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
81 #define     MVNETA_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
82 #define     MVNETA_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
83 #define     MVNETA_SMI_OPCODE_READ		(1 << MVNETA_SMI_OPCODE_OFFS)
84 #define     MVNETA_SMI_READ_VALID		(1 << 27)	/* Read Valid */
85 #define     MVNETA_SMI_BUSY			(1 << 28)	/* Busy */
86 #define MVNETA_MBUS_RETRY                       0x2010
87 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
88 #define MVNETA_UNIT_CONTROL                     0x20B0
89 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
90 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
91 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
92 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
93 #define MVNETA_WIN_SIZE_MASK			(0xffff0000)
94 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
95 #define      MVNETA_BASE_ADDR_ENABLE_BIT	0x1
96 #define MVNETA_PORT_ACCESS_PROTECT              0x2294
97 #define      MVNETA_PORT_ACCESS_PROTECT_WIN0_RW	0x3
98 #define MVNETA_PORT_CONFIG                      0x2400
99 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
100 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
101 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
102 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
103 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
104 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
105 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
106 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
107 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
108 						 MVNETA_DEF_RXQ_ARP(q)	 | \
109 						 MVNETA_DEF_RXQ_TCP(q)	 | \
110 						 MVNETA_DEF_RXQ_UDP(q)	 | \
111 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
112 						 MVNETA_TX_UNSET_ERR_SUM | \
113 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
114 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
115 #define MVNETA_MAC_ADDR_LOW                      0x2414
116 #define MVNETA_MAC_ADDR_HIGH                     0x2418
117 #define MVNETA_SDMA_CONFIG                       0x241c
118 #define      MVNETA_SDMA_BRST_SIZE_16            4
119 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
120 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
121 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
122 #define      MVNETA_DESC_SWAP                    BIT(6)
123 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
124 #define MVNETA_PORT_STATUS                       0x2444
125 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
126 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
127 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
128 #define MVNETA_SERDES_CFG			 0x24A0
129 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
130 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
131 #define MVNETA_TYPE_PRIO                         0x24bc
132 #define      MVNETA_FORCE_UNI                    BIT(21)
133 #define MVNETA_TXQ_CMD_1                         0x24e4
134 #define MVNETA_TXQ_CMD                           0x2448
135 #define      MVNETA_TXQ_DISABLE_SHIFT            8
136 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
137 #define MVNETA_ACC_MODE                          0x2500
138 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
139 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
140 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
141 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
142 
143 /* Exception Interrupt Port/Queue Cause register */
144 
145 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
146 #define MVNETA_INTR_NEW_MASK                     0x25a4
147 
148 /* bits  0..7  = TXQ SENT, one bit per queue.
149  * bits  8..15 = RXQ OCCUP, one bit per queue.
150  * bits 16..23 = RXQ FREE, one bit per queue.
151  * bit  29 = OLD_REG_SUM, see old reg ?
152  * bit  30 = TX_ERR_SUM, one bit for 4 ports
153  * bit  31 = MISC_SUM,   one bit for 4 ports
154  */
155 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
156 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
157 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
158 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
159 
160 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
161 #define MVNETA_INTR_OLD_MASK                     0x25ac
162 
163 /* Data Path Port/Queue Cause Register */
164 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
165 #define MVNETA_INTR_MISC_MASK                    0x25b4
166 #define MVNETA_INTR_ENABLE                       0x25b8
167 
168 #define MVNETA_RXQ_CMD                           0x2680
169 #define      MVNETA_RXQ_DISABLE_SHIFT            8
170 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
171 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
172 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
173 #define MVNETA_GMAC_CTRL_0                       0x2c00
174 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
175 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
176 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
177 #define MVNETA_GMAC_CTRL_2                       0x2c08
178 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
179 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
180 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
181 #define MVNETA_GMAC_STATUS                       0x2c10
182 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
183 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
184 #define      MVNETA_GMAC_SPEED_100               BIT(2)
185 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
186 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
187 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
188 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
189 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
190 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
191 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
192 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
193 #define      MVNETA_GMAC_FORCE_LINK_UP           (BIT(0) | BIT(1))
194 #define      MVNETA_GMAC_IB_BYPASS_AN_EN         BIT(3)
195 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
196 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
197 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
198 #define      MVNETA_GMAC_SET_FC_EN               BIT(8)
199 #define      MVNETA_GMAC_ADVERT_FC_EN            BIT(9)
200 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
201 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
202 #define      MVNETA_GMAC_SAMPLE_TX_CFG_EN        BIT(15)
203 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
204 #define      MVNETA_MIB_LATE_COLLISION           0x7c
205 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
206 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
207 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
208 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
209 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
210 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
211 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
212 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
213 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
214 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
215 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
216 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
217 #define MVNETA_PORT_TX_RESET                     0x3cf0
218 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
219 #define MVNETA_TX_MTU                            0x3e0c
220 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
221 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
222 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
223 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
224 
225 /* Descriptor ring Macros */
226 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
227 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
228 
229 /* Various constants */
230 
231 /* Coalescing */
232 #define MVNETA_TXDONE_COAL_PKTS		16
233 #define MVNETA_RX_COAL_PKTS		32
234 #define MVNETA_RX_COAL_USEC		100
235 
236 /* The two bytes Marvell header. Either contains a special value used
237  * by Marvell switches when a specific hardware mode is enabled (not
238  * supported by this driver) or is filled automatically by zeroes on
239  * the RX side. Those two bytes being at the front of the Ethernet
240  * header, they allow to have the IP header aligned on a 4 bytes
241  * boundary automatically: the hardware skips those two bytes on its
242  * own.
