1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 4 * 5 * U-Boot version: 6 * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de> 7 * 8 * Based on the Linux version which is: 9 * Copyright (C) 2012 Marvell 10 * 11 * Rami Rosen <rosenr@marvell.com> 12 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 13 */ 14 15 #include <common.h> 16 #include <dm.h> 17 #include <net.h> 18 #include <netdev.h> 19 #include <config.h> 20 #include <malloc.h> 21 #include <asm/io.h> 22 #include <linux/errno.h> 23 #include <phy.h> 24 #include <miiphy.h> 25 #include <watchdog.h> 26 #include <asm/arch/cpu.h> 27 #include <asm/arch/soc.h> 28 #include <linux/compat.h> 29 #include <linux/mbus.h> 30 #include <asm-generic/gpio.h> 31 32 DECLARE_GLOBAL_DATA_PTR; 33 34 #if !defined(CONFIG_PHYLIB) 35 # error Marvell mvneta requires PHYLIB 36 #endif 37 38 #define CONFIG_NR_CPUS 1 39 #define ETH_HLEN 14 /* Total octets in header */ 40 41 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */ 42 #define WRAP (2 + ETH_HLEN + 4 + 32) 43 #define MTU 1500 44 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN)) 45 46 #define MVNETA_SMI_TIMEOUT 10000 47 48 /* Registers */ 49 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 50 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 64 #define MVNETA_PORT_RX_RESET 0x1cc0 65 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 66 #define MVNETA_PHY_ADDR 0x2000 67 #define MVNETA_PHY_ADDR_MASK 0x1f 68 #define MVNETA_SMI 0x2004 69 #define MVNETA_PHY_REG_MASK 0x1f 70 /* SMI register fields */ 71 #define MVNETA_SMI_DATA_OFFS 0 /* Data */ 72 #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS) 73 #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */ 74 #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/ 75 #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */ 76 #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS) 77 #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */ 78 #define MVNETA_SMI_BUSY (1 << 28) /* Busy */ 79 #define MVNETA_MBUS_RETRY 0x2010 80 #define MVNETA_UNIT_INTR_CAUSE 0x2080 81 #define MVNETA_UNIT_CONTROL 0x20B0 82 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 83 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 84 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 85 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 86 #define MVNETA_WIN_SIZE_MASK (0xffff0000) 87 #define MVNETA_BASE_ADDR_ENABLE 0x2290 88 #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1 89 #define MVNETA_PORT_ACCESS_PROTECT 0x2294 90 #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3 91 #define MVNETA_PORT_CONFIG 0x2400 92 #define MVNETA_UNI_PROMISC_MODE BIT(0) 93 #define MVNETA_DEF_RXQ(q) ((q) << 1) 94 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 95 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 96 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 97 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 98 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 99 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 100 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 101 MVNETA_DEF_RXQ_ARP(q) | \ 102 MVNETA_DEF_RXQ_TCP(q) | \ 103 MVNETA_DEF_RXQ_UDP(q) | \ 104 MVNETA_DEF_RXQ_BPDU(q) | \ 105 MVNETA_TX_UNSET_ERR_SUM | \ 106 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 107 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 108 #define MVNETA_MAC_ADDR_LOW 0x2414 109 #define MVNETA_MAC_ADDR_HIGH 0x2418 110 #define MVNETA_SDMA_CONFIG 0x241c 111 #define MVNETA_SDMA_BRST_SIZE_16 4 112 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 113 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 114 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 115 #define MVNETA_DESC_SWAP BIT(6) 116 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 117 #define MVNETA_PORT_STATUS 0x2444 118 #define MVNETA_TX_IN_PRGRS BIT(1) 119 #define MVNETA_TX_FIFO_EMPTY BIT(8) 120 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 121 #define MVNETA_SERDES_CFG 0x24A0 122 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 123 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 124 #define MVNETA_TYPE_PRIO 0x24bc 125 #define MVNETA_FORCE_UNI BIT(21) 126 #define MVNETA_TXQ_CMD_1 0x24e4 127 #define MVNETA_TXQ_CMD 0x2448 128 #define MVNETA_TXQ_DISABLE_SHIFT 8 129 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 130 #define MVNETA_ACC_MODE 0x2500 131 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 132 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 133 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 134 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 135 136 /* Exception Interrupt Port/Queue Cause register */ 137 138 #define MVNETA_INTR_NEW_CAUSE 0x25a0 139 #define MVNETA_INTR_NEW_MASK 0x25a4 140 141 /* bits 0..7 = TXQ SENT, one bit per queue. 142 * bits 8..15 = RXQ OCCUP, one bit per queue. 143 * bits 16..23 = RXQ FREE, one bit per queue. 144 * bit 29 = OLD_REG_SUM, see old reg ? 145 * bit 30 = TX_ERR_SUM, one bit for 4 ports 146 * bit 31 = MISC_SUM, one bit for 4 ports 147 */ 148 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 149 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 150 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 151 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 152 153 #define MVNETA_INTR_OLD_CAUSE 0x25a8 154 #define MVNETA_INTR_OLD_MASK 0x25ac 155 156 /* Data Path Port/Queue Cause Register */ 157 #define MVNETA_INTR_MISC_CAUSE 0x25b0 158 #define MVNETA_INTR_MISC_MASK 0x25b4 159 #define MVNETA_INTR_ENABLE 0x25b8 160 161 #define MVNETA_RXQ_CMD 0x2680 162 #define MVNETA_RXQ_DISABLE_SHIFT 8 163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 166 #define MVNETA_GMAC_CTRL_0 0x2c00 167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 170 #define MVNETA_GMAC_CTRL_2 0x2c08 171 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 172 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 173 #define MVNETA_GMAC2_PORT_RESET BIT(6) 174 #define MVNETA_GMAC_STATUS 0x2c10 175 #define MVNETA_GMAC_LINK_UP BIT(0) 176 #define MVNETA_GMAC_SPEED_1000 BIT(1) 177 #define MVNETA_GMAC_SPEED_100 BIT(2) 178 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 179 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 180 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 181 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 182 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 183 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 184 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 185 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 186 #define MVNETA_GMAC_FORCE_LINK_UP (BIT(0) | BIT(1)) 187 #define MVNETA_GMAC_IB_BYPASS_AN_EN BIT(3) 188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 191 #define MVNETA_GMAC_SET_FC_EN BIT(8) 192 #define MVNETA_GMAC_ADVERT_FC_EN