xref: /openbmc/u-boot/drivers/net/mvneta.c (revision 52df705c9669e8933c625bdbba204b448bbecc22)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * U-Boot version:
5  * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
6  *
7  * Based on the Linux version which is:
8  * Copyright (C) 2012 Marvell
9  *
10  * Rami Rosen <rosenr@marvell.com>
11  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
12  *
13  * SPDX-License-Identifier:	GPL-2.0
14  */
15 
16 #include <common.h>
17 #include <dm.h>
18 #include <net.h>
19 #include <netdev.h>
20 #include <config.h>
21 #include <malloc.h>
22 #include <asm/io.h>
23 #include <linux/errno.h>
24 #include <phy.h>
25 #include <miiphy.h>
26 #include <watchdog.h>
27 #include <asm/arch/cpu.h>
28 #include <asm/arch/soc.h>
29 #include <linux/compat.h>
30 #include <linux/mbus.h>
31 
32 DECLARE_GLOBAL_DATA_PTR;
33 
34 #if !defined(CONFIG_PHYLIB)
35 # error Marvell mvneta requires PHYLIB
36 #endif
37 
38 /* Some linux -> U-Boot compatibility stuff */
39 #define netdev_err(dev, fmt, args...)		\
40 	printf(fmt, ##args)
41 #define netdev_warn(dev, fmt, args...)		\
42 	printf(fmt, ##args)
43 #define netdev_info(dev, fmt, args...)		\
44 	printf(fmt, ##args)
45 
46 #define CONFIG_NR_CPUS		1
47 #define ETH_HLEN		14	/* Total octets in header */
48 
49 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
50 #define WRAP			(2 + ETH_HLEN + 4 + 32)
51 #define MTU			1500
52 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
53 
54 #define MVNETA_SMI_TIMEOUT			10000
55 
56 /* Registers */
57 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
58 #define	     MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
59 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
60 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
61 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
62 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
63 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
64 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
65 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
66 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
67 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
68 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
69 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
70 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
71 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
72 #define MVNETA_PORT_RX_RESET                    0x1cc0
73 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
74 #define MVNETA_PHY_ADDR                         0x2000
75 #define      MVNETA_PHY_ADDR_MASK               0x1f
76 #define MVNETA_SMI                              0x2004
77 #define      MVNETA_PHY_REG_MASK                0x1f
78 /* SMI register fields */
79 #define     MVNETA_SMI_DATA_OFFS		0	/* Data */
80 #define     MVNETA_SMI_DATA_MASK		(0xffff << MVNETA_SMI_DATA_OFFS)
81 #define     MVNETA_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
82 #define     MVNETA_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
83 #define     MVNETA_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
84 #define     MVNETA_SMI_OPCODE_READ		(1 << MVNETA_SMI_OPCODE_OFFS)
85 #define     MVNETA_SMI_READ_VALID		(1 << 27)	/* Read Valid */
86 #define     MVNETA_SMI_BUSY			(1 << 28)	/* Busy */
87 #define MVNETA_MBUS_RETRY                       0x2010
88 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
89 #define MVNETA_UNIT_CONTROL                     0x20B0
90 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
91 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
92 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
93 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
94 #define MVNETA_WIN_SIZE_MASK			(0xffff0000)
95 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
96 #define      MVNETA_BASE_ADDR_ENABLE_BIT	0x1
97 #define MVNETA_PORT_ACCESS_PROTECT              0x2294
98 #define      MVNETA_PORT_ACCESS_PROTECT_WIN0_RW	0x3
99 #define MVNETA_PORT_CONFIG                      0x2400
100 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
101 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
102 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
103 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
104 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
105 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
106 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
107 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
108 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
109 						 MVNETA_DEF_RXQ_ARP(q)	 | \
110 						 MVNETA_DEF_RXQ_TCP(q)	 | \
111 						 MVNETA_DEF_RXQ_UDP(q)	 | \
112 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
113 						 MVNETA_TX_UNSET_ERR_SUM | \
114 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
115 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
116 #define MVNETA_MAC_ADDR_LOW                      0x2414
117 #define MVNETA_MAC_ADDR_HIGH                     0x2418
118 #define MVNETA_SDMA_CONFIG                       0x241c
119 #define      MVNETA_SDMA_BRST_SIZE_16            4
120 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
121 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
122 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
123 #define      MVNETA_DESC_SWAP                    BIT(6)
124 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
125 #define MVNETA_PORT_STATUS                       0x2444
126 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
127 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
128 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
129 #define MVNETA_SERDES_CFG			 0x24A0
130 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
131 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
132 #define MVNETA_TYPE_PRIO                         0x24bc
133 #define      MVNETA_FORCE_UNI                    BIT(21)
134 #define MVNETA_TXQ_CMD_1                         0x24e4
135 #define MVNETA_TXQ_CMD                           0x2448
136 #define      MVNETA_TXQ_DISABLE_SHIFT            8
137 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
138 #define MVNETA_ACC_MODE                          0x2500
139 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
140 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
141 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
142 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
143 
144 /* Exception Interrupt Port/Queue Cause register */
145 
146 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
147 #define MVNETA_INTR_NEW_MASK                     0x25a4
148 
149 /* bits  0..7  = TXQ SENT, one bit per queue.
150  * bits  8..15 = RXQ OCCUP, one bit per queue.
151  * bits 16..23 = RXQ FREE, one bit per queue.
152  * bit  29 = OLD_REG_SUM, see old reg ?