243  */
244 #define MVNETA_MH_SIZE			2
245 
246 #define MVNETA_VLAN_TAG_LEN             4
247 
248 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
249 #define MVNETA_TX_CSUM_MAX_SIZE		9800
250 #define MVNETA_ACC_MODE_EXT		1
251 
252 /* Timeout constants */
253 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
254 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
255 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
256 
257 #define MVNETA_TX_MTU_MAX		0x3ffff
258 
259 /* Max number of Rx descriptors */
260 #define MVNETA_MAX_RXD 16
261 
262 /* Max number of Tx descriptors */
263 #define MVNETA_MAX_TXD 16
264 
265 /* descriptor aligned size */
266 #define MVNETA_DESC_ALIGNED_SIZE	32
267 
268 struct mvneta_port {
269 	void __iomem *base;
270 	struct mvneta_rx_queue *rxqs;
271 	struct mvneta_tx_queue *txqs;
272 
273 	u8 mcast_count[256];
274 	u16 tx_ring_size;
275 	u16 rx_ring_size;
276 
277 	phy_interface_t phy_interface;
278 	unsigned int link;
279 	unsigned int duplex;
280 	unsigned int speed;
281 
282 	int init;
283 	int phyaddr;
284 	struct phy_device *phydev;
285 	struct mii_dev *bus;
286 };
287 
288 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
289  * layout of the transmit and reception DMA descriptors, and their
290  * layout is therefore defined by the hardware design
291  */
292 
293 #define MVNETA_TX_L3_OFF_SHIFT	0
294 #define MVNETA_TX_IP_HLEN_SHIFT	8
295 #define MVNETA_TX_L4_UDP	BIT(16)
296 #define MVNETA_TX_L3_IP6	BIT(17)
297 #define MVNETA_TXD_IP_CSUM	BIT(18)
298 #define MVNETA_TXD_Z_PAD	BIT(19)
299 #define MVNETA_TXD_L_DESC	BIT(20)
300 #define MVNETA_TXD_F_DESC	BIT(21)
301 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
302 				 MVNETA_TXD_L_DESC | \
303 				 MVNETA_TXD_F_DESC)
304 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
305 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
306 
307 #define MVNETA_RXD_ERR_CRC		0x0
308 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
309 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
310 #define MVNETA_RXD_ERR_LEN		BIT(18)
311 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
312 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
313 #define MVNETA_RXD_L3_IP4		BIT(25)
314 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
315 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
316 
317 struct mvneta_tx_desc {
318 	u32  command;		/* Options used by HW for packet transmitting.*/
319 	u16  reserverd1;	/* csum_l4 (for future use)		*/
320 	u16  data_size;		/* Data size of transmitted packet in bytes */
321 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
322 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
323 	u32  reserved3[4];	/* Reserved - (for future use)		*/
324 };
325 
326 struct mvneta_rx_desc {
327 	u32  status;		/* Info about received packet		*/
328 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
329 	u16  data_size;		/* Size of received packet in bytes	*/
330 
331 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
332 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
333 
334 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
335 	u16  reserved3;		/* prefetch_cmd, for future use		*/
336 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
337 
338 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
339 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
340 };
341 
342 struct mvneta_tx_queue {
343 	/* Number of this TX queue, in the range 0-7 */
344 	u8 id;
345 
346 	/* Number of TX DMA descriptors in the descriptor ring */
347 	int size;
348 
349 	/* Index of last TX DMA descriptor that was inserted */
350 	int txq_put_index;
351 
352 	/* Index of the TX DMA descriptor to be cleaned up */
353 	int txq_get_index;
354 
355 	/* Virtual address of the TX DMA descriptors array */
356 	struct mvneta_tx_desc *descs;
357 
358 	/* DMA address of the TX DMA descriptors array */
359 	dma_addr_t descs_phys;
360 
361 	/* Index of the last TX DMA descriptor */
362 	int last_desc;
363 
364 	/* Index of the next TX DMA descriptor to process */
365 	int next_desc_to_proc;
366 };
367 
368 struct mvneta_rx_queue {
369 	/* rx queue number, in the range 0-7 */
370 	u8 id;
371 
372 	/* num of rx descriptors in the rx descriptor ring */
373 	int size;
374 
375 	/* Virtual address of the RX DMA descriptors array */
376 	struct mvneta_rx_desc *descs;
377 
378 	/* DMA address of the RX DMA descriptors array */
379 	dma_addr_t descs_phys;
380 
381 	/* Index of the last RX DMA descriptor */
382 	int last_desc;
383 
384 	/* Index of the next RX DMA descriptor to process */
385 	int next_desc_to_proc;
386 };
387 
388 /* U-Boot doesn't use the queues, so set the number to 1 */
389 static int rxq_number = 1;
390 static int txq_number = 1;
391 static int rxq_def;
392 
393 struct buffer_location {
394 	struct mvneta_tx_desc *tx_descs;
395 	struct mvneta_rx_desc *rx_descs;
396 	u32 rx_buffers;
397 };
398 
399 /*
400  * All 4 interfaces use the same global buffer, since only one interface
401  * can be enabled at once
402  */
403 static struct buffer_location buffer_loc;
404 
405 /*
406  * Page table entries are set to 1MB, or multiples of 1MB
407  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
408  */
409 #define BD_SPACE	(1 << 20)
410 
411 /*
412  * Dummy implementation that can be overwritten by a board
413  * specific function
414  */
415 __weak int board_network_enable(struct mii_dev *bus)
416 {
417 	return 0;
418 }
419 
420 /* Utility/helper methods */
421 
422 /* Write helper method */
423 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
424 {
425 	writel(data, pp->base + offset);
426 }
427 
428 /* Read helper method */
429 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
430 {
431 	return readl(pp->base + offset);
432 }
433 
434 /* Clear all MIB counters */
435 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
436 {
437 	int i;
438 
439 	/* Perform dummy reads from MIB counters */
440 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
441 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
442 }
443 
444 /* Rx descriptors helper methods */
445 
446 /* Checks whether the RX descriptor having this status is both the first
447  * and the last descriptor for the RX packet. Each RX packet is currently
448  * received through a single RX descriptor, so not having each RX
449  * descriptor with its first and last bits set is an error
450  */
451 static int mvneta_rxq_desc_is_first_last(u32 status)
452 {
453 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
454 		MVNETA_RXD_FIRST_LAST_DESC;
455 }
456 
457 /* Add number of descriptors ready to receive new packets */
458 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
459 					  struct mvneta_rx_queue *rxq,
460 					  int ndescs)
461 {
462 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
463 	 * be added at once
464 	 */
465 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
466 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
467 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
468 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
469 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
470 	}
471 
472 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
473 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
474 }
475 
476 /* Get number of RX descriptors occupied by received packets */
477 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
478 					struct mvneta_rx_queue *rxq)
479 {
480 	u32 val;
481 
482 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
483 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
484 }
485 
486 /* Update num of rx desc called upon return from rx path or
487  * from mvneta_rxq_drop_pkts().