BIT(9) 193 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 194 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 195 #define MVNETA_GMAC_SAMPLE_TX_CFG_EN BIT(15) 196 #define MVNETA_MIB_COUNTERS_BASE 0x3080 197 #define MVNETA_MIB_LATE_COLLISION 0x7c 198 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 199 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 200 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 201 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 202 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 203 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 204 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 205 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 206 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 207 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 208 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 209 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 210 #define MVNETA_PORT_TX_RESET 0x3cf0 211 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 212 #define MVNETA_TX_MTU 0x3e0c 213 #define MVNETA_TX_TOKEN_SIZE 0x3e14 214 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 215 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 216 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 217 218 /* Descriptor ring Macros */ 219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 220 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 221 222 /* Various constants */ 223 224 /* Coalescing */ 225 #define MVNETA_TXDONE_COAL_PKTS 16 226 #define MVNETA_RX_COAL_PKTS 32 227 #define MVNETA_RX_COAL_USEC 100 228 229 /* The two bytes Marvell header. Either contains a special value used 230 * by Marvell switches when a specific hardware mode is enabled (not 231 * supported by this driver) or is filled automatically by zeroes on 232 * the RX side. Those two bytes being at the front of the Ethernet 233 * header, they allow to have the IP header aligned on a 4 bytes 234 * boundary automatically: the hardware skips those two bytes on its 235 * own. 236 */ 237 #define MVNETA_MH_SIZE 2 238 239 #define MVNETA_VLAN_TAG_LEN 4 240 241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 242 #define MVNETA_TX_CSUM_MAX_SIZE 9800 243 #define MVNETA_ACC_MODE_EXT 1 244 245 /* Timeout constants */ 246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 249 250 #define MVNETA_TX_MTU_MAX 0x3ffff 251 252 /* Max number of Rx descriptors */ 253 #define MVNETA_MAX_RXD 16 254 255 /* Max number of Tx descriptors */ 256 #define MVNETA_MAX_TXD 16 257 258 /* descriptor aligned size */ 259 #define MVNETA_DESC_ALIGNED_SIZE 32 260 261 struct mvneta_port { 262 void __iomem *base; 263 struct mvneta_rx_queue *rxqs; 264 struct mvneta_tx_queue *txqs; 265 266 u8 mcast_count[256]; 267 u16 tx_ring_size; 268 u16 rx_ring_size; 269 270 phy_interface_t phy_interface; 271 unsigned int link; 272 unsigned int duplex; 273 unsigned int speed; 274 275 int init; 276 int phyaddr; 277 struct phy_device *phydev; 278 #ifdef CONFIG_DM_GPIO 279 struct gpio_desc phy_reset_gpio; 280 #endif 281 struct mii_dev *bus; 282 }; 283 284 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 285 * layout of the transmit and reception DMA descriptors, and their 286 * layout is therefore defined by the hardware design 287 */ 288 289 #define MVNETA_TX_L3_OFF_SHIFT 0 290 #define MVNETA_TX_IP_HLEN_SHIFT 8 291 #define MVNETA_TX_L4_UDP BIT(16) 292 #define MVNETA_TX_L3_IP6 BIT(17) 293 #define MVNETA_TXD_IP_CSUM BIT(18) 294 #define MVNETA_TXD_Z_PAD BIT(19) 295 #define MVNETA_TXD_L_DESC BIT(20) 296 #define MVNETA_TXD_F_DESC BIT(21) 297 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 298 MVNETA_TXD_L_DESC | \ 299 MVNETA_TXD_F_DESC) 300 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 301 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 302 303 #define MVNETA_RXD_ERR_CRC 0x0 304 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 305 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 306 #define MVNETA_RXD_ERR_LEN BIT(18) 307 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 308 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 309 #define MVNETA_RXD_L3_IP4 BIT(25) 310 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 311 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 312 313 struct mvneta_tx_desc { 314 u32 command; /* Options used by HW for packet transmitting.*/ 315 u16 reserverd1; /* csum_l4 (for future use) */ 316 u16 data_size; /* Data size of transmitted packet in bytes */ 317 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 318 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 319 u32 reserved3[4]; /* Reserved - (for future use) */ 320 }; 321 322 struct mvneta_rx_desc { 323 u32 status; /* Info about received packet */ 324 u16 reserved1; /* pnc_info - (for future use, PnC) */ 325 u16 data_size; /* Size of received packet in bytes */ 326 327 u32 buf_phys_addr; /* Physical address of the buffer */ 328 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 329 330 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 331 u16 reserved3; /* prefetch_cmd, for future use */ 332 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 333 334 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 335 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 336 }; 337 338 struct mvneta_tx_queue { 339 /* Number of this TX queue, in the range 0-7 */ 340 u8 id; 341 342 /* Number of TX DMA descriptors in the descriptor ring */ 343 int size; 344 345 /* Index of last TX DMA descriptor that was inserted */ 346 int txq_put_index; 347 348 /* Index of the TX DMA descriptor to be cleaned up */ 349 int txq_get_index; 350 351 /* Virtual address of the TX DMA descriptors array */ 352 struct mvneta_tx_desc *descs; 353 354 /* DMA address of the TX DMA descriptors array */ 355 dma_addr_t descs_phys; 356 357 /* Index of the last TX DMA descriptor */ 358 int last_desc; 359 360 /* Index of the next TX DMA descriptor to process */ 361 int next_desc_to_proc; 362 }; 363 364 struct mvneta_rx_queue { 365 /* rx queue number, in the range 0-7 */ 366 u8 id; 367 368 /* num of rx descriptors in the rx descriptor ring */ 369 int size; 370 371 /* Virtual address of the RX DMA descriptors array */ 372 struct mvneta_rx_desc *descs; 373 374 /* DMA address of the RX DMA descriptors array */ 375 dma_addr_t descs_phys; 376 377 /* Index of the last RX DMA descriptor */ 378 int last_desc; 379 380 /* Index of the next RX DMA descriptor to process */ 381 int next_desc_to_proc; 382 }; 383 384 /* U-Boot doesn't use the queues, so set the number to 1 */ 385 static int rxq_number = 1; 386 static int txq_number = 1; 387 static int rxq_def; 388 389 struct buffer_location { 390 struct mvneta_tx_desc *tx_descs; 391 struct mvneta_rx_desc *rx_descs; 392 u32 rx_buffers; 393 }; 394 395 /* 396 * All 4 interfaces use the same global buffer, since only one interface 397 * can be enabled at once 398 */ 399 static struct buffer_location buffer_loc; 400 401 /* 402 * Page table entries are set to 1MB, or multiples of 1MB 403 * (not < 1MB). driver uses less bd's so use 1MB bdspace. 