153  * bit  30 = TX_ERR_SUM, one bit for 4 ports
154  * bit  31 = MISC_SUM,   one bit for 4 ports
155  */
156 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
157 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
158 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
159 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
160 
161 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
162 #define MVNETA_INTR_OLD_MASK                     0x25ac
163 
164 /* Data Path Port/Queue Cause Register */
165 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
166 #define MVNETA_INTR_MISC_MASK                    0x25b4
167 #define MVNETA_INTR_ENABLE                       0x25b8
168 
169 #define MVNETA_RXQ_CMD                           0x2680
170 #define      MVNETA_RXQ_DISABLE_SHIFT            8
171 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
172 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
173 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
174 #define MVNETA_GMAC_CTRL_0                       0x2c00
175 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
176 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
177 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
178 #define MVNETA_GMAC_CTRL_2                       0x2c08
179 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
180 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
181 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
182 #define MVNETA_GMAC_STATUS                       0x2c10
183 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
184 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
185 #define      MVNETA_GMAC_SPEED_100               BIT(2)
186 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
187 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
188 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
189 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
190 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
191 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
192 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
193 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
194 #define      MVNETA_GMAC_FORCE_LINK_UP           (BIT(0) | BIT(1))
195 #define      MVNETA_GMAC_IB_BYPASS_AN_EN         BIT(3)
196 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
197 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
198 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
199 #define      MVNETA_GMAC_SET_FC_EN               BIT(8)
200 #define      MVNETA_GMAC_ADVERT_FC_EN            BIT(9)
201 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
202 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
203 #define      MVNETA_GMAC_SAMPLE_TX_CFG_EN        BIT(15)
204 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
205 #define      MVNETA_MIB_LATE_COLLISION           0x7c
206 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
207 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
208 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
209 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
210 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
211 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
212 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
213 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
214 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
215 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
216 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
217 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
218 #define MVNETA_PORT_TX_RESET                     0x3cf0
219 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
220 #define MVNETA_TX_MTU                            0x3e0c
221 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
222 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
223 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
224 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
225 
226 /* Descriptor ring Macros */
227 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
228 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
229 
230 /* Various constants */
231 
232 /* Coalescing */
233 #define MVNETA_TXDONE_COAL_PKTS		16
234 #define MVNETA_RX_COAL_PKTS		32
235 #define MVNETA_RX_COAL_USEC		100
236 
237 /* The two bytes Marvell header. Either contains a special value used
238  * by Marvell switches when a specific hardware mode is enabled (not
239  * supported by this driver) or is filled automatically by zeroes on
240  * the RX side. Those two bytes being at the front of the Ethernet
241  * header, they allow to have the IP header aligned on a 4 bytes
242  * boundary automatically: the hardware skips those two bytes on its
243  * own.
244  */
245 #define MVNETA_MH_SIZE			2
246 
247 #define MVNETA_VLAN_TAG_LEN             4
248 
249 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
250 #define MVNETA_TX_CSUM_MAX_SIZE		9800
251 #define MVNETA_ACC_MODE_EXT		1
252 
253 /* Timeout constants */
254 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
255 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
256 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
257 
258 #define MVNETA_TX_MTU_MAX		0x3ffff
259 
260 /* Max number of Rx descriptors */
261 #define MVNETA_MAX_RXD 16
262 
263 /* Max number of Tx descriptors */
264 #define MVNETA_MAX_TXD 16
265 
266 /* descriptor aligned size */
267 #define MVNETA_DESC_ALIGNED_SIZE	32
268 
269 struct mvneta_port {
270 	void __iomem *base;
271 	struct mvneta_rx_queue *rxqs;
272 	struct mvneta_tx_queue *txqs;
273 
274 	u8 mcast_count[256];
275 	u16 tx_ring_size;
276 	u16 rx_ring_size;
277 
278 	phy_interface_t phy_interface;
279 	unsigned int link;
280 	unsigned int duplex;
281 	unsigned int speed;
282 
283 	int init;
284 	int phyaddr;
285 	struct phy_device *phydev;
286 	struct mii_dev *bus;
287 };
288 
289 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
290  * layout of the transmit and reception DMA descriptors, and their
291  * layout is therefore defined by the hardware design
292  */
293 
294 #define MVNETA_TX_L3_OFF_SHIFT	0
295 #define MVNETA_TX_IP_HLEN_SHIFT	8
296 #define MVNETA_TX_L4_UDP	BIT(16)
297 #define MVNETA_TX_L3_IP6	BIT(17)
298 #define MVNETA_TXD_IP_CSUM	BIT(18)
299 #define MVNETA_TXD_Z_PAD	BIT(19)
300 #define MVNETA_TXD_L_DESC	BIT(20)
301 #define MVNETA_TXD_F_DESC	BIT(21)
302 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
303 				 MVNETA_TXD_L_DESC | \
304 				 MVNETA_TXD_F_DESC)
305 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
306 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
307 
308 #define MVNETA_RXD_ERR_CRC		0x0
309 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
310 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
311 #define MVNETA_RXD_ERR_LEN		BIT(18)
312 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
313 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
314 #define MVNETA_RXD_L3_IP4		BIT(25)
315 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
316 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
317 
318 struct mvneta_tx_desc {
319 	u32  command;		/* Options used by HW for packet transmitting.*/
320 	u16  reserverd1;	/* csum_l4 (for future use)		*/
321 	u16  data_size;		/* Data size of transmitted packet in bytes */
322 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
323 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
324 	u32  reserved3[4];	/* Reserved - (for future use)		*/
325 };
326 
327 struct mvneta_rx_desc {
328 	u32  status;		/* Info about received packet		*/
329 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
330 	u16  data_size;		/* Size of received packet in bytes	*/
331 
332 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
333 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
334 
335 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
336 	u16  reserved3;		/* prefetch_cmd, for future use		*/
337 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
338 
339 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