488  */
489 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
490 				       struct mvneta_rx_queue *rxq,
491 				       int rx_done, int rx_filled)
492 {
493 	u32 val;
494 
495 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
496 		val = rx_done |
497 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
498 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
499 		return;
500 	}
501 
502 	/* Only 255 descriptors can be added at once */
503 	while ((rx_done > 0) || (rx_filled > 0)) {
504 		if (rx_done <= 0xff) {
505 			val = rx_done;
506 			rx_done = 0;
507 		} else {
508 			val = 0xff;
509 			rx_done -= 0xff;
510 		}
511 		if (rx_filled <= 0xff) {
512 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
513 			rx_filled = 0;
514 		} else {
515 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
516 			rx_filled -= 0xff;
517 		}
518 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
519 	}
520 }
521 
522 /* Get pointer to next RX descriptor to be processed by SW */
523 static struct mvneta_rx_desc *
524 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
525 {
526 	int rx_desc = rxq->next_desc_to_proc;
527 
528 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
529 	return rxq->descs + rx_desc;
530 }
531 
532 /* Tx descriptors helper methods */
533 
534 /* Update HW with number of TX descriptors to be sent */
535 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
536 				     struct mvneta_tx_queue *txq,
537 				     int pend_desc)
538 {
539 	u32 val;
540 
541 	/* Only 255 descriptors can be added at once ; Assume caller
542 	 * process TX descriptors in quanta less than 256
543 	 */
544 	val = pend_desc;
545 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
546 }
547 
548 /* Get pointer to next TX descriptor to be processed (send) by HW */
549 static struct mvneta_tx_desc *
550 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
551 {
552 	int tx_desc = txq->next_desc_to_proc;
553 
554 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
555 	return txq->descs + tx_desc;
556 }
557 
558 /* Set rxq buf size */
559 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
560 				    struct mvneta_rx_queue *rxq,
561 				    int buf_size)
562 {
563 	u32 val;
564 
565 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
566 
567 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
568 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
569 
570 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
571 }
572 
573 static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
574 {
575 	/* phy_addr is set to invalid value for fixed link */
576 	return pp->phyaddr > PHY_MAX_ADDR;
577 }
578 
579 
580 /* Start the Ethernet port RX and TX activity */
581 static void mvneta_port_up(struct mvneta_port *pp)
582 {
583 	int queue;
584 	u32 q_map;
585 
586 	/* Enable all initialized TXs. */
587 	mvneta_mib_counters_clear(pp);
588 	q_map = 0;
589 	for (queue = 0; queue < txq_number; queue++) {
590 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
591 		if (txq->descs != NULL)
592 			q_map |= (1 << queue);
593 	}
594 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
595 
596 	/* Enable all initialized RXQs. */
597 	q_map = 0;
598 	for (queue = 0; queue < rxq_number; queue++) {
599 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
600 		if (rxq->descs != NULL)
601 			q_map |= (1 << queue);
602 	}
603 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
604 }
605 
606 /* Stop the Ethernet port activity */
607 static void mvneta_port_down(struct mvneta_port *pp)
608 {
609 	u32 val;
610 	int count;
611 
612 	/* Stop Rx port activity. Check port Rx activity. */
613 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
614 
615 	/* Issue stop command for active channels only */
616 	if (val != 0)
617 		mvreg_write(pp, MVNETA_RXQ_CMD,
618 			    val << MVNETA_RXQ_DISABLE_SHIFT);
619 
620 	/* Wait for all Rx activity to terminate. */
621 	count = 0;
622 	do {
623 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
624 			netdev_warn(pp->dev,
625 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
626 				    val);
627 			break;
628 		}
629 		mdelay(1);
630 
631 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
632 	} while (val & 0xff);
633 
634 	/* Stop Tx port activity. Check port Tx activity. Issue stop
635 	 * command for active channels only
636 	 */
637 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
638 
639 	if (val != 0)
640 		mvreg_write(pp, MVNETA_TXQ_CMD,
641 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
642 
643 	/* Wait for all Tx activity to terminate. */
644 	count = 0;
645 	do {
646 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
647 			netdev_warn(pp->dev,
648 				    "TIMEOUT for TX stopped status=0x%08x\n",
649 				    val);
650 			break;
651 		}
652 		mdelay(1);
653 
654 		/* Check TX Command reg that all Txqs are stopped */
655 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
656 
657 	} while (val & 0xff);
658 
659 	/* Double check to verify that TX FIFO is empty */
660 	count = 0;
661 	do {
662 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
663 			netdev_warn(pp->dev,
664 				    "TX FIFO empty timeout status=0x08%x\n",
665 				    val);
666 			break;
667 		}
668 		mdelay(1);
669 
670 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
671 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
672 		 (val & MVNETA_TX_IN_PRGRS));
673 
674 	udelay(200);
675 }
676 
677 /* Enable the port by setting the port enable bit of the MAC control register */
678 static void mvneta_port_enable(struct mvneta_port *pp)
679 {
680 	u32 val;
681 
682 	/* Enable port */
683 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
684 	val |= MVNETA_GMAC0_PORT_ENABLE;
685 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
686 }
687 
688 /* Disable the port and wait for about 200 usec before retuning */
689 static void mvneta_port_disable(struct mvneta_port *pp)
690 {
691 	u32 val;
692 
693 	/* Reset the Enable bit in the Serial Control Register */
694 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
695 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
696 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
697 
698 	udelay(200);
699 }
700 
701 /* Multicast tables methods */
702 
703 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
704 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
705 {
706 	int offset;
707 	u32 val;
708 
709 	if (queue == -1) {
710 		val = 0;
711 	} else {
712 		val = 0x1 | (queue << 1);
713 		val |= (val << 24) | (val << 16) | (val << 8);
714 	}
715 
716 	for (offset = 0; offset <= 0xc; offset += 4)
717 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
718 }
719 
720 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
721 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
722 {
723 	int offset;
724 	u32 val;
725 
726 	if (queue == -1) {
727 		val = 0;
728 	} else {
729 		val = 0x1 | (queue << 1);
730 		val |= (val << 24) | (val << 16) | (val << 8);
731 	}
732 
733 	for (offset = 0; offset <= 0xfc; offset += 4)
734 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
735 }
736 
737 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
738 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
739 {
740 	int offset;
741 	u32 val;
742 
743 	if (queue == -1) {
744 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
745 		val = 0;
746 	} else {
747 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
748 		val = 0x1 | (queue << 1);
749 		val |= (val << 24) | (val << 16) | (val << 8);
750 	}
751 
752 	for (offset = 0; offset <= 0xfc; offset += 4)
753 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
754 }
755 
756 /* This method sets defaults to the NETA port:
757  *	Clears interrupt Cause and Mask registers.