404 */ 405 #define BD_SPACE (1 << 20) 406 407 /* 408 * Dummy implementation that can be overwritten by a board 409 * specific function 410 */ 411 __weak int board_network_enable(struct mii_dev *bus) 412 { 413 return 0; 414 } 415 416 /* Utility/helper methods */ 417 418 /* Write helper method */ 419 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 420 { 421 writel(data, pp->base + offset); 422 } 423 424 /* Read helper method */ 425 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 426 { 427 return readl(pp->base + offset); 428 } 429 430 /* Clear all MIB counters */ 431 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 432 { 433 int i; 434 435 /* Perform dummy reads from MIB counters */ 436 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 437 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 438 } 439 440 /* Rx descriptors helper methods */ 441 442 /* Checks whether the RX descriptor having this status is both the first 443 * and the last descriptor for the RX packet. Each RX packet is currently 444 * received through a single RX descriptor, so not having each RX 445 * descriptor with its first and last bits set is an error 446 */ 447 static int mvneta_rxq_desc_is_first_last(u32 status) 448 { 449 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 450 MVNETA_RXD_FIRST_LAST_DESC; 451 } 452 453 /* Add number of descriptors ready to receive new packets */ 454 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 455 struct mvneta_rx_queue *rxq, 456 int ndescs) 457 { 458 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 459 * be added at once 460 */ 461 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 462 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 463 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 464 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 465 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 466 } 467 468 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 469 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 470 } 471 472 /* Get number of RX descriptors occupied by received packets */ 473 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 474 struct mvneta_rx_queue *rxq) 475 { 476 u32 val; 477 478 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 479 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 480 } 481 482 /* Update num of rx desc called upon return from rx path or 483 * from mvneta_rxq_drop_pkts(). 484 */ 485 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 486 struct mvneta_rx_queue *rxq, 487 int rx_done, int rx_filled) 488 { 489 u32 val; 490 491 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 492 val = rx_done | 493 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 494 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 495 return; 496 } 497 498 /* Only 255 descriptors can be added at once */ 499 while ((rx_done > 0) || (rx_filled > 0)) { 500 if (rx_done <= 0xff) { 501 val = rx_done; 502 rx_done = 0; 503 } else { 504 val = 0xff; 505 rx_done -= 0xff; 506 } 507 if (rx_filled <= 0xff) { 508 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 509 rx_filled = 0; 510 } else { 511 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 512 rx_filled -= 0xff; 513 } 514 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 515 } 516 } 517 518 /* Get pointer to next RX descriptor to be processed by SW */ 519 static struct mvneta_rx_desc * 520 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 521 { 522 int rx_desc = rxq->next_desc_to_proc; 523 524 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 525 return rxq->descs + rx_desc; 526 } 527 528 /* Tx descriptors helper methods */ 529 530 /* Update HW with number of TX descriptors to be sent */ 531 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 532 struct mvneta_tx_queue *txq, 533 int pend_desc) 534 { 535 u32 val; 536 537 /* Only 255 descriptors can be added at once ; Assume caller 538 * process TX descriptors in quanta less than 256 539 */ 540 val = pend_desc; 541 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 542 } 543 544 /* Get pointer to next TX descriptor to be processed (send) by HW */ 545 static struct mvneta_tx_desc * 546 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 547 { 548 int tx_desc = txq->next_desc_to_proc; 549 550 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 551 return txq->descs + tx_desc; 552 } 553 554 /* Set rxq buf size */ 555 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 556 struct mvneta_rx_queue *rxq, 557 int buf_size) 558 { 559 u32 val; 560 561 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 562 563 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 564 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 565 566 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 567 } 568 569 static int mvneta_port_is_fixed_link(struct mvneta_port *pp) 570 { 571 /* phy_addr is set to invalid value for fixed link */ 572 return pp->phyaddr > PHY_MAX_ADDR; 573 } 574 575 576 /* Start the Ethernet port RX and TX activity */ 577 static void mvneta_port_up(struct mvneta_port *pp) 578 { 579 int queue; 580 u32 q_map; 581 582 /* Enable all initialized TXs. */ 583 mvneta_mib_counters_clear(pp); 584 q_map = 0; 585 for (queue = 0; queue < txq_number; queue++) { 586 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 587 if (txq->descs != NULL) 588 q_map |= (1 << queue); 589 } 590 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 591 592 /* Enable all initialized RXQs. */ 593 q_map = 0; 594 for (queue = 0; queue < rxq_number; queue++) { 595 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 596 if (rxq->descs != NULL) 597 q_map |= (1 << queue); 598 } 599 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 600 } 601 602 /* Stop the Ethernet port activity */ 603 static void mvneta_port_down(struct mvneta_port *pp) 604 { 605 u32 val; 606 int count; 607 608 /* Stop Rx port activity. Check port Rx activity. */ 609 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 610 611 /* Issue stop command for active channels only */ 612 if (val != 0) 613 mvreg_write(pp, MVNETA_RXQ_CMD, 614 val << MVNETA_RXQ_DISABLE_SHIFT); 615 616 /* Wait for all Rx activity to terminate. */ 617 count = 0; 618 do { 619 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 620 netdev_warn(pp->dev, 621 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 622 val); 623 break; 624 } 625 mdelay(1); 626 627 val = mvreg_read(pp, MVNETA_RXQ_CMD); 628 } while (val & 0xff); 629 630 /* Stop Tx port activity. Check port Tx activity. Issue stop 631 * command for active channels only 632 */ 