340 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
341 };
342 
343 struct mvneta_tx_queue {
344 	/* Number of this TX queue, in the range 0-7 */
345 	u8 id;
346 
347 	/* Number of TX DMA descriptors in the descriptor ring */
348 	int size;
349 
350 	/* Index of last TX DMA descriptor that was inserted */
351 	int txq_put_index;
352 
353 	/* Index of the TX DMA descriptor to be cleaned up */
354 	int txq_get_index;
355 
356 	/* Virtual address of the TX DMA descriptors array */
357 	struct mvneta_tx_desc *descs;
358 
359 	/* DMA address of the TX DMA descriptors array */
360 	dma_addr_t descs_phys;
361 
362 	/* Index of the last TX DMA descriptor */
363 	int last_desc;
364 
365 	/* Index of the next TX DMA descriptor to process */
366 	int next_desc_to_proc;
367 };
368 
369 struct mvneta_rx_queue {
370 	/* rx queue number, in the range 0-7 */
371 	u8 id;
372 
373 	/* num of rx descriptors in the rx descriptor ring */
374 	int size;
375 
376 	/* Virtual address of the RX DMA descriptors array */
377 	struct mvneta_rx_desc *descs;
378 
379 	/* DMA address of the RX DMA descriptors array */
380 	dma_addr_t descs_phys;
381 
382 	/* Index of the last RX DMA descriptor */
383 	int last_desc;
384 
385 	/* Index of the next RX DMA descriptor to process */
386 	int next_desc_to_proc;
387 };
388 
389 /* U-Boot doesn't use the queues, so set the number to 1 */
390 static int rxq_number = 1;
391 static int txq_number = 1;
392 static int rxq_def;
393 
394 struct buffer_location {
395 	struct mvneta_tx_desc *tx_descs;
396 	struct mvneta_rx_desc *rx_descs;
397 	u32 rx_buffers;
398 };
399 
400 /*
401  * All 4 interfaces use the same global buffer, since only one interface
402  * can be enabled at once
403  */
404 static struct buffer_location buffer_loc;
405 
406 /*
407  * Page table entries are set to 1MB, or multiples of 1MB
408  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
409  */
410 #define BD_SPACE	(1 << 20)
411 
412 /*
413  * Dummy implementation that can be overwritten by a board
414  * specific function
415  */
416 __weak int board_network_enable(struct mii_dev *bus)
417 {
418 	return 0;
419 }
420 
421 /* Utility/helper methods */
422 
423 /* Write helper method */
424 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
425 {
426 	writel(data, pp->base + offset);
427 }
428 
429 /* Read helper method */
430 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
431 {
432 	return readl(pp->base + offset);
433 }
434 
435 /* Clear all MIB counters */
436 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
437 {
438 	int i;
439 
440 	/* Perform dummy reads from MIB counters */
441 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
442 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
443 }
444 
445 /* Rx descriptors helper methods */
446 
447 /* Checks whether the RX descriptor having this status is both the first
448  * and the last descriptor for the RX packet. Each RX packet is currently
449  * received through a single RX descriptor, so not having each RX
450  * descriptor with its first and last bits set is an error
451  */
452 static int mvneta_rxq_desc_is_first_last(u32 status)
453 {
454 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
455 		MVNETA_RXD_FIRST_LAST_DESC;
456 }
457 
458 /* Add number of descriptors ready to receive new packets */
459 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
460 					  struct mvneta_rx_queue *rxq,
461 					  int ndescs)
462 {
463 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
464 	 * be added at once
465 	 */
466 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
467 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
468 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
469 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
470 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
471 	}
472 
473 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
474 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
475 }
476 
477 /* Get number of RX descriptors occupied by received packets */
478 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
479 					struct mvneta_rx_queue *rxq)
480 {
481 	u32 val;
482 
483 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
484 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
485 }
486 
487 /* Update num of rx desc called upon return from rx path or
488  * from mvneta_rxq_drop_pkts().
489  */
490 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
491 				       struct mvneta_rx_queue *rxq,
492 				       int rx_done, int rx_filled)
493 {
494 	u32 val;
495 
496 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
497 		val = rx_done |
498 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
499 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
500 		return;
501 	}
502 
503 	/* Only 255 descriptors can be added at once */
504 	while ((rx_done > 0) || (rx_filled > 0)) {
505 		if (rx_done <= 0xff) {
506 			val = rx_done;
507 			rx_done = 0;
508 		} else {
509 			val = 0xff;
510 			rx_done -= 0xff;
511 		}
512 		if (rx_filled <= 0xff) {
513 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
514 			rx_filled = 0;
515 		} else {
516 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
517 			rx_filled -= 0xff;
518 		}
519 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
520 	}
521 }
522 
523 /* Get pointer to next RX descriptor to be processed by SW */
524 static struct mvneta_rx_desc *
525 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
526 {
527 	int rx_desc = rxq->next_desc_to_proc;
528 
529 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
530 	return rxq->descs + rx_desc;
531 }
532 
533 /* Tx descriptors helper methods */
534 
535 /* Update HW with number of TX descriptors to be sent */
536 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
537 				     struct mvneta_tx_queue *txq,
538 				     int pend_desc)
539 {
540 	u32 val;
541 
542 	/* Only 255 descriptors can be added at once ; Assume caller
543 	 * process TX descriptors in quanta less than 256
544 	 */
545 	val = pend_desc;
546 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
547 }
548 
549 /* Get pointer to next TX descriptor to be processed (send) by HW */
550 static struct mvneta_tx_desc *
551 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
552 {
553 	int tx_desc = txq->next_desc_to_proc;
554 
555 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
556 	return txq->descs + tx_desc;
557 }
558 
559 /* Set rxq buf size */
560 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
561 				    struct mvneta_rx_queue *rxq,
562 				    int buf_size)
563 {
564 	u32 val;
565 
566 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
567 
568 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
569 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
570 
571 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
572 }
573 
574 static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
575 {
576 	/* phy_addr is set to invalid value for fixed link */
577 	return pp->phyaddr > PHY_MAX_ADDR;
578 }
579 
580 
581 /* Start the Ethernet port RX and TX activity */
582 static void mvneta_port_up(struct mvneta_port *pp)
583 {
584 	int queue;
585 	u32 q_map;
586 
587 	/* Enable all initialized TXs. */
588 	mvneta_mib_counters_clear(pp);
589 	q_map = 0;
590 	for (queue = 0; queue < txq_number; queue++) {
591 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
592 		if (txq->descs != NULL)
593 			q_map |= (1 << queue);
594 	}
595 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
596 
597 	/* Enable all initialized RXQs. */
598 	q_map = 0;
599 	for (queue = 0; queue < rxq_number; queue++) {
600 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
601 		if (rxq->descs != NULL)
602 			q_map |= (1 << queue);
603 	}
604 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
605 }
606 
607 /* Stop the Ethernet port activity */
608 static void mvneta_port_down(struct mvneta_port *pp)
609 {
610 	u32 val;
611 	int count;
612 
613 	/* Stop Rx port activity. Check port Rx activity. */
614 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
615 