758  *	Clears all MAC tables.
759  *	Sets defaults to all registers.
760  *	Resets RX and TX descriptor rings.
761  *	Resets PHY.
762  * This method can be called after mvneta_port_down() to return the port
763  *	settings to defaults.
764  */
765 static void mvneta_defaults_set(struct mvneta_port *pp)
766 {
767 	int cpu;
768 	int queue;
769 	u32 val;
770 
771 	/* Clear all Cause registers */
772 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
773 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
774 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
775 
776 	/* Mask all interrupts */
777 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
778 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
779 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
780 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
781 
782 	/* Enable MBUS Retry bit16 */
783 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
784 
785 	/* Set CPU queue access map - all CPUs have access to all RX
786 	 * queues and to all TX queues
787 	 */
788 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
789 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
790 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
791 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
792 
793 	/* Reset RX and TX DMAs */
794 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
795 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
796 
797 	/* Disable Legacy WRR, Disable EJP, Release from reset */
798 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
799 	for (queue = 0; queue < txq_number; queue++) {
800 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
801 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
802 	}
803 
804 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
805 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
806 
807 	/* Set Port Acceleration Mode */
808 	val = MVNETA_ACC_MODE_EXT;
809 	mvreg_write(pp, MVNETA_ACC_MODE, val);
810 
811 	/* Update val of portCfg register accordingly with all RxQueue types */
812 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
813 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
814 
815 	val = 0;
816 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
817 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
818 
819 	/* Build PORT_SDMA_CONFIG_REG */
820 	val = 0;
821 
822 	/* Default burst size */
823 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
824 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
825 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
826 
827 	/* Assign port SDMA configuration */
828 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
829 
830 	/* Enable PHY polling in hardware if not in fixed-link mode */
831 	if (!mvneta_port_is_fixed_link(pp)) {
832 		val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
833 		val |= MVNETA_PHY_POLLING_ENABLE;
834 		mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
835 	}
836 
837 	mvneta_set_ucast_table(pp, -1);
838 	mvneta_set_special_mcast_table(pp, -1);
839 	mvneta_set_other_mcast_table(pp, -1);
840 }
841 
842 /* Set unicast address */
843 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
844 				  int queue)
845 {
846 	unsigned int unicast_reg;
847 	unsigned int tbl_offset;
848 	unsigned int reg_offset;
849 
850 	/* Locate the Unicast table entry */
851 	last_nibble = (0xf & last_nibble);
852 
853 	/* offset from unicast tbl base */
854 	tbl_offset = (last_nibble / 4) * 4;
855 
856 	/* offset within the above reg  */
857 	reg_offset = last_nibble % 4;
858 
859 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
860 
861 	if (queue == -1) {
862 		/* Clear accepts frame bit at specified unicast DA tbl entry */
863 		unicast_reg &= ~(0xff << (8 * reg_offset));
864 	} else {
865 		unicast_reg &= ~(0xff << (8 * reg_offset));
866 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
867 	}
868 
869 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
870 }
871 
872 /* Set mac address */
873 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
874 				int queue)
875 {
876 	unsigned int mac_h;
877 	unsigned int mac_l;
878 
879 	if (queue != -1) {
880 		mac_l = (addr[4] << 8) | (addr[5]);
881 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
882 			(addr[2] << 8) | (addr[3] << 0);
883 
884 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
885 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
886 	}
887 
888 	/* Accept frames of this address */
889 	mvneta_set_ucast_addr(pp, addr[5], queue);
890 }
891 
892 static int mvneta_write_hwaddr(struct udevice *dev)
893 {
894 	mvneta_mac_addr_set(dev_get_priv(dev),
895 		((struct eth_pdata *)dev_get_platdata(dev))->enetaddr,
896 		rxq_def);
897 
898 	return 0;
899 }
900 
901 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
902 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
903 				u32 phys_addr, u32 cookie)
904 {
905 	rx_desc->buf_cookie = cookie;
906 	rx_desc->buf_phys_addr = phys_addr;
907 }
908 
909 /* Decrement sent descriptors counter */
910 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
911 				     struct mvneta_tx_queue *txq,
912 				     int sent_desc)
913 {
914 	u32 val;
915 
916 	/* Only 255 TX descriptors can be updated at once */
917 	while (sent_desc > 0xff) {
918 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
919 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
920 		sent_desc = sent_desc - 0xff;
921 	}
922 
923 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
924 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
925 }
926 
927 /* Get number of TX descriptors already sent by HW */
928 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
929 					struct mvneta_tx_queue *txq)
930 {
931 	u32 val;
932 	int sent_desc;
933 
934 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
935 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
936 		MVNETA_TXQ_SENT_DESC_SHIFT;
937 
938 	return sent_desc;
939 }
940 
941 /* Display more error info */
942 static void mvneta_rx_error(struct mvneta_port *pp,
943 			    struct mvneta_rx_desc *rx_desc)
944 {
945 	u32 status = rx_desc->status;
946 
947 	if (!mvneta_rxq_desc_is_first_last(status)) {
948 		netdev_err(pp->dev,
949 			   "bad rx status %08x (buffer oversize), size=%d\n",
950 			   status, rx_desc->data_size);
951 		return;
952 	}
953 
954 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
955 	case MVNETA_RXD_ERR_CRC:
956 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
957 			   status, rx_desc->data_size);
958 		break;
959 	case MVNETA_RXD_ERR_OVERRUN:
960 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
961 			   status, rx_desc->data_size);
962 		break;
963 	case MVNETA_RXD_ERR_LEN:
964 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
965 			   status, rx_desc->data_size);