633 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 634 635 if (val != 0) 636 mvreg_write(pp, MVNETA_TXQ_CMD, 637 (val << MVNETA_TXQ_DISABLE_SHIFT)); 638 639 /* Wait for all Tx activity to terminate. */ 640 count = 0; 641 do { 642 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 643 netdev_warn(pp->dev, 644 "TIMEOUT for TX stopped status=0x%08x\n", 645 val); 646 break; 647 } 648 mdelay(1); 649 650 /* Check TX Command reg that all Txqs are stopped */ 651 val = mvreg_read(pp, MVNETA_TXQ_CMD); 652 653 } while (val & 0xff); 654 655 /* Double check to verify that TX FIFO is empty */ 656 count = 0; 657 do { 658 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 659 netdev_warn(pp->dev, 660 "TX FIFO empty timeout status=0x08%x\n", 661 val); 662 break; 663 } 664 mdelay(1); 665 666 val = mvreg_read(pp, MVNETA_PORT_STATUS); 667 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 668 (val & MVNETA_TX_IN_PRGRS)); 669 670 udelay(200); 671 } 672 673 /* Enable the port by setting the port enable bit of the MAC control register */ 674 static void mvneta_port_enable(struct mvneta_port *pp) 675 { 676 u32 val; 677 678 /* Enable port */ 679 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 680 val |= MVNETA_GMAC0_PORT_ENABLE; 681 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 682 } 683 684 /* Disable the port and wait for about 200 usec before retuning */ 685 static void mvneta_port_disable(struct mvneta_port *pp) 686 { 687 u32 val; 688 689 /* Reset the Enable bit in the Serial Control Register */ 690 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 691 val &= ~MVNETA_GMAC0_PORT_ENABLE; 692 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 693 694 udelay(200); 695 } 696 697 /* Multicast tables methods */ 698 699 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 700 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 701 { 702 int offset; 703 u32 val; 704 705 if (queue == -1) { 706 val = 0; 707 } else { 708 val = 0x1 | (queue << 1); 709 val |= (val << 24) | (val << 16) | (val << 8); 710 } 711 712 for (offset = 0; offset <= 0xc; offset += 4) 713 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 714 } 715 716 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 717 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 718 { 719 int offset; 720 u32 val; 721 722 if (queue == -1) { 723 val = 0; 724 } else { 725 val = 0x1 | (queue << 1); 726 val |= (val << 24) | (val << 16) | (val << 8); 727 } 728 729 for (offset = 0; offset <= 0xfc; offset += 4) 730 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 731 } 732 733 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 734 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 735 { 736 int offset; 737 u32 val; 738 739 if (queue == -1) { 740 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 741 val = 0; 742 } else { 743 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 744 val = 0x1 | (queue << 1); 745 val |= (val << 24) | (val << 16) | (val << 8); 746 } 747 748 for (offset = 0; offset <= 0xfc; offset += 4) 749 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 750 } 751 752 /* This method sets defaults to the NETA port: 753 * Clears interrupt Cause and Mask registers. 754 * Clears all MAC tables. 755 * Sets defaults to all registers. 756 * Resets RX and TX descriptor rings. 757 * Resets PHY. 758 * This method can be called after mvneta_port_down() to return the port 759 * settings to defaults. 760 */ 761 static void mvneta_defaults_set(struct mvneta_port *pp) 762 { 763 int cpu; 764 int queue; 765 u32 val; 766 767 /* Clear all Cause registers */ 768 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 769 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 770 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 771 772 /* Mask all interrupts */ 773 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 774 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 775 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 776 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 777 778 /* Enable MBUS Retry bit16 */ 779 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 780 781 /* Set CPU queue access map - all CPUs have access to all RX 782 * queues and to all TX queues 783 */ 784 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 785 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 786 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 787 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 788 789 /* Reset RX and TX DMAs */ 790 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 791 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 792 793 /* Disable Legacy WRR, Disable EJP, Release from reset */ 794 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 795 for (queue = 0; queue < txq_number; queue++) { 796 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 797 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 798 } 799 800 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 801 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 802 803 /* Set Port Acceleration Mode */ 804 val = MVNETA_ACC_MODE_EXT; 805 mvreg_write(pp, MVNETA_ACC_MODE, val); 806 807 /* Update val of portCfg register accordingly with all RxQueue types */ 808 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 809 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 810 811 val = 0; 812 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 813 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 814 815 /* Build PORT_SDMA_CONFIG_REG */ 816 val = 0; 817 818 /* Default burst size */ 819 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 820 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 821 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 822 823 /* Assign port SDMA configuration */ 824 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 825 826 /* Enable PHY polling in hardware if not in fixed-link mode */ 827 if (!mvneta_port_is_fixed_link(pp)) { 828 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 829 val |= MVNETA_PHY_POLLING_ENABLE; 830 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 831 } 832 833 mvneta_set_ucast_table(pp, -1); 834 mvneta_set_special_mcast_table(pp, -1); 835 mvneta_set_other_mcast_table(pp, -1); 836 } 837 838 /* Set unicast address */ 839 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 840 int queue) 841 { 842 unsigned int unicast_reg; 843 unsigned int tbl_offset; 844 unsigned int reg_offset; 845 846 /* Locate the Unicast table entry */ 847 last_nibble = (0xf & last_nibble); 848 849 /* offset from unicast tbl base */ 850 tbl_offset = (last_nibble / 4) * 4; 851 852 /* offset within the above reg */ 853 reg_offset = last_nibble % 4; 854 855 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 856 857 if (queue == -1) { 858 /* Clear accepts frame bit at specified unicast DA