616 	/* Issue stop command for active channels only */
617 	if (val != 0)
618 		mvreg_write(pp, MVNETA_RXQ_CMD,
619 			    val << MVNETA_RXQ_DISABLE_SHIFT);
620 
621 	/* Wait for all Rx activity to terminate. */
622 	count = 0;
623 	do {
624 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
625 			netdev_warn(pp->dev,
626 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
627 				    val);
628 			break;
629 		}
630 		mdelay(1);
631 
632 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
633 	} while (val & 0xff);
634 
635 	/* Stop Tx port activity. Check port Tx activity. Issue stop
636 	 * command for active channels only
637 	 */
638 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
639 
640 	if (val != 0)
641 		mvreg_write(pp, MVNETA_TXQ_CMD,
642 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
643 
644 	/* Wait for all Tx activity to terminate. */
645 	count = 0;
646 	do {
647 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
648 			netdev_warn(pp->dev,
649 				    "TIMEOUT for TX stopped status=0x%08x\n",
650 				    val);
651 			break;
652 		}
653 		mdelay(1);
654 
655 		/* Check TX Command reg that all Txqs are stopped */
656 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
657 
658 	} while (val & 0xff);
659 
660 	/* Double check to verify that TX FIFO is empty */
661 	count = 0;
662 	do {
663 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
664 			netdev_warn(pp->dev,
665 				    "TX FIFO empty timeout status=0x08%x\n",
666 				    val);
667 			break;
668 		}
669 		mdelay(1);
670 
671 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
672 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
673 		 (val & MVNETA_TX_IN_PRGRS));
674 
675 	udelay(200);
676 }
677 
678 /* Enable the port by setting the port enable bit of the MAC control register */
679 static void mvneta_port_enable(struct mvneta_port *pp)
680 {
681 	u32 val;
682 
683 	/* Enable port */
684 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
685 	val |= MVNETA_GMAC0_PORT_ENABLE;
686 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
687 }
688 
689 /* Disable the port and wait for about 200 usec before retuning */
690 static void mvneta_port_disable(struct mvneta_port *pp)
691 {
692 	u32 val;
693 
694 	/* Reset the Enable bit in the Serial Control Register */
695 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
696 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
697 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
698 
699 	udelay(200);
700 }
701 
702 /* Multicast tables methods */
703 
704 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
705 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
706 {
707 	int offset;
708 	u32 val;
709 
710 	if (queue == -1) {
711 		val = 0;
712 	} else {
713 		val = 0x1 | (queue << 1);
714 		val |= (val << 24) | (val << 16) | (val << 8);
715 	}
716 
717 	for (offset = 0; offset <= 0xc; offset += 4)
718 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
719 }
720 
721 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
722 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
723 {
724 	int offset;
725 	u32 val;
726 
727 	if (queue == -1) {
728 		val = 0;
729 	} else {
730 		val = 0x1 | (queue << 1);
731 		val |= (val << 24) | (val << 16) | (val << 8);
732 	}
733 
734 	for (offset = 0; offset <= 0xfc; offset += 4)
735 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
736 }
737 
738 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
739 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
740 {
741 	int offset;
742 	u32 val;
743 
744 	if (queue == -1) {
745 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
746 		val = 0;
747 	} else {
748 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
749 		val = 0x1 | (queue << 1);
750 		val |= (val << 24) | (val << 16) | (val << 8);
751 	}
752 
753 	for (offset = 0; offset <= 0xfc; offset += 4)
754 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
755 }
756 
757 /* This method sets defaults to the NETA port:
758  *	Clears interrupt Cause and Mask registers.
759  *	Clears all MAC tables.
760  *	Sets defaults to all registers.
761  *	Resets RX and TX descriptor rings.
762  *	Resets PHY.
763  * This method can be called after mvneta_port_down() to return the port
764  *	settings to defaults.
765  */
766 static void mvneta_defaults_set(struct mvneta_port *pp)
767 {
768 	int cpu;
769 	int queue;
770 	u32 val;
771 
772 	/* Clear all Cause registers */
773 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
774 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
775 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
776 
777 	/* Mask all interrupts */
778 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
779 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
780 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
781 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
782 
783 	/* Enable MBUS Retry bit16 */
784 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
785 
786 	/* Set CPU queue access map - all CPUs have access to all RX
787 	 * queues and to all TX queues
788 	 */
789 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
790 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
791 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
792 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
793 
794 	/* Reset RX and TX DMAs */
795 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
796 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
797 
798 	/* Disable Legacy WRR, Disable EJP, Release from reset */
799 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
800 	for (queue = 0; queue < txq_number; queue++) {
801 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
802 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
803 	}
804 
805 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
806 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
807 
808 	/* Set Port Acceleration Mode */
809 	val = MVNETA_ACC_MODE_EXT;
810 	mvreg_write(pp, MVNETA_ACC_MODE, val);
811 
812 	/* Update val of portCfg register accordingly with all RxQueue types */
813 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
814 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
815 
816 	val = 0;
817 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
818 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
819 
820 	/* Build PORT_SDMA_CONFIG_REG */
821 	val = 0;
822 
823 	/* Default burst size */
824 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
825 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
826 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
827 
828 	/* Assign port SDMA configuration */
829 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
830 
831 	/* Enable PHY polling in hardware if not in fixed-link mode */
832 	if (!mvneta_port_is_fixed_link(pp)) {
833 		val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
834 		val |= MVNETA_PHY_POLLING_ENABLE;
835 		mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
836 	}
837 
838 	mvneta_set_ucast_table(pp, -1);
839 	mvneta_set_special_mcast_table(pp, -1);
840 	mvneta_set_other_mcast_table(pp, -1);
841 }
842 
843 /* Set unicast address */
844 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
845 				  int queue)
846 {
847 	unsigned int unicast_reg;
848 	unsigned int tbl_offset;
849 	unsigned int reg_offset;
850 
851 	/* Locate the Unicast table entry */
852 	last_nibble = (0xf & last_nibble);
853 
854 	/* offset from unicast tbl base */
855 	tbl_offset = (last_nibble / 4) * 4;
856 
857 	/* offset within the above reg  */
858 	reg_offset = last_nibble % 4;
859 
860 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
861 
862 	if (queue == -1) {
863 		/* Clear accepts frame bit at specified unicast DA tbl entry */
864 		unicast_reg &= ~(0xff << (8 * reg_offset));
865 	} else {
866 		unicast_reg &= ~(0xff << (8 * reg_offset));
867 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
868 	}
869 
870 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
871 }
872 
873 /* Set mac address */