966 		break;
967 	case MVNETA_RXD_ERR_RESOURCE:
968 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
969 			   status, rx_desc->data_size);
970 		break;
971 	}
972 }
973 
974 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
975 						     int rxq)
976 {
977 	return &pp->rxqs[rxq];
978 }
979 
980 
981 /* Drop packets received by the RXQ and free buffers */
982 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
983 				 struct mvneta_rx_queue *rxq)
984 {
985 	int rx_done;
986 
987 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
988 	if (rx_done)
989 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
990 }
991 
992 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
993 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
994 			   int num)
995 {
996 	int i;
997 
998 	for (i = 0; i < num; i++) {
999 		u32 addr;
1000 
1001 		/* U-Boot special: Fill in the rx buffer addresses */
1002 		addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
1003 		mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
1004 	}
1005 
1006 	/* Add this number of RX descriptors as non occupied (ready to
1007 	 * get packets)
1008 	 */
1009 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1010 
1011 	return 0;
1012 }
1013 
1014 /* Rx/Tx queue initialization/cleanup methods */
1015 
1016 /* Create a specified RX queue */
1017 static int mvneta_rxq_init(struct mvneta_port *pp,
1018 			   struct mvneta_rx_queue *rxq)
1019 
1020 {
1021 	rxq->size = pp->rx_ring_size;
1022 
1023 	/* Allocate memory for RX descriptors */
1024 	rxq->descs_phys = (dma_addr_t)rxq->descs;
1025 	if (rxq->descs == NULL)
1026 		return -ENOMEM;
1027 
1028 	rxq->last_desc = rxq->size - 1;
1029 
1030 	/* Set Rx descriptors queue starting address */
1031 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1032 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1033 
1034 	/* Fill RXQ with buffers from RX pool */
1035 	mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1036 	mvneta_rxq_fill(pp, rxq, rxq->size);
1037 
1038 	return 0;
1039 }
1040 
1041 /* Cleanup Rx queue */
1042 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1043 			      struct mvneta_rx_queue *rxq)
1044 {
1045 	mvneta_rxq_drop_pkts(pp, rxq);
1046 
1047 	rxq->descs             = NULL;
1048 	rxq->last_desc         = 0;
1049 	rxq->next_desc_to_proc = 0;
1050 	rxq->descs_phys        = 0;
1051 }
1052 
1053 /* Create and initialize a tx queue */
1054 static int mvneta_txq_init(struct mvneta_port *pp,
1055 			   struct mvneta_tx_queue *txq)
1056 {
1057 	txq->size = pp->tx_ring_size;
1058 
1059 	/* Allocate memory for TX descriptors */
1060 	txq->descs_phys = (dma_addr_t)txq->descs;
1061 	if (txq->descs == NULL)
1062 		return -ENOMEM;
1063 
1064 	txq->last_desc = txq->size - 1;
1065 
1066 	/* Set maximum bandwidth for enabled TXQs */
1067 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1068 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1069 
1070 	/* Set Tx descriptors queue starting address */
1071 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1072 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1073 
1074 	return 0;
1075 }
1076 
1077 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
1078 static void mvneta_txq_deinit(struct mvneta_port *pp,
1079 			      struct mvneta_tx_queue *txq)
1080 {
1081 	txq->descs             = NULL;
1082 	txq->last_desc         = 0;
1083 	txq->next_desc_to_proc = 0;
1084 	txq->descs_phys        = 0;
1085 
1086 	/* Set minimum bandwidth for disabled TXQs */
1087 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1088 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1089 
1090 	/* Set Tx descriptors queue starting address and size */
1091 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1092 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1093 }
1094 
1095 /* Cleanup all Tx queues */
1096 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1097 {
1098 	int queue;
1099 
1100 	for (queue = 0; queue < txq_number; queue++)
1101 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
1102 }
1103 
1104 /* Cleanup all Rx queues */
1105 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1106 {
1107 	int queue;
1108 
1109 	for (queue = 0; queue < rxq_number; queue++)
1110 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1111 }
1112 
1113 
1114 /* Init all Rx queues */
1115 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1116 {
1117 	int queue;
1118 
1119 	for (queue = 0; queue < rxq_number; queue++) {
1120 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1121 		if (err) {
1122 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1123 				   __func__, queue);
1124 			mvneta_cleanup_rxqs(pp);
1125 			return err;
1126 		}
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 /* Init all tx queues */
1133 static int mvneta_setup_txqs(struct mvneta_port *pp)
1134 {
1135 	int queue;
1136 
1137 	for (queue = 0; queue < txq_number; queue++) {
1138 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1139 		if (err) {
1140 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
1141 				   __func__, queue);
1142 			mvneta_cleanup_txqs(pp);
1143 			return err;
1144 		}
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static void mvneta_start_dev(struct mvneta_port *pp)
1151 {
1152 	/* start the Rx/Tx activity */
1153 	mvneta_port_enable(pp);
1154 }
1155 
1156 static void mvneta_adjust_link(struct udevice *dev)
1157 {
1158 	struct mvneta_port *pp = dev_get_priv(dev);
1159 	struct phy_device *phydev = pp->phydev;
1160 	int status_change = 0;
1161 
1162 	if (mvneta_port_is_fixed_link(pp)) {
1163 		debug("Using fixed link, skip link adjust\n");
1164 		return;
1165 	}
1166 
1167 	if (phydev->link) {
1168 		if ((pp->speed != phydev->speed) ||
1169 		    (pp->duplex != phydev->duplex)) {
1170 			u32 val;
1171 
1172 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1173 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1174 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
1175 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1176 				 MVNETA_GMAC_AN_SPEED_EN |
1177 				 MVNETA_GMAC_AN_DUPLEX_EN);
1178 
1179 			if (phydev->duplex)
1180 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1181 
1182 			if (phydev->speed == SPEED_1000)
1183 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1184 			else
1185 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1186 
1187 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1188 
1189 			pp->duplex = phydev->duplex;
1190 			pp->speed  = phydev->speed;
1191 		}
1192 	}
1193 
1194 	if (phydev->link != pp->link) {
1195 		if (!phydev->link) {
1196 			pp->duplex = -1;
1197 			pp->speed = 0;
1198 		}
1199 
1200 		pp->link = phydev->link;
1201 		status_change = 1;
1202 	}
1203 
1204 	if (status_change) {