tbl entry */ 859 unicast_reg &= ~(0xff << (8 * reg_offset)); 860 } else { 861 unicast_reg &= ~(0xff << (8 * reg_offset)); 862 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 863 } 864 865 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 866 } 867 868 /* Set mac address */ 869 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 870 int queue) 871 { 872 unsigned int mac_h; 873 unsigned int mac_l; 874 875 if (queue != -1) { 876 mac_l = (addr[4] << 8) | (addr[5]); 877 mac_h = (addr[0] << 24) | (addr[1] << 16) | 878 (addr[2] << 8) | (addr[3] << 0); 879 880 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 881 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 882 } 883 884 /* Accept frames of this address */ 885 mvneta_set_ucast_addr(pp, addr[5], queue); 886 } 887 888 static int mvneta_write_hwaddr(struct udevice *dev) 889 { 890 mvneta_mac_addr_set(dev_get_priv(dev), 891 ((struct eth_pdata *)dev_get_platdata(dev))->enetaddr, 892 rxq_def); 893 894 return 0; 895 } 896 897 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 898 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 899 u32 phys_addr, u32 cookie) 900 { 901 rx_desc->buf_cookie = cookie; 902 rx_desc->buf_phys_addr = phys_addr; 903 } 904 905 /* Decrement sent descriptors counter */ 906 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 907 struct mvneta_tx_queue *txq, 908 int sent_desc) 909 { 910 u32 val; 911 912 /* Only 255 TX descriptors can be updated at once */ 913 while (sent_desc > 0xff) { 914 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 915 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 916 sent_desc = sent_desc - 0xff; 917 } 918 919 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 920 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 921 } 922 923 /* Get number of TX descriptors already sent by HW */ 924 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 925 struct mvneta_tx_queue *txq) 926 { 927 u32 val; 928 int sent_desc; 929 930 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 931 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 932 MVNETA_TXQ_SENT_DESC_SHIFT; 933 934 return sent_desc; 935 } 936 937 /* Display more error info */ 938 static void mvneta_rx_error(struct mvneta_port *pp, 939 struct mvneta_rx_desc *rx_desc) 940 { 941 u32 status = rx_desc->status; 942 943 if (!mvneta_rxq_desc_is_first_last(status)) { 944 netdev_err(pp->dev, 945 "bad rx status %08x (buffer oversize), size=%d\n", 946 status, rx_desc->data_size); 947 return; 948 } 949 950 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 951 case MVNETA_RXD_ERR_CRC: 952 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 953 status, rx_desc->data_size); 954 break; 955 case MVNETA_RXD_ERR_OVERRUN: 956 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 957 status, rx_desc->data_size); 958 break; 959 case MVNETA_RXD_ERR_LEN: 960 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 961 status, rx_desc->data_size); 962 break; 963 case MVNETA_RXD_ERR_RESOURCE: 964 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 965 status, rx_desc->data_size); 966 break; 967 } 968 } 969 970 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp, 971 int rxq) 972 { 973 return &pp->rxqs[rxq]; 974 } 975 976 977 /* Drop packets received by the RXQ and free buffers */ 978 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 979 struct mvneta_rx_queue *rxq) 980 { 981 int rx_done; 982 983 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 984 if (rx_done) 985 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 986 } 987 988 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 989 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 990 int num) 991 { 992 int i; 993 994 for (i = 0; i < num; i++) { 995 u32 addr; 996 997 /* U-Boot special: Fill in the rx buffer addresses */ 998 addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE); 999 mvneta_rx_desc_fill(rxq->descs + i, addr, addr); 1000 } 1001 1002 /* Add this number of RX descriptors as non occupied (ready to 1003 * get packets) 1004 */ 1005 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 1006 1007 return 0; 1008 } 1009 1010 /* Rx/Tx queue initialization/cleanup methods */ 1011 1012 /* Create a specified RX queue */ 1013 static int mvneta_rxq_init(struct mvneta_port *pp, 1014 struct mvneta_rx_queue *rxq) 1015 1016 { 1017 rxq->size = pp->rx_ring_size; 1018 1019 /* Allocate memory for RX descriptors */ 1020 rxq->descs_phys = (dma_addr_t)rxq->descs; 1021 if (rxq->descs == NULL) 1022 return -ENOMEM; 1023 1024 WARN_ON(rxq->descs != PTR_ALIGN(rxq->descs, ARCH_DMA_MINALIGN)); 1025 1026 rxq->last_desc = rxq->size - 1; 1027 1028 /* Set Rx descriptors queue starting address */ 1029 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 1030 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 1031 1032 /* Fill RXQ with buffers from RX pool */ 1033 mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE); 1034 mvneta_rxq_fill(pp, rxq, rxq->size); 1035 1036 return 0; 1037 } 1038 1039 /* Cleanup Rx queue */ 1040 static void mvneta_rxq_deinit(struct mvneta_port *pp, 1041 struct mvneta_rx_queue *rxq) 1042 { 1043 mvneta_rxq_drop_pkts(pp, rxq); 1044 1045 rxq->descs = NULL; 1046 rxq->last_desc = 0; 1047 rxq->next_desc_to_proc = 0; 1048 rxq->descs_phys = 0; 1049 } 1050 1051 /* Create and initialize a tx queue */ 1052 static int mvneta_txq_init(struct mvneta_port *pp, 1053 struct mvneta_tx_queue *txq) 1054 { 1055 txq->size = pp->tx_ring_size; 1056 1057 /* Allocate memory for TX descriptors */ 1058 txq->descs_phys = (dma_addr_t)txq->descs; 1059 if (txq->descs == NULL) 1060 return -ENOMEM; 1061 1062 WARN_ON(txq->descs != PTR_ALIGN(txq->descs, ARCH_DMA_MINALIGN)); 1063 1064 txq->last_desc = txq->size - 1; 1065 1066 /* Set maximum bandwidth for enabled TXQs */ 1067 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 1068 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 1069 1070 /* Set Tx descriptors queue starting address */ 1071 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 1072 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 1073 1074 return 0; 1075 } 1076 1077 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 1078 static void mvneta_txq_deinit(struct mvneta_port *pp, 1079 struct mvneta_tx_queue *txq) 1080 { 1081 txq->descs = NULL; 1082 txq->last_desc = 0; 1083 txq->next_desc_to_proc = 0; 1084 txq->descs_phys = 0; 1085 1086 /* Set minimum bandwidth for disabled TXQs */ 1087 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 1088 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 1089 1090 /* Set Tx descriptors queue starting address and size */ 1091 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 1092 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 1093 } 1094 1095 /* Cleanup all Tx queues */ 1096 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 