874 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
875 				int queue)
876 {
877 	unsigned int mac_h;
878 	unsigned int mac_l;
879 
880 	if (queue != -1) {
881 		mac_l = (addr[4] << 8) | (addr[5]);
882 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
883 			(addr[2] << 8) | (addr[3] << 0);
884 
885 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
886 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
887 	}
888 
889 	/* Accept frames of this address */
890 	mvneta_set_ucast_addr(pp, addr[5], queue);
891 }
892 
893 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
894 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
895 				u32 phys_addr, u32 cookie)
896 {
897 	rx_desc->buf_cookie = cookie;
898 	rx_desc->buf_phys_addr = phys_addr;
899 }
900 
901 /* Decrement sent descriptors counter */
902 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
903 				     struct mvneta_tx_queue *txq,
904 				     int sent_desc)
905 {
906 	u32 val;
907 
908 	/* Only 255 TX descriptors can be updated at once */
909 	while (sent_desc > 0xff) {
910 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
911 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
912 		sent_desc = sent_desc - 0xff;
913 	}
914 
915 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
916 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
917 }
918 
919 /* Get number of TX descriptors already sent by HW */
920 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
921 					struct mvneta_tx_queue *txq)
922 {
923 	u32 val;
924 	int sent_desc;
925 
926 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
927 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
928 		MVNETA_TXQ_SENT_DESC_SHIFT;
929 
930 	return sent_desc;
931 }
932 
933 /* Display more error info */
934 static void mvneta_rx_error(struct mvneta_port *pp,
935 			    struct mvneta_rx_desc *rx_desc)
936 {
937 	u32 status = rx_desc->status;
938 
939 	if (!mvneta_rxq_desc_is_first_last(status)) {
940 		netdev_err(pp->dev,
941 			   "bad rx status %08x (buffer oversize), size=%d\n",
942 			   status, rx_desc->data_size);
943 		return;
944 	}
945 
946 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
947 	case MVNETA_RXD_ERR_CRC:
948 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
949 			   status, rx_desc->data_size);
950 		break;
951 	case MVNETA_RXD_ERR_OVERRUN:
952 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
953 			   status, rx_desc->data_size);
954 		break;
955 	case MVNETA_RXD_ERR_LEN:
956 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
957 			   status, rx_desc->data_size);
958 		break;
959 	case MVNETA_RXD_ERR_RESOURCE:
960 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
961 			   status, rx_desc->data_size);
962 		break;
963 	}
964 }
965 
966 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
967 						     int rxq)
968 {
969 	return &pp->rxqs[rxq];
970 }
971 
972 
973 /* Drop packets received by the RXQ and free buffers */
974 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
975 				 struct mvneta_rx_queue *rxq)
976 {
977 	int rx_done;
978 
979 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
980 	if (rx_done)
981 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
982 }
983 
984 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
985 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
986 			   int num)
987 {
988 	int i;
989 
990 	for (i = 0; i < num; i++) {
991 		u32 addr;
992 
993 		/* U-Boot special: Fill in the rx buffer addresses */
994 		addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
995 		mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
996 	}
997 
998 	/* Add this number of RX descriptors as non occupied (ready to
999 	 * get packets)
1000 	 */
1001 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1002 
1003 	return 0;
1004 }
1005 
1006 /* Rx/Tx queue initialization/cleanup methods */
1007 
1008 /* Create a specified RX queue */
1009 static int mvneta_rxq_init(struct mvneta_port *pp,
1010 			   struct mvneta_rx_queue *rxq)
1011 
1012 {
1013 	rxq->size = pp->rx_ring_size;
1014 
1015 	/* Allocate memory for RX descriptors */
1016 	rxq->descs_phys = (dma_addr_t)rxq->descs;
1017 	if (rxq->descs == NULL)
1018 		return -ENOMEM;
1019 
1020 	rxq->last_desc = rxq->size - 1;
1021 
1022 	/* Set Rx descriptors queue starting address */
1023 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1024 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1025 
1026 	/* Fill RXQ with buffers from RX pool */
1027 	mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1028 	mvneta_rxq_fill(pp, rxq, rxq->size);
1029 
1030 	return 0;
1031 }
1032 
1033 /* Cleanup Rx queue */
1034 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1035 			      struct mvneta_rx_queue *rxq)
1036 {
1037 	mvneta_rxq_drop_pkts(pp, rxq);
1038 
1039 	rxq->descs             = NULL;
1040 	rxq->last_desc         = 0;
1041 	rxq->next_desc_to_proc = 0;
1042 	rxq->descs_phys        = 0;
1043 }
1044 
1045 /* Create and initialize a tx queue */
1046 static int mvneta_txq_init(struct mvneta_port *pp,
1047 			   struct mvneta_tx_queue *txq)
1048 {
1049 	txq->size = pp->tx_ring_size;
1050 
1051 	/* Allocate memory for TX descriptors */
1052 	txq->descs_phys = (dma_addr_t)txq->descs;
1053 	if (txq->descs == NULL)
1054 		return -ENOMEM;
1055 
1056 	txq->last_desc = txq->size - 1;
1057 
1058 	/* Set maximum bandwidth for enabled TXQs */
1059 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1060 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1061 
1062 	/* Set Tx descriptors queue starting address */
1063 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1064 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1065 
1066 	return 0;
1067 }
1068 
1069 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
1070 static void mvneta_txq_deinit(struct mvneta_port *pp,
1071 			      struct mvneta_tx_queue *txq)
1072 {
1073 	txq->descs             = NULL;
1074 	txq->last_desc         = 0;
1075 	txq->next_desc_to_proc = 0;
1076 	txq->descs_phys        = 0;
1077 
1078 	/* Set minimum bandwidth for disabled TXQs */
1079 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1080 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1081 
1082 	/* Set Tx descriptors queue starting address and size */
1083 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1084 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1085 }
1086 
1087 /* Cleanup all Tx queues */
1088 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1089 {
1090 	int queue;
1091 
1092 	for (queue = 0; queue < txq_number; queue++)
1093 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
1094 }
1095 
1096 /* Cleanup all Rx queues */
1097 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1098 {
1099 	int queue;
1100 
1101 	for (queue = 0; queue < rxq_number; queue++)
1102 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1103 }
1104 
1105 
1106 /* Init all Rx queues */
1107 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1108 {
1109 	int queue;
1110 
1111 	for (queue = 0; queue < rxq_number; queue++) {
1112 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1113 		if (err) {
1114 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1115 				   __func__, queue);
1116 			mvneta_cleanup_rxqs(pp);
1117 			return err;
1118 		}
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 /* Init all tx queues */
1125 static int mvneta_setup_txqs(struct mvneta_port *pp)
1126 {
1127 	int queue;
1128 
1129 	for (queue = 0; queue < txq_number; queue++) {
1130 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1131 		if (err) {
1132 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
1133 				   __func__, queue);
1134 			mvneta_cleanup_txqs(pp);
1135 			return err;
1136 		}
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 static void mvneta_start_dev(struct mvneta_port *pp)
1143 {
1144 	/* start the Rx/Tx activity */
1145 	mvneta_port_enable(pp);
1146 }
1147 
1148 static void mvneta_adjust_link(struct udevice *dev)
1149 {
1150 	struct mvneta_port *pp = dev_get_priv(dev);
1151 	struct phy_device *phydev = pp->phydev;