1205 		if (phydev->link) {
1206 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1207 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1208 				MVNETA_GMAC_FORCE_LINK_DOWN);
1209 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1210 			mvneta_port_up(pp);
1211 		} else {
1212 			mvneta_port_down(pp);
1213 		}
1214 	}
1215 }
1216 
1217 static int mvneta_open(struct udevice *dev)
1218 {
1219 	struct mvneta_port *pp = dev_get_priv(dev);
1220 	int ret;
1221 
1222 	ret = mvneta_setup_rxqs(pp);
1223 	if (ret)
1224 		return ret;
1225 
1226 	ret = mvneta_setup_txqs(pp);
1227 	if (ret)
1228 		return ret;
1229 
1230 	mvneta_adjust_link(dev);
1231 
1232 	mvneta_start_dev(pp);
1233 
1234 	return 0;
1235 }
1236 
1237 /* Initialize hw */
1238 static int mvneta_init2(struct mvneta_port *pp)
1239 {
1240 	int queue;
1241 
1242 	/* Disable port */
1243 	mvneta_port_disable(pp);
1244 
1245 	/* Set port default values */
1246 	mvneta_defaults_set(pp);
1247 
1248 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1249 			   GFP_KERNEL);
1250 	if (!pp->txqs)
1251 		return -ENOMEM;
1252 
1253 	/* U-Boot special: use preallocated area */
1254 	pp->txqs[0].descs = buffer_loc.tx_descs;
1255 
1256 	/* Initialize TX descriptor rings */
1257 	for (queue = 0; queue < txq_number; queue++) {
1258 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1259 		txq->id = queue;
1260 		txq->size = pp->tx_ring_size;
1261 	}
1262 
1263 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1264 			   GFP_KERNEL);
1265 	if (!pp->rxqs) {
1266 		kfree(pp->txqs);
1267 		return -ENOMEM;
1268 	}
1269 
1270 	/* U-Boot special: use preallocated area */
1271 	pp->rxqs[0].descs = buffer_loc.rx_descs;
1272 
1273 	/* Create Rx descriptor rings */
1274 	for (queue = 0; queue < rxq_number; queue++) {
1275 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1276 		rxq->id = queue;
1277 		rxq->size = pp->rx_ring_size;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 /* platform glue : initialize decoding windows */
1284 
1285 /*
1286  * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1287  * First layer is:  GbE Address window that resides inside the GBE unit,
1288  * Second layer is: Fabric address window which is located in the NIC400
1289  *                  (South Fabric).
1290  * To simplify the address decode configuration for Armada3700, we bypass the
1291  * first layer of GBE decode window by setting the first window to 4GB.
1292  */
1293 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1294 {
1295 	/*
1296 	 * Set window size to 4GB, to bypass GBE address decode, leave the
1297 	 * work to MBUS decode window
1298 	 */
1299 	mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1300 
1301 	/* Enable GBE address decode window 0 by set bit 0 to 0 */
1302 	clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1303 		     MVNETA_BASE_ADDR_ENABLE_BIT);
1304 
1305 	/* Set GBE address decode window 0 to full Access (read or write) */
1306 	setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1307 		     MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1308 }
1309 
1310 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1311 {
1312 	const struct mbus_dram_target_info *dram;
1313 	u32 win_enable;
1314 	u32 win_protect;
1315 	int i;
1316 
1317 	dram = mvebu_mbus_dram_info();
1318 	for (i = 0; i < 6; i++) {
1319 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1320 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1321 
1322 		if (i < 4)
1323 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1324 	}
1325 
1326 	win_enable = 0x3f;
1327 	win_protect = 0;
1328 
1329 	for (i = 0; i < dram->num_cs; i++) {
1330 		const struct mbus_dram_window *cs = dram->cs + i;
1331 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1332 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1333 
1334 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
1335 			    (cs->size - 1) & 0xffff0000);
1336 
1337 		win_enable &= ~(1 << i);
1338 		win_protect |= 3 << (2 * i);
1339 	}
1340 
1341 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1342 }
1343 
1344 /* Power up the port */
1345 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1346 {
1347 	u32 ctrl;
1348 
1349 	/* MAC Cause register should be cleared */
1350 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1351 
1352 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1353 
1354 	/* Even though it might look weird, when we're configured in
1355 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1356 	 */
1357 	switch (phy_mode) {
1358 	case PHY_INTERFACE_MODE_QSGMII:
1359 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1360 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1361 		break;
1362 	case PHY_INTERFACE_MODE_SGMII:
1363 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1364 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1365 		break;
1366 	case PHY_INTERFACE_MODE_RGMII:
1367 	case PHY_INTERFACE_MODE_RGMII_ID:
1368 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
1369 		break;
1370 	default:
1371 		return -EINVAL;
1372 	}
1373 
1374 	/* Cancel Port Reset */
1375 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1376 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1377 
1378 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1379 		MVNETA_GMAC2_PORT_RESET) != 0)
1380 		continue;
1381 
1382 	return 0;
1383 }
1384 
1385 /* Device initialization routine */
1386 static int mvneta_init(struct udevice *dev)
1387 {
1388 	struct eth_pdata *pdata = dev_get_platdata(dev);
1389 	struct mvneta_port *pp = dev_get_priv(dev);
1390 	int err;
1391 
1392 	pp->tx_ring_size = MVNETA_MAX_TXD;
1393 	pp->rx_ring_size = MVNETA_MAX_RXD;
1394 
1395 	err = mvneta_init2(pp);
1396 	if (err < 0) {
1397 		dev_err(&pdev->dev, "can't init eth hal\n");
1398 		return err;
1399 	}
1400 
1401 	mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1402 
1403 	err = mvneta_port_power_up(pp, pp->phy_interface);
1404 	if (err < 0) {
1405 		dev_err(&pdev->dev, "can't power up port\n");
1406 		return err;
1407 	}
1408 
1409 	/* Call open() now as it needs to be done before runing send() */
1410 	mvneta_open(dev);
1411 
1412 	return 0;
1413 }
1414 
1415 /* U-Boot only functions follow here */
1416 
1417 /* SMI / MDIO functions */
1418 
1419 static int smi_wait_ready(struct mvneta_port *pp)
1420 {
1421 	u32 timeout = MVNETA_SMI_TIMEOUT;
1422 	u32 smi_reg;
1423 
1424 	/* wait till the SMI is not busy */
1425 	do {
1426 		/* read smi register */
1427 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1428 		if (timeout-- == 0) {
1429 			printf("Error: SMI busy timeout\n");
1430 			return -EFAULT;
1431 		}
1432 	} while (smi_reg & MVNETA_SMI_BUSY);
1433 
1434 	return 0;
1435 }
1436 
1437 /*
1438  * mvneta_mdio_read - miiphy_read callback function.