1097 { 1098 int queue; 1099 1100 for (queue = 0; queue < txq_number; queue++) 1101 mvneta_txq_deinit(pp, &pp->txqs[queue]); 1102 } 1103 1104 /* Cleanup all Rx queues */ 1105 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 1106 { 1107 int queue; 1108 1109 for (queue = 0; queue < rxq_number; queue++) 1110 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 1111 } 1112 1113 1114 /* Init all Rx queues */ 1115 static int mvneta_setup_rxqs(struct mvneta_port *pp) 1116 { 1117 int queue; 1118 1119 for (queue = 0; queue < rxq_number; queue++) { 1120 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 1121 if (err) { 1122 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 1123 __func__, queue); 1124 mvneta_cleanup_rxqs(pp); 1125 return err; 1126 } 1127 } 1128 1129 return 0; 1130 } 1131 1132 /* Init all tx queues */ 1133 static int mvneta_setup_txqs(struct mvneta_port *pp) 1134 { 1135 int queue; 1136 1137 for (queue = 0; queue < txq_number; queue++) { 1138 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 1139 if (err) { 1140 netdev_err(pp->dev, "%s: can't create txq=%d\n", 1141 __func__, queue); 1142 mvneta_cleanup_txqs(pp); 1143 return err; 1144 } 1145 } 1146 1147 return 0; 1148 } 1149 1150 static void mvneta_start_dev(struct mvneta_port *pp) 1151 { 1152 /* start the Rx/Tx activity */ 1153 mvneta_port_enable(pp); 1154 } 1155 1156 static void mvneta_adjust_link(struct udevice *dev) 1157 { 1158 struct mvneta_port *pp = dev_get_priv(dev); 1159 struct phy_device *phydev = pp->phydev; 1160 int status_change = 0; 1161 1162 if (mvneta_port_is_fixed_link(pp)) { 1163 debug("Using fixed link, skip link adjust\n"); 1164 return; 1165 } 1166 1167 if (phydev->link) { 1168 if ((pp->speed != phydev->speed) || 1169 (pp->duplex != phydev->duplex)) { 1170 u32 val; 1171 1172 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1173 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 1174 MVNETA_GMAC_CONFIG_GMII_SPEED | 1175 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 1176 MVNETA_GMAC_AN_SPEED_EN | 1177 MVNETA_GMAC_AN_DUPLEX_EN); 1178 1179 if (phydev->duplex) 1180 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 1181 1182 if (phydev->speed == SPEED_1000) 1183 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 1184 else 1185 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 1186 1187 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1188 1189 pp->duplex = phydev->duplex; 1190 pp->speed = phydev->speed; 1191 } 1192 } 1193 1194 if (phydev->link != pp->link) { 1195 if (!phydev->link) { 1196 pp->duplex = -1; 1197 pp->speed = 0; 1198 } 1199 1200 pp->link = phydev->link; 1201 status_change = 1; 1202 } 1203 1204 if (status_change) { 1205 if (phydev->link) { 1206 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1207 val |= (MVNETA_GMAC_FORCE_LINK_PASS | 1208 MVNETA_GMAC_FORCE_LINK_DOWN); 1209 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1210 mvneta_port_up(pp); 1211 } else { 1212 mvneta_port_down(pp); 1213 } 1214 } 1215 } 1216 1217 static int mvneta_open(struct udevice *dev) 1218 { 1219 struct mvneta_port *pp = dev_get_priv(dev); 1220 int ret; 1221 1222 ret = mvneta_setup_rxqs(pp); 1223 if (ret) 1224 return ret; 1225 1226 ret = mvneta_setup_txqs(pp); 1227 if (ret) 1228 return ret; 1229 1230 mvneta_adjust_link(dev); 1231 1232 mvneta_start_dev(pp); 1233 1234 return 0; 1235 } 1236 1237 /* Initialize hw */ 1238 static int mvneta_init2(struct mvneta_port *pp) 1239 { 1240 int queue; 1241 1242 /* Disable port */ 1243 mvneta_port_disable(pp); 1244 1245 /* Set port default values */ 1246 mvneta_defaults_set(pp); 1247 1248 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue), 1249 GFP_KERNEL); 1250 if (!pp->txqs) 1251 return -ENOMEM; 1252 1253 /* U-Boot special: use preallocated area */ 1254 pp->txqs[0].descs = buffer_loc.tx_descs; 1255 1256 /* Initialize TX descriptor rings */ 1257 for (queue = 0; queue < txq_number; queue++) { 1258 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1259 txq->id = queue; 1260 txq->size = pp->tx_ring_size; 1261 } 1262 1263 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue), 1264 GFP_KERNEL); 1265 if (!pp->rxqs) { 1266 kfree(pp->txqs); 1267 return -ENOMEM; 1268 } 1269 1270 /* U-Boot special: use preallocated area */ 1271 pp->rxqs[0].descs = buffer_loc.rx_descs; 1272 1273 /* Create Rx descriptor rings */ 1274 for (queue = 0; queue < rxq_number; queue++) { 1275 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1276 rxq->id = queue; 1277 rxq->size = pp->rx_ring_size; 1278 } 1279 1280 return 0; 1281 } 1282 1283 /* platform glue : initialize decoding windows */ 1284 1285 /* 1286 * Not like A380, in Armada3700, there are two layers of decode windows for GBE: 1287 * First layer is: GbE Address window that resides inside the GBE unit, 1288 * Second layer is: Fabric address window which is located in the NIC400 1289 * (South Fabric). 1290 * To simplify the address decode configuration for Armada3700, we bypass the 1291 * first layer of GBE decode window by setting the first window to 4GB. 1292 */ 1293 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp) 1294 { 1295 /* 1296 * Set window size to 4GB, to bypass GBE address decode, leave the 1297 * work to MBUS decode window 1298 */ 1299 mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK); 1300 1301 /* Enable GBE address decode window 0 by set bit 0 to 0 */ 1302 clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE, 1303 MVNETA_BASE_ADDR_ENABLE_BIT); 1304 1305 /* Set GBE address decode window 0 to full Access (read or write) */ 1306 setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT, 1307 MVNETA_PORT_ACCESS_PROTECT_WIN0_RW); 1308 } 1309 1310 static void mvneta_conf_mbus_windows(struct mvneta_port *pp) 1311 { 1312 const struct mbus_dram_target_info *dram; 1313 u32 win_enable; 1314 u32 win_protect; 1315 int i; 1316 1317 dram = mvebu_mbus_dram_info(); 1318 for (i = 0; i < 6; i++) { 1319 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1320 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1321 1322 if (i < 4) 1323 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1324 } 1325 1326 win_enable = 0x3f; 1327 win_protect = 0; 1328 1329 for (i = 0; i < dram->num_cs; i++) { 1330 const struct mbus_dram_window *cs = dram->cs + i; 1331 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 1332 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 1333 1334 mvreg_write(pp, MVNETA_WIN_SIZE(i), 1335 (cs->size - 1) & 0xffff0000); 1336 1337 win_enable &= ~(1 << i); 1338 win_protect |= 3 << (2 * i); 1339 } 1340 1341 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1342 } 1343 1344 /* Power up the port */ 1345 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 1346 { 1347 u32 ctrl; 1348 1349 /* MAC Cause register should be cleared */ 1350 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 1351 1352 