1152 	int status_change = 0;
1153 
1154 	if (mvneta_port_is_fixed_link(pp)) {
1155 		debug("Using fixed link, skip link adjust\n");
1156 		return;
1157 	}
1158 
1159 	if (phydev->link) {
1160 		if ((pp->speed != phydev->speed) ||
1161 		    (pp->duplex != phydev->duplex)) {
1162 			u32 val;
1163 
1164 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1165 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1166 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
1167 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1168 				 MVNETA_GMAC_AN_SPEED_EN |
1169 				 MVNETA_GMAC_AN_DUPLEX_EN);
1170 
1171 			if (phydev->duplex)
1172 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1173 
1174 			if (phydev->speed == SPEED_1000)
1175 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1176 			else
1177 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1178 
1179 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1180 
1181 			pp->duplex = phydev->duplex;
1182 			pp->speed  = phydev->speed;
1183 		}
1184 	}
1185 
1186 	if (phydev->link != pp->link) {
1187 		if (!phydev->link) {
1188 			pp->duplex = -1;
1189 			pp->speed = 0;
1190 		}
1191 
1192 		pp->link = phydev->link;
1193 		status_change = 1;
1194 	}
1195 
1196 	if (status_change) {
1197 		if (phydev->link) {
1198 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1199 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1200 				MVNETA_GMAC_FORCE_LINK_DOWN);
1201 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1202 			mvneta_port_up(pp);
1203 		} else {
1204 			mvneta_port_down(pp);
1205 		}
1206 	}
1207 }
1208 
1209 static int mvneta_open(struct udevice *dev)
1210 {
1211 	struct mvneta_port *pp = dev_get_priv(dev);
1212 	int ret;
1213 
1214 	ret = mvneta_setup_rxqs(pp);
1215 	if (ret)
1216 		return ret;
1217 
1218 	ret = mvneta_setup_txqs(pp);
1219 	if (ret)
1220 		return ret;
1221 
1222 	mvneta_adjust_link(dev);
1223 
1224 	mvneta_start_dev(pp);
1225 
1226 	return 0;
1227 }
1228 
1229 /* Initialize hw */
1230 static int mvneta_init2(struct mvneta_port *pp)
1231 {
1232 	int queue;
1233 
1234 	/* Disable port */
1235 	mvneta_port_disable(pp);
1236 
1237 	/* Set port default values */
1238 	mvneta_defaults_set(pp);
1239 
1240 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1241 			   GFP_KERNEL);
1242 	if (!pp->txqs)
1243 		return -ENOMEM;
1244 
1245 	/* U-Boot special: use preallocated area */
1246 	pp->txqs[0].descs = buffer_loc.tx_descs;
1247 
1248 	/* Initialize TX descriptor rings */
1249 	for (queue = 0; queue < txq_number; queue++) {
1250 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1251 		txq->id = queue;
1252 		txq->size = pp->tx_ring_size;
1253 	}
1254 
1255 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1256 			   GFP_KERNEL);
1257 	if (!pp->rxqs) {
1258 		kfree(pp->txqs);
1259 		return -ENOMEM;
1260 	}
1261 
1262 	/* U-Boot special: use preallocated area */
1263 	pp->rxqs[0].descs = buffer_loc.rx_descs;
1264 
1265 	/* Create Rx descriptor rings */
1266 	for (queue = 0; queue < rxq_number; queue++) {
1267 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1268 		rxq->id = queue;
1269 		rxq->size = pp->rx_ring_size;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /* platform glue : initialize decoding windows */
1276 
1277 /*
1278  * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1279  * First layer is:  GbE Address window that resides inside the GBE unit,
1280  * Second layer is: Fabric address window which is located in the NIC400
1281  *                  (South Fabric).
1282  * To simplify the address decode configuration for Armada3700, we bypass the
1283  * first layer of GBE decode window by setting the first window to 4GB.
1284  */
1285 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1286 {
1287 	/*
1288 	 * Set window size to 4GB, to bypass GBE address decode, leave the
1289 	 * work to MBUS decode window
1290 	 */
1291 	mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1292 
1293 	/* Enable GBE address decode window 0 by set bit 0 to 0 */
1294 	clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1295 		     MVNETA_BASE_ADDR_ENABLE_BIT);
1296 
1297 	/* Set GBE address decode window 0 to full Access (read or write) */
1298 	setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1299 		     MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1300 }
1301 
1302 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1303 {
1304 	const struct mbus_dram_target_info *dram;
1305 	u32 win_enable;
1306 	u32 win_protect;
1307 	int i;
1308 
1309 	dram = mvebu_mbus_dram_info();
1310 	for (i = 0; i < 6; i++) {
1311 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1312 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1313 
1314 		if (i < 4)
1315 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1316 	}
1317 
1318 	win_enable = 0x3f;
1319 	win_protect = 0;
1320 
1321 	for (i = 0; i < dram->num_cs; i++) {
1322 		const struct mbus_dram_window *cs = dram->cs + i;
1323 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1324 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1325 
1326 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
1327 			    (cs->size - 1) & 0xffff0000);
1328 
1329 		win_enable &= ~(1 << i);
1330 		win_protect |= 3 << (2 * i);
1331 	}
1332 
1333 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1334 }
1335 
1336 /* Power up the port */
1337 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1338 {
1339 	u32 ctrl;
1340 
1341 	/* MAC Cause register should be cleared */
1342 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1343 
1344 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1345 
1346 	/* Even though it might look weird, when we're configured in
1347 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1348 	 */
1349 	switch (phy_mode) {
1350 	case PHY_INTERFACE_MODE_QSGMII:
1351 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1352 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1353 		break;
1354 	case PHY_INTERFACE_MODE_SGMII:
1355 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1356 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1357 		break;
1358 	case PHY_INTERFACE_MODE_RGMII:
1359 	case PHY_INTERFACE_MODE_RGMII_ID:
1360 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
1361 		break;
1362 	default:
1363 		return -EINVAL;
1364 	}
1365 
1366 	/* Cancel Port Reset */
1367 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1368 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1369 
1370 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1371 		MVNETA_GMAC2_PORT_RESET) != 0)
1372 		continue;
1373 
1374 	return 0;
1375 }
1376 
1377 /* Device initialization routine */
1378 static int mvneta_init(struct udevice *dev)
1379 {
1380 	struct eth_pdata *pdata = dev_get_platdata(dev);
1381 	struct mvneta_port *pp = dev_get_priv(dev);
1382 	int err;
1383 
1384 	pp->tx_ring_size = MVNETA_MAX_TXD;
1385 	pp->rx_ring_size = MVNETA_MAX_RXD;
1386 
1387 	err = mvneta_init2(pp);
1388 	if (err < 0) {
1389 		dev_err(&pdev->dev, "can't init eth hal\n");
1390 		return err;
1391 	}
1392 
1393 	mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1394 
1395 	err = mvneta_port_power_up(pp, pp->phy_interface);
1396 	if (err < 0) {
1397 		dev_err(&pdev->dev, "can't power up port\n");
1398 		return err;
1399 	}
1400 
1401 	/* Call open() now as it needs to be done before runing send() */
1402 	mvneta_open(dev);
1403 
1404 	return 0;
1405 }
1406 
1407 /* U-Boot only functions follow here */
1408 
1409 /* SMI / MDIO functions */
1410 
1411 static int smi_wait_ready(struct mvneta_port *pp)
1412 {
1413 	u32 timeout = MVNETA_SMI_TIMEOUT;
1414 	u32 smi_reg;
1415 
1416 	/* wait till the SMI is not busy */
1417 	do {
1418 		/* read smi register */
1419 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1420 		if (timeout-- == 0) {
1421 			printf("Error: SMI busy timeout\n");
1422 			return -EFAULT;
1423 		}
1424 	} while (smi_reg & MVNETA_SMI_BUSY);
1425 
1426 	return 0;
1427 }
1428 
1429 /*
1430  * mvneta_mdio_read - miiphy_read callback function.