1439  *
1440  * Returns 16bit phy register value, or 0xffff on error
1441  */
1442 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1443 {
1444 	struct mvneta_port *pp = bus->priv;
1445 	u32 smi_reg;
1446 	u32 timeout;
1447 
1448 	/* check parameters */
1449 	if (addr > MVNETA_PHY_ADDR_MASK) {
1450 		printf("Error: Invalid PHY address %d\n", addr);
1451 		return -EFAULT;
1452 	}
1453 
1454 	if (reg > MVNETA_PHY_REG_MASK) {
1455 		printf("Err: Invalid register offset %d\n", reg);
1456 		return -EFAULT;
1457 	}
1458 
1459 	/* wait till the SMI is not busy */
1460 	if (smi_wait_ready(pp) < 0)
1461 		return -EFAULT;
1462 
1463 	/* fill the phy address and regiser offset and read opcode */
1464 	smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1465 		| (reg << MVNETA_SMI_REG_ADDR_OFFS)
1466 		| MVNETA_SMI_OPCODE_READ;
1467 
1468 	/* write the smi register */
1469 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1470 
1471 	/* wait till read value is ready */
1472 	timeout = MVNETA_SMI_TIMEOUT;
1473 
1474 	do {
1475 		/* read smi register */
1476 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1477 		if (timeout-- == 0) {
1478 			printf("Err: SMI read ready timeout\n");
1479 			return -EFAULT;
1480 		}
1481 	} while (!(smi_reg & MVNETA_SMI_READ_VALID));
1482 
1483 	/* Wait for the data to update in the SMI register */
1484 	for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1485 		;
1486 
1487 	return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1488 }
1489 
1490 /*
1491  * mvneta_mdio_write - miiphy_write callback function.
1492  *
1493  * Returns 0 if write succeed, -EINVAL on bad parameters
1494  * -ETIME on timeout
1495  */
1496 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1497 			     u16 value)
1498 {
1499 	struct mvneta_port *pp = bus->priv;
1500 	u32 smi_reg;
1501 
1502 	/* check parameters */
1503 	if (addr > MVNETA_PHY_ADDR_MASK) {
1504 		printf("Error: Invalid PHY address %d\n", addr);
1505 		return -EFAULT;
1506 	}
1507 
1508 	if (reg > MVNETA_PHY_REG_MASK) {
1509 		printf("Err: Invalid register offset %d\n", reg);
1510 		return -EFAULT;
1511 	}
1512 
1513 	/* wait till the SMI is not busy */
1514 	if (smi_wait_ready(pp) < 0)
1515 		return -EFAULT;
1516 
1517 	/* fill the phy addr and reg offset and write opcode and data */
1518 	smi_reg = value << MVNETA_SMI_DATA_OFFS;
1519 	smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1520 		| (reg << MVNETA_SMI_REG_ADDR_OFFS);
1521 	smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1522 
1523 	/* write the smi register */
1524 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1525 
1526 	return 0;
1527 }
1528 
1529 static int mvneta_start(struct udevice *dev)
1530 {
1531 	struct mvneta_port *pp = dev_get_priv(dev);
1532 	struct phy_device *phydev;
1533 
1534 	mvneta_port_power_up(pp, pp->phy_interface);
1535 
1536 	if (!pp->init || pp->link == 0) {
1537 		if (mvneta_port_is_fixed_link(pp)) {
1538 			u32 val;
1539 
1540 			pp->init = 1;
1541 			pp->link = 1;
1542 			mvneta_init(dev);
1543 
1544 			val = MVNETA_GMAC_FORCE_LINK_UP |
1545 			      MVNETA_GMAC_IB_BYPASS_AN_EN |
1546 			      MVNETA_GMAC_SET_FC_EN |
1547 			      MVNETA_GMAC_ADVERT_FC_EN |
1548 			      MVNETA_GMAC_SAMPLE_TX_CFG_EN;
1549 
1550 			if (pp->duplex)
1551 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1552 
1553 			if (pp->speed == SPEED_1000)
1554 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1555 			else if (pp->speed == SPEED_100)
1556 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1557 
1558 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1559 		} else {
1560 			/* Set phy address of the port */
1561 			mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1562 
1563 			phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1564 					     pp->phy_interface);
1565 			if (!phydev) {
1566 				printf("phy_connect failed\n");
1567 				return -ENODEV;
1568 			}
1569 
1570 			pp->phydev = phydev;
1571 			phy_config(phydev);
1572 			phy_startup(phydev);
1573 			if (!phydev->link) {
1574 				printf("%s: No link.\n", phydev->dev->name);
1575 				return -1;
1576 			}
1577 
1578 			/* Full init on first call */
1579 			mvneta_init(dev);
1580 			pp->init = 1;
1581 			return 0;
1582 		}
1583 	}
1584 
1585 	/* Upon all following calls, this is enough */
1586 	mvneta_port_up(pp);
1587 	mvneta_port_enable(pp);
1588 
1589 	return 0;
1590 }
1591 
1592 static int mvneta_send(struct udevice *dev, void *packet, int length)
1593 {
1594 	struct mvneta_port *pp = dev_get_priv(dev);
1595 	struct mvneta_tx_queue *txq = &pp->txqs[0];
1596 	struct mvneta_tx_desc *tx_desc;
1597 	int sent_desc;
1598 	u32 timeout = 0;
1599 
1600 	/* Get a descriptor for the first part of the packet */
1601 	tx_desc = mvneta_txq_next_desc_get(txq);
1602 
1603 	tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1604 	tx_desc->data_size = length;
1605 	flush_dcache_range((ulong)packet,
1606 			   (ulong)packet + ALIGN(length, PKTALIGN));
1607 
1608 	/* First and Last descriptor */
1609 	tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1610 	mvneta_txq_pend_desc_add(pp, txq, 1);
1611 
1612 	/* Wait for packet to be sent (queue might help with speed here) */
1613 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1614 	while (!sent_desc) {
1615 		if (timeout++ > 10000) {
1616 			printf("timeout: packet not sent\n");
1617 			return -1;
1618 		}
1619 		sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1620 	}
1621 
1622 	/* txDone has increased - hw sent packet */
1623 	mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1624 
1625 	return 0;
1626 }
1627 
1628 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1629 {