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1353 1354 /* Even though it might look weird, when we're configured in 1355 * SGMII or QSGMII mode, the RGMII bit needs to be set. 1356 */ 1357 switch (phy_mode) { 1358 case PHY_INTERFACE_MODE_QSGMII: 1359 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 1360 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 1361 break; 1362 case PHY_INTERFACE_MODE_SGMII: 1363 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 1364 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 1365 break; 1366 case PHY_INTERFACE_MODE_RGMII: 1367 case PHY_INTERFACE_MODE_RGMII_ID: 1368 ctrl |= MVNETA_GMAC2_PORT_RGMII; 1369 break; 1370 default: 1371 return -EINVAL; 1372 } 1373 1374 /* Cancel Port Reset */ 1375 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 1376 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 1377 1378 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 1379 MVNETA_GMAC2_PORT_RESET) != 0) 1380 continue; 1381 1382 return 0; 1383 } 1384 1385 /* Device initialization routine */ 1386 static int mvneta_init(struct udevice *dev) 1387 { 1388 struct eth_pdata *pdata = dev_get_platdata(dev); 1389 struct mvneta_port *pp = dev_get_priv(dev); 1390 int err; 1391 1392 pp->tx_ring_size = MVNETA_MAX_TXD; 1393 pp->rx_ring_size = MVNETA_MAX_RXD; 1394 1395 err = mvneta_init2(pp); 1396 if (err < 0) { 1397 dev_err(&pdev->dev, "can't init eth hal\n"); 1398 return err; 1399 } 1400 1401 mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def); 1402 1403 err = mvneta_port_power_up(pp, pp->phy_interface); 1404 if (err < 0) { 1405 dev_err(&pdev->dev, "can't power up port\n"); 1406 return err; 1407 } 1408 1409 /* Call open() now as it needs to be done before runing send() */ 1410 mvneta_open(dev); 1411 1412 return 0; 1413 } 1414 1415 /* U-Boot only functions follow here */ 1416 1417 /* SMI / MDIO functions */ 1418 1419 static int smi_wait_ready(struct mvneta_port *pp) 1420 { 1421 u32 timeout = MVNETA_SMI_TIMEOUT; 1422 u32 smi_reg; 1423 1424 /* wait till the SMI is not busy */ 1425 do { 1426 /* read smi register */ 1427 smi_reg = mvreg_read(pp, MVNETA_SMI); 1428 if (timeout-- == 0) { 1429 printf("Error: SMI busy timeout\n"); 1430 return -EFAULT; 1431 } 1432 } while (smi_reg & MVNETA_SMI_BUSY); 1433 1434 return 0; 1435 } 1436 1437 /* 1438 * mvneta_mdio_read - miiphy_read callback function. 1439 * 1440 * Returns 16bit phy register value, or 0xffff on error 1441 */ 1442 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) 1443 { 1444 struct mvneta_port *pp = bus->priv; 1445 u32 smi_reg; 1446 u32 timeout; 1447 1448 /* check parameters */ 1449 if (addr > MVNETA_PHY_ADDR_MASK) { 1450 printf("Error: Invalid PHY address %d\n", addr); 1451 return -EFAULT; 1452 } 1453 1454 if (reg > MVNETA_PHY_REG_MASK) { 1455 printf("Err: Invalid register offset %d\n", reg); 1456 return -EFAULT; 1457 } 1458 1459 /* wait till the SMI is not busy */ 1460 if (smi_wait_ready(pp) < 0) 1461 return -EFAULT; 1462 1463 /* fill the phy address and regiser offset and read opcode */ 1464 smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS) 1465 | (reg << MVNETA_SMI_REG_ADDR_OFFS) 1466 | MVNETA_SMI_OPCODE_READ; 1467 1468 /* write the smi register */ 1469 mvreg_write(pp, MVNETA_SMI, smi_reg); 1470 1471 /* wait till read value is ready */ 1472 timeout = MVNETA_SMI_TIMEOUT; 1473 1474 do { 1475 /* read smi register */ 1476 smi_reg = mvreg_read(pp, MVNETA_SMI); 1477 if (timeout-- == 0) { 1478 printf("Err: SMI read ready timeout\n"); 1479 return -EFAULT; 1480 } 1481 } while (!(smi_reg & MVNETA_SMI_READ_VALID)); 1482 1483 /* Wait for the data to update in the SMI register */ 1484 for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++) 1485 ; 1486 1487 return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK; 1488 } 1489 1490 /* 1491 * mvneta_mdio_write - miiphy_write callback function. 1492 * 1493 * Returns 0 if write succeed, -EINVAL on bad parameters 1494 * -ETIME on timeout 1495 */ 1496 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, 1497 u16 value) 1498 { 1499 struct mvneta_port *pp = bus->priv; 1500 u32 smi_reg; 1501 1502 /* check parameters */ 1503 if (addr > MVNETA_PHY_ADDR_MASK) { 1504 printf("Error: Invalid PHY address %d\n", addr); 1505 return -EFAULT; 1506 } 1507 1508 if (reg > MVNETA_PHY_REG_MASK) { 1509 printf("Err: Invalid register offset %d\n", reg); 1510 return -EFAULT; 1511 } 1512 1513 /* wait till the SMI is not busy */ 1514 if (smi_wait_ready(pp) < 0) 1515 return -EFAULT; 1516 1517 /* fill the phy addr and reg offset and write opcode and data */ 1518 smi_reg = value << MVNETA_SMI_DATA_OFFS; 1519 smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS) 1520 | (reg << MVNETA_SMI_REG_ADDR_OFFS); 1521 smi_reg &= ~MVNETA_SMI_OPCODE_READ; 1522 1523 /* write the smi register */ 1524 mvreg_write(pp, MVNETA_SMI, smi_reg); 1525 1526 return 0; 1527 } 1528 1529 static int mvneta_start(struct udevice *dev) 1530 { 1531 struct mvneta_port *pp = dev_get_priv(dev); 1532 struct phy_device *phydev; 1533 1534 mvneta_port_power_up(pp, pp->phy_interface); 1535 1536 if (!pp->init || pp->link == 0) { 1537 if (mvneta_port_is_fixed_link(pp)) { 1538 u32 val; 1539 1540 pp->init = 1; 1541 pp->link = 1; 1542 mvneta_init(dev); 1543 1544 val = MVNETA_GMAC_FORCE_LINK_UP | 1545 MVNETA_GMAC_IB_BYPASS_AN_EN | 1546 MVNETA_GMAC_SET_FC_EN | 1547 MVNETA_GMAC_ADVERT_FC_EN | 1548 MVNETA_GMAC_SAMPLE_TX_CFG_EN; 1549 1550 if (pp->duplex) 1551 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 1552 1553 if (pp->speed == SPEED_1000) 1554 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 1555 else if (pp->speed == SPEED_100) 1556 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 1557 1558 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1559 } else { 1560 /* Set phy address of the port */ 1561 mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr); 1562 1563 phydev = phy_connect(pp->bus, pp->phyaddr, dev, 1564 pp->phy_interface); 1565 if (!phydev) { 1566 printf("phy_connect failed\n"); 1567 return -ENODEV; 1568 } 1569 1570 pp->phydev = phydev; 1571 phy_config(phydev); 1572 phy_startup(phydev); 1573 if (!phydev->link) { 1574 printf("%s: No link.