1431  *
1432  * Returns 16bit phy register value, or 0xffff on error
1433  */
1434 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1435 {
1436 	struct mvneta_port *pp = bus->priv;
1437 	u32 smi_reg;
1438 	u32 timeout;
1439 
1440 	/* check parameters */
1441 	if (addr > MVNETA_PHY_ADDR_MASK) {
1442 		printf("Error: Invalid PHY address %d\n", addr);
1443 		return -EFAULT;
1444 	}
1445 
1446 	if (reg > MVNETA_PHY_REG_MASK) {
1447 		printf("Err: Invalid register offset %d\n", reg);
1448 		return -EFAULT;
1449 	}
1450 
1451 	/* wait till the SMI is not busy */
1452 	if (smi_wait_ready(pp) < 0)
1453 		return -EFAULT;
1454 
1455 	/* fill the phy address and regiser offset and read opcode */
1456 	smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1457 		| (reg << MVNETA_SMI_REG_ADDR_OFFS)
1458 		| MVNETA_SMI_OPCODE_READ;
1459 
1460 	/* write the smi register */
1461 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1462 
1463 	/* wait till read value is ready */
1464 	timeout = MVNETA_SMI_TIMEOUT;
1465 
1466 	do {
1467 		/* read smi register */
1468 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1469 		if (timeout-- == 0) {
1470 			printf("Err: SMI read ready timeout\n");
1471 			return -EFAULT;
1472 		}
1473 	} while (!(smi_reg & MVNETA_SMI_READ_VALID));
1474 
1475 	/* Wait for the data to update in the SMI register */
1476 	for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1477 		;
1478 
1479 	return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1480 }
1481 
1482 /*
1483  * mvneta_mdio_write - miiphy_write callback function.
1484  *
1485  * Returns 0 if write succeed, -EINVAL on bad parameters
1486  * -ETIME on timeout
1487  */
1488 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1489 			     u16 value)
1490 {
1491 	struct mvneta_port *pp = bus->priv;
1492 	u32 smi_reg;
1493 
1494 	/* check parameters */
1495 	if (addr > MVNETA_PHY_ADDR_MASK) {
1496 		printf("Error: Invalid PHY address %d\n", addr);
1497 		return -EFAULT;
1498 	}
1499 
1500 	if (reg > MVNETA_PHY_REG_MASK) {
1501 		printf("Err: Invalid register offset %d\n", reg);
1502 		return -EFAULT;
1503 	}
1504 
1505 	/* wait till the SMI is not busy */
1506 	if (smi_wait_ready(pp) < 0)
1507 		return -EFAULT;
1508 
1509 	/* fill the phy addr and reg offset and write opcode and data */
1510 	smi_reg = value << MVNETA_SMI_DATA_OFFS;
1511 	smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1512 		| (reg << MVNETA_SMI_REG_ADDR_OFFS);
1513 	smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1514 
1515 	/* write the smi register */
1516 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1517 
1518 	return 0;
1519 }
1520 
1521 static int mvneta_start(struct udevice *dev)
1522 {
1523 	struct mvneta_port *pp = dev_get_priv(dev);
1524 	struct phy_device *phydev;
1525 
1526 	mvneta_port_power_up(pp, pp->phy_interface);
1527 
1528 	if (!pp->init || pp->link == 0) {
1529 		if (mvneta_port_is_fixed_link(pp)) {
1530 			u32 val;
1531 
1532 			pp->init = 1;
1533 			pp->link = 1;
1534 			mvneta_init(dev);
1535 
1536 			val = MVNETA_GMAC_FORCE_LINK_UP |
1537 			      MVNETA_GMAC_IB_BYPASS_AN_EN |
1538 			      MVNETA_GMAC_SET_FC_EN |
1539 			      MVNETA_GMAC_ADVERT_FC_EN |
1540 			      MVNETA_GMAC_SAMPLE_TX_CFG_EN;
1541 
1542 			if (pp->duplex)
1543 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1544 
1545 			if (pp->speed == SPEED_1000)
1546 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1547 			else if (pp->speed == SPEED_100)
1548 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1549 
1550 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1551 		} else {
1552 			/* Set phy address of the port */
1553 			mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1554 
1555 			phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1556 					     pp->phy_interface);
1557 
1558 			pp->phydev = phydev;
1559 			phy_config(phydev);
1560 			phy_startup(phydev);
1561 			if (!phydev->link) {
1562 				printf("%s: No link.\n", phydev->dev->name);
1563 				return -1;
1564 			}
1565 
1566 			/* Full init on first call */
1567 			mvneta_init(dev);
1568 			pp->init = 1;
1569 			return 0;
1570 		}
1571 	}
1572 
1573 	/* Upon all following calls, this is enough */
1574 	mvneta_port_up(pp);
1575 	mvneta_port_enable(pp);
1576 
1577 	return 0;
1578 }
1579 
1580 static int mvneta_send(struct udevice *dev, void *packet, int length)
1581 {
1582 	struct mvneta_port *pp = dev_get_priv(dev);
1583 	struct mvneta_tx_queue *txq = &pp->txqs[0];
1584 	struct mvneta_tx_desc *tx_desc;
1585 	int sent_desc;
1586 	u32 timeout = 0;
1587 
1588 	/* Get a descriptor for the first part of the packet */
1589 	tx_desc = mvneta_txq_next_desc_get(txq);
1590 
1591 	tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1592 	tx_desc->data_size = length;
1593 	flush_dcache_range((ulong)packet,
1594 			   (ulong)packet + ALIGN(length, PKTALIGN));
1595 
1596 	/* First and Last descriptor */
1597 	tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1598 	mvneta_txq_pend_desc_add(pp, txq, 1);
1599 
1600 	/* Wait for packet to be sent (queue might help with speed here) */
1601 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1602 	while (!sent_desc) {
1603 		if (timeout++ > 10000) {
1604 			printf("timeout: packet not sent\n");
1605 			return -1;
1606 		}
1607 		sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1608 	}
1609 
1610 	/* txDone has increased - hw sent packet */
1611 	mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1612 
1613 	return 0;
1614 }
1615 
1616 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1617 {
1618 	struct mvneta_port *pp = dev_get_priv(dev);