1630 	struct mvneta_port *pp = dev_get_priv(dev);
1631 	int rx_done;
1632 	struct mvneta_rx_queue *rxq;
1633 	int rx_bytes = 0;
1634 
1635 	/* get rx queue */
1636 	rxq = mvneta_rxq_handle_get(pp, rxq_def);
1637 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1638 
1639 	if (rx_done) {
1640 		struct mvneta_rx_desc *rx_desc;
1641 		unsigned char *data;
1642 		u32 rx_status;
1643 
1644 		/*
1645 		 * No cache invalidation needed here, since the desc's are
1646 		 * located in a uncached memory region
1647 		 */
1648 		rx_desc = mvneta_rxq_next_desc_get(rxq);
1649 
1650 		rx_status = rx_desc->status;
1651 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1652 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1653 			mvneta_rx_error(pp, rx_desc);
1654 			/* leave the descriptor untouched */
1655 			return -EIO;
1656 		}
1657 
1658 		/* 2 bytes for marvell header. 4 bytes for crc */
1659 		rx_bytes = rx_desc->data_size - 6;
1660 
1661 		/* give packet to stack - skip on first 2 bytes */
1662 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1663 		/*
1664 		 * No cache invalidation needed here, since the rx_buffer's are
1665 		 * located in a uncached memory region
1666 		 */
1667 		*packetp = data;
1668 
1669 		/*
1670 		 * Only mark one descriptor as free
1671 		 * since only one was processed
1672 		 */
1673 		mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
1674 	}
1675 
1676 	return rx_bytes;
1677 }
1678 
1679 static int mvneta_probe(struct udevice *dev)
1680 {
1681 	struct eth_pdata *pdata = dev_get_platdata(dev);
1682 	struct mvneta_port *pp = dev_get_priv(dev);
1683 	void *blob = (void *)gd->fdt_blob;
1684 	int node = dev_of_offset(dev);
1685 	struct mii_dev *bus;
1686 	unsigned long addr;
1687 	void *bd_space;
1688 	int ret;
1689 	int fl_node;
1690 
1691 	/*
1692 	 * Allocate buffer area for descs and rx_buffers. This is only
1693 	 * done once for all interfaces. As only one interface can
1694 	 * be active. Make this area DMA safe by disabling the D-cache
1695 	 */
1696 	if (!buffer_loc.tx_descs) {
1697 		/* Align buffer area for descs and rx_buffers to 1MiB */
1698 		bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1699 		mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1700 						DCACHE_OFF);
1701 		buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1702 		buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1703 			((phys_addr_t)bd_space +
1704 			 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
1705 		buffer_loc.rx_buffers = (phys_addr_t)
1706 			(bd_space +
1707 			 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
1708 			 MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
1709 	}
1710 
1711 	pp->base = (void __iomem *)pdata->iobase;
1712 
1713 	/* Configure MBUS address windows */
1714 	if (device_is_compatible(dev, "marvell,armada-3700-neta"))
1715 		mvneta_bypass_mbus_windows(pp);
1716 	else
1717 		mvneta_conf_mbus_windows(pp);
1718 
1719 	/* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1720 	pp->phy_interface = pdata->phy_interface;
1721 
1722 	/* fetch 'fixed-link' property from 'neta' node */
1723 	fl_node = fdt_subnode_offset(blob, node, "fixed-link");
1724 	if (fl_node != -FDT_ERR_NOTFOUND) {
1725 		/* set phy_addr to invalid value for fixed link */
1726 		pp->phyaddr = PHY_MAX_ADDR + 1;
1727 		pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
1728 		pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
1729 	} else {
1730 		/* Now read phyaddr from DT */
1731 		addr = fdtdec_get_int(blob, node, "phy", 0);
1732 		addr = fdt_node_offset_by_phandle(blob, addr);
1733 		pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1734 	}
1735 
1736 	bus = mdio_alloc();
1737 	if (!bus) {
1738 		printf("Failed to allocate MDIO bus\n");
1739 		return -ENOMEM;
1740 	}
1741 
1742 	bus->read = mvneta_mdio_read;
1743 	bus->write = mvneta_mdio_write;
1744 	snprintf(bus->name, sizeof(bus->name), dev->name);
1745 	bus->priv = (void *)pp;
1746 	pp->bus = bus;
1747 
1748 	ret = mdio_register(bus);
1749 	if (ret)
1750 		return ret;
1751 
1752 	return board_network_enable(bus);
1753 }
1754 
1755 static void mvneta_stop(struct udevice *dev)
1756 {
1757 	struct mvneta_port *pp = dev_get_priv(dev);
1758 
1759 	mvneta_port_down(pp);
1760 	mvneta_port_disable(pp);
1761 }
1762 
1763 static const struct eth_ops mvneta_ops = {
1764 	.start		= mvneta_start,
1765 	.send		= mvneta_send,
1766 	.recv		= mvneta_recv,
1767 	.stop		= mvneta_stop,
1768 	.write_hwaddr	= mvneta_write_hwaddr,
1769 };
1770 
1771 static int mvneta_ofdata_to_platdata(struct udevice *dev)
1772 {
1773 	struct eth_pdata *pdata = dev_get_platdata(dev);
1774 	const char *phy_mode;
1775 
1776 	pdata->iobase = devfdt_get_addr(dev);
1777 
1778 	/* Get phy-mode / phy_interface from DT */
1779 	pdata->phy_interface = -1;
1780 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1781 			       NULL);
1782 	if (phy_mode)
1783 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1784 	if (pdata->phy_interface == -1) {
1785 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1786 		return -EINVAL;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 static const struct udevice_id mvneta_ids[] = {
1793 	{ .compatible = "marvell,armada-370-neta" },
1794 	{ .compatible = "marvell,armada-xp-neta" },
1795 	{ .compatible = "marvell,armada-3700-neta" },
1796 	{ }
1797 };
1798 
1799 U_BOOT_DRIVER(mvneta) = {
1800 	.name	= "mvneta",
1801 	.id	= UCLASS_ETH,
1802 	.of_match = mvneta_ids,
1803 	.ofdata_to_platdata = mvneta_ofdata_to_platdata,
1804 	.probe	= mvneta_probe,
1805 	.ops	= &mvneta_ops,
1806 	.priv_auto_alloc_size = sizeof(struct mvneta_port),
1807 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1808 };
1809