\n", phydev->dev->name); 1575 return -1; 1576 } 1577 1578 /* Full init on first call */ 1579 mvneta_init(dev); 1580 pp->init = 1; 1581 return 0; 1582 } 1583 } 1584 1585 /* Upon all following calls, this is enough */ 1586 mvneta_port_up(pp); 1587 mvneta_port_enable(pp); 1588 1589 return 0; 1590 } 1591 1592 static int mvneta_send(struct udevice *dev, void *packet, int length) 1593 { 1594 struct mvneta_port *pp = dev_get_priv(dev); 1595 struct mvneta_tx_queue *txq = &pp->txqs[0]; 1596 struct mvneta_tx_desc *tx_desc; 1597 int sent_desc; 1598 u32 timeout = 0; 1599 1600 /* Get a descriptor for the first part of the packet */ 1601 tx_desc = mvneta_txq_next_desc_get(txq); 1602 1603 tx_desc->buf_phys_addr = (u32)(uintptr_t)packet; 1604 tx_desc->data_size = length; 1605 flush_dcache_range((ulong)packet, 1606 (ulong)packet + ALIGN(length, PKTALIGN)); 1607 1608 /* First and Last descriptor */ 1609 tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC; 1610 mvneta_txq_pend_desc_add(pp, txq, 1); 1611 1612 /* Wait for packet to be sent (queue might help with speed here) */ 1613 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1614 while (!sent_desc) { 1615 if (timeout++ > 10000) { 1616 printf("timeout: packet not sent\n"); 1617 return -1; 1618 } 1619 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1620 } 1621 1622 /* txDone has increased - hw sent packet */ 1623 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1624 1625 return 0; 1626 } 1627 1628 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp) 1629 { 1630 struct mvneta_port *pp = dev_get_priv(dev); 1631 int rx_done; 1632 struct mvneta_rx_queue *rxq; 1633 int rx_bytes = 0; 1634 1635 /* get rx queue */ 1636 rxq = mvneta_rxq_handle_get(pp, rxq_def); 1637 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1638 1639 if (rx_done) { 1640 struct mvneta_rx_desc *rx_desc; 1641 unsigned char *data; 1642 u32 rx_status; 1643 1644 /* 1645 * No cache invalidation needed here, since the desc's are 1646 * located in a uncached memory region 1647 */ 1648 rx_desc = mvneta_rxq_next_desc_get(rxq); 1649 1650 rx_status = rx_desc->status; 1651 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1652 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1653 mvneta_rx_error(pp, rx_desc); 1654 /* leave the descriptor untouched */ 1655 return -EIO; 1656 } 1657 1658 /* 2 bytes for marvell header. 4 bytes for crc */ 1659 rx_bytes = rx_desc->data_size - 6; 1660 1661 /* give packet to stack - skip on first 2 bytes */ 1662 data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2; 1663 /* 1664 * No cache invalidation needed here, since the rx_buffer's are 1665 * located in a uncached memory region 1666 */ 1667 *packetp = data; 1668 1669 /* 1670 * Only mark one descriptor as free 1671 * since only one was processed 1672 */ 1673 mvneta_rxq_desc_num_update(pp, rxq, 1, 1); 1674 } 1675 1676 return rx_bytes; 1677 } 1678 1679 static int mvneta_probe(struct udevice *dev) 1680 { 1681 struct eth_pdata *pdata = dev_get_platdata(dev); 1682 struct mvneta_port *pp = dev_get_priv(dev); 1683 void *blob = (void *)gd->fdt_blob; 1684 int node = dev_of_offset(dev); 1685 struct mii_dev *bus; 1686 unsigned long addr; 1687 void *bd_space; 1688 int ret; 1689 int fl_node; 1690 1691 /* 1692 * Allocate buffer area for descs and rx_buffers. This is only 1693 * done once for all interfaces. As only one interface can 1694 * be active. Make this area DMA safe by disabling the D-cache 1695 */ 1696 if (!buffer_loc.tx_descs) { 1697 u32 size; 1698 1699 /* Align buffer area for descs and rx_buffers to 1MiB */ 1700 bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE); 1701 flush_dcache_range((ulong)bd_space, (ulong)bd_space + BD_SPACE); 1702 mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE, 1703 DCACHE_OFF); 1704 buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space; 1705 size = roundup(MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc), 1706 ARCH_DMA_MINALIGN); 1707 memset(buffer_loc.tx_descs, 0, size); 1708 buffer_loc.rx_descs = (struct mvneta_rx_desc *) 1709 ((phys_addr_t)bd_space + size); 1710 size += roundup(MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc), 1711 ARCH_DMA_MINALIGN); 1712 buffer_loc.rx_buffers = (phys_addr_t)(bd_space + size); 1713 } 1714 1715 pp->base = (void __iomem *)pdata->iobase; 1716 1717 /* Configure MBUS address windows */ 1718 if (device_is_compatible(dev, "marvell,armada-3700-neta")) 1719 mvneta_bypass_mbus_windows(pp); 1720 else 1721 mvneta_conf_mbus_windows(pp); 1722 1723 /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */ 1724 pp->phy_interface = pdata->phy_interface; 1725 1726 /* fetch 'fixed-link' property from 'neta' node */ 1727 fl_node = fdt_subnode_offset(blob, node, "fixed-link"); 1728 if (fl_node != -FDT_ERR_NOTFOUND) { 1729 /* set phy_addr to invalid value for fixed link */ 1730 pp->phyaddr = PHY_MAX_ADDR + 1; 1731 pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex"); 1732 pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0); 1733 } else { 1734 /* Now read phyaddr from DT */ 1735 addr = fdtdec_get_int(blob, node, "phy", 0); 1736 addr = fdt_node_offset_by_phandle(blob, addr); 1737 pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0); 1738 } 1739 1740 bus = mdio_alloc(); 1741 if (!bus) { 1742 printf("Failed to allocate MDIO bus\n"); 1743 return -ENOMEM; 1744 } 1745 1746 bus->read = mvneta_mdio_read; 1747 bus->write = mvneta_mdio_write; 1748 snprintf(bus->name, sizeof(bus->name), dev->name); 1749 bus->priv = (void *)pp; 1750 pp->bus = bus; 1751 1752 ret = mdio_register(bus); 1753 if (ret) 1754 return ret; 1755 1756 #ifdef CONFIG_DM_GPIO 1757 gpio_request_by_name(dev, "phy-reset-gpios", 0, 1758 &pp->phy_reset_gpio, GPIOD_IS_OUT); 1759 1760 if (dm_gpio_is_valid(&pp->phy_reset_gpio)) { 1761 dm_gpio_set_value(&pp->phy_reset_gpio, 1); 1762 mdelay(10); 1763 dm_gpio_set_value(&pp->phy_reset_gpio, 0); 1764 } 1765 #endif 1766 1767 return board_network_enable(bus); 1768 } 1769 1770 static void mvneta_stop(struct udevice *dev) 1771 { 1772 struct mvneta_port *pp = dev_get_priv(dev); 1773 1774 mvneta_port_down(pp); 1775 mvneta_port_disable(pp); 1776 } 1777 1778 static const struct eth_ops mvneta_ops = { 1779 .start = mvneta_start, 1780 .send = mvneta_send, 1781 .recv = mvneta_recv, 1782 .stop = mvneta_stop, 1783 .write_hwaddr = mvneta_write_hwaddr, 1784 }; 1785 1786 static int mvneta_ofdata_to_platdata(struct udevice *dev) 1787 { 1788 struct eth_pdata *pdata = dev_get_platdata(dev); 1789 const char *phy_mode; 1790 1791 pdata->iobase = devfdt_get_addr(dev); 1792 1793 /* Get phy-mode / phy_interface from DT */ 1794 pdata->phy_interface = -1; 1795 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", 1796 NULL); 1797 if (phy_mode) 1798 pdata->phy_interface = phy_get_interface_by_name(phy_mode); 1799 if (pdata->phy_interface == -1) { 1800 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); 1801 return -EINVAL; 1802 } 1803 1804 return 0; 1805 } 1806 1807 static const struct udevice_id mvneta_ids[] = { 1808 { .compatible = "marvell,armada-370-neta" }, 1809 { .compatible = "marvell,armada-xp-neta" }, 1810 { .compatible = "marvell,armada-3700-neta" }, 1811 { } 1812 }; 1813 1814 U_BOOT_DRIVER(mvneta) = { 1815 .name = "mvneta", 1816 .id = UCLASS_ETH, 1817 .of_match = mvneta_ids, 1818 .ofdata_to_platdata = mvneta_ofdata_to_platdata, 1819 .probe = mvneta_probe, 1820 .ops = &mvneta_ops, 1821 .priv_auto_alloc_size = sizeof(struct mvneta_port), 1822 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 1823 }; 1824