1619 	int rx_done;
1620 	struct mvneta_rx_queue *rxq;
1621 	int rx_bytes = 0;
1622 
1623 	/* get rx queue */
1624 	rxq = mvneta_rxq_handle_get(pp, rxq_def);
1625 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1626 
1627 	if (rx_done) {
1628 		struct mvneta_rx_desc *rx_desc;
1629 		unsigned char *data;
1630 		u32 rx_status;
1631 
1632 		/*
1633 		 * No cache invalidation needed here, since the desc's are
1634 		 * located in a uncached memory region
1635 		 */
1636 		rx_desc = mvneta_rxq_next_desc_get(rxq);
1637 
1638 		rx_status = rx_desc->status;
1639 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1640 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1641 			mvneta_rx_error(pp, rx_desc);
1642 			/* leave the descriptor untouched */
1643 			return -EIO;
1644 		}
1645 
1646 		/* 2 bytes for marvell header. 4 bytes for crc */
1647 		rx_bytes = rx_desc->data_size - 6;
1648 
1649 		/* give packet to stack - skip on first 2 bytes */
1650 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1651 		/*
1652 		 * No cache invalidation needed here, since the rx_buffer's are
1653 		 * located in a uncached memory region
1654 		 */
1655 		*packetp = data;
1656 
1657 		/*
1658 		 * Only mark one descriptor as free
1659 		 * since only one was processed
1660 		 */
1661 		mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
1662 	}
1663 
1664 	return rx_bytes;
1665 }
1666 
1667 static int mvneta_probe(struct udevice *dev)
1668 {
1669 	struct eth_pdata *pdata = dev_get_platdata(dev);
1670 	struct mvneta_port *pp = dev_get_priv(dev);
1671 	void *blob = (void *)gd->fdt_blob;
1672 	int node = dev_of_offset(dev);
1673 	struct mii_dev *bus;
1674 	unsigned long addr;
1675 	void *bd_space;
1676 	int ret;
1677 	int fl_node;
1678 
1679 	/*
1680 	 * Allocate buffer area for descs and rx_buffers. This is only
1681 	 * done once for all interfaces. As only one interface can
1682 	 * be active. Make this area DMA safe by disabling the D-cache
1683 	 */
1684 	if (!buffer_loc.tx_descs) {
1685 		/* Align buffer area for descs and rx_buffers to 1MiB */
1686 		bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1687 		mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1688 						DCACHE_OFF);
1689 		buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1690 		buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1691 			((phys_addr_t)bd_space +
1692 			 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
1693 		buffer_loc.rx_buffers = (phys_addr_t)
1694 			(bd_space +
1695 			 MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
1696 			 MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
1697 	}
1698 
1699 	pp->base = (void __iomem *)pdata->iobase;
1700 
1701 	/* Configure MBUS address windows */
1702 	if (device_is_compatible(dev, "marvell,armada-3700-neta"))
1703 		mvneta_bypass_mbus_windows(pp);
1704 	else
1705 		mvneta_conf_mbus_windows(pp);
1706 
1707 	/* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1708 	pp->phy_interface = pdata->phy_interface;
1709 
1710 	/* fetch 'fixed-link' property from 'neta' node */
1711 	fl_node = fdt_subnode_offset(blob, node, "fixed-link");
1712 	if (fl_node != -FDT_ERR_NOTFOUND) {
1713 		/* set phy_addr to invalid value for fixed link */
1714 		pp->phyaddr = PHY_MAX_ADDR + 1;
1715 		pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
1716 		pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
1717 	} else {
1718 		/* Now read phyaddr from DT */
1719 		addr = fdtdec_get_int(blob, node, "phy", 0);
1720 		addr = fdt_node_offset_by_phandle(blob, addr);
1721 		pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1722 	}
1723 
1724 	bus = mdio_alloc();
1725 	if (!bus) {
1726 		printf("Failed to allocate MDIO bus\n");
1727 		return -ENOMEM;
1728 	}
1729 
1730 	bus->read = mvneta_mdio_read;
1731 	bus->write = mvneta_mdio_write;
1732 	snprintf(bus->name, sizeof(bus->name), dev->name);
1733 	bus->priv = (void *)pp;
1734 	pp->bus = bus;
1735 
1736 	ret = mdio_register(bus);
1737 	if (ret)
1738 		return ret;
1739 
1740 	return board_network_enable(bus);
1741 }
1742 
1743 static void mvneta_stop(struct udevice *dev)
1744 {
1745 	struct mvneta_port *pp = dev_get_priv(dev);
1746 
1747 	mvneta_port_down(pp);
1748 	mvneta_port_disable(pp);
1749 }
1750 
1751 static const struct eth_ops mvneta_ops = {
1752 	.start		= mvneta_start,
1753 	.send		= mvneta_send,
1754 	.recv		= mvneta_recv,
1755 	.stop		= mvneta_stop,
1756 };
1757 
1758 static int mvneta_ofdata_to_platdata(struct udevice *dev)
1759 {
1760 	struct eth_pdata *pdata = dev_get_platdata(dev);
1761 	const char *phy_mode;
1762 
1763 	pdata->iobase = devfdt_get_addr(dev);
1764 
1765 	/* Get phy-mode / phy_interface from DT */
1766 	pdata->phy_interface = -1;
1767 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1768 			       NULL);
1769 	if (phy_mode)
1770 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1771 	if (pdata->phy_interface == -1) {
1772 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1773 		return -EINVAL;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static const struct udevice_id mvneta_ids[] = {
1780 	{ .compatible = "marvell,armada-370-neta" },
1781 	{ .compatible = "marvell,armada-xp-neta" },
1782 	{ .compatible = "marvell,armada-3700-neta" },
1783 	{ }
1784 };
1785 
1786 U_BOOT_DRIVER(mvneta) = {
1787 	.name	= "mvneta",
1788 	.id	= UCLASS_ETH,
1789 	.of_match = mvneta_ids,
1790 	.ofdata_to_platdata = mvneta_ofdata_to_platdata,
1791 	.probe	= mvneta_probe,
1792 	.ops	= &mvneta_ops,
1793 	.priv_auto_alloc_size = sizeof(struct mvneta_port),
1794 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1795 };
1796