xref: /openbmc/u-boot/drivers/net/fm/fm.c (revision 8a00061e)
1 /*
2  * Copyright 2009-2011 Freescale Semiconductor, Inc.
3  *	Dave Liu <daveliu@freescale.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20 #include <common.h>
21 #include <malloc.h>
22 #include <asm/io.h>
23 #include <asm/errno.h>
24 
25 #include "fm.h"
26 #include "../../qe/qe.h"		/* For struct qe_firmware */
27 
28 #ifdef CONFIG_SYS_QE_FMAN_FW_IN_NAND
29 #include <nand.h>
30 #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
31 #include <spi_flash.h>
32 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
33 #include <mmc.h>
34 #endif
35 
36 struct fm_muram muram[CONFIG_SYS_NUM_FMAN];
37 
38 u32 fm_muram_base(int fm_idx)
39 {
40 	return muram[fm_idx].base;
41 }
42 
43 u32 fm_muram_alloc(int fm_idx, u32 size, u32 align)
44 {
45 	u32 ret;
46 	u32 align_mask, off;
47 	u32 save;
48 
49 	align_mask = align - 1;
50 	save = muram[fm_idx].alloc;
51 
52 	off = save & align_mask;
53 	if (off != 0)
54 		muram[fm_idx].alloc += (align - off);
55 	off = size & align_mask;
56 	if (off != 0)
57 		size += (align - off);
58 	if ((muram[fm_idx].alloc + size) >= muram[fm_idx].top) {
59 		muram[fm_idx].alloc = save;
60 		printf("%s: run out of ram.\n", __func__);
61 	}
62 
63 	ret = muram[fm_idx].alloc;
64 	muram[fm_idx].alloc += size;
65 	memset((void *)ret, 0, size);
66 
67 	return ret;
68 }
69 
70 static void fm_init_muram(int fm_idx, void *reg)
71 {
72 	u32 base = (u32)reg;
73 
74 	muram[fm_idx].base = base;
75 	muram[fm_idx].size = CONFIG_SYS_FM_MURAM_SIZE;
76 	muram[fm_idx].alloc = base + FM_MURAM_RES_SIZE;
77 	muram[fm_idx].top = base + CONFIG_SYS_FM_MURAM_SIZE;
78 }
79 
80 /*
81  * fm_upload_ucode - Fman microcode upload worker function
82  *
83  * This function does the actual uploading of an Fman microcode
84  * to an Fman.
85  */
86 static void fm_upload_ucode(int fm_idx, struct fm_imem *imem,
87 			    u32 *ucode, unsigned int size)
88 {
89 	unsigned int i;
90 	unsigned int timeout = 1000000;
91 
92 	/* enable address auto increase */
93 	out_be32(&imem->iadd, IRAM_IADD_AIE);
94 	/* write microcode to IRAM */
95 	for (i = 0; i < size / 4; i++)
96 		out_be32(&imem->idata, ucode[i]);
97 
98 	/* verify if the writing is over */
99 	out_be32(&imem->iadd, 0);
100 	while ((in_be32(&imem->idata) != ucode[0]) && --timeout)
101 		;
102 	if (!timeout)
103 		printf("Fman%u: microcode upload timeout\n", fm_idx + 1);
104 
105 	/* enable microcode from IRAM */
106 	out_be32(&imem->iready, IRAM_READY);
107 }
108 
109 /*
110  * Upload an Fman firmware
111  *
112  * This function is similar to qe_upload_firmware(), exception that it uploads
113  * a microcode to the Fman instead of the QE.
114  *
115  * Because the process for uploading a microcode to the Fman is similar for
116  * that of the QE, the QE firmware binary format is used for Fman microcode.
117  * It should be possible to unify these two functions, but for now we keep them
118  * separate.
119  */
120 static int fman_upload_firmware(int fm_idx,
121 				struct fm_imem *fm_imem,
122 				const struct qe_firmware *firmware)
123 {
124 	unsigned int i;
125 	u32 crc;
126 	size_t calc_size = sizeof(struct qe_firmware);
127 	size_t length;
128 	const struct qe_header *hdr;
129 
130 	if (!firmware) {
131 		printf("Fman%u: Invalid address for firmware\n", fm_idx + 1);
132 		return -EINVAL;
133 	}
134 
135 	hdr = &firmware->header;
136 	length = be32_to_cpu(hdr->length);
137 
138 	/* Check the magic */
139 	if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
140 		(hdr->magic[2] != 'F')) {
141 		printf("Fman%u: Data at %p is not a firmware\n", fm_idx + 1,
142 		       firmware);
143 		return -EPERM;
144 	}
145 
146 	/* Check the version */
147 	if (hdr->version != 1) {
148 		printf("Fman%u: Unsupported firmware version %u\n", fm_idx + 1,
149 		       hdr->version);
150 		return -EPERM;
151 	}
152 
153 	/* Validate some of the fields */
154 	if ((firmware->count != 1)) {
155 		printf("Fman%u: Invalid data in firmware header\n", fm_idx + 1);
156 		return -EINVAL;
157 	}
158 
159 	/* Validate the length and check if there's a CRC */
160 	calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
161 
162 	for (i = 0; i < firmware->count; i++)
163 		/*
164 		 * For situations where the second RISC uses the same microcode
165 		 * as the first, the 'code_offset' and 'count' fields will be
166 		 * zero, so it's okay to add those.
167 		 */
168 		calc_size += sizeof(u32) *
169 			be32_to_cpu(firmware->microcode[i].count);
170 
171 	/* Validate the length */
172 	if (length != calc_size + sizeof(u32)) {
173 		printf("Fman%u: Invalid length in firmware header\n",
174 		       fm_idx + 1);
175 		return -EPERM;
176 	}
177 
178 	/*
179 	 * Validate the CRC.  We would normally call crc32_no_comp(), but that
180 	 * function isn't available unless you turn on JFFS support.
181 	 */
182 	crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size));
183 	if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) {
184 		printf("Fman%u: Firmware CRC is invalid\n", fm_idx + 1);
185 		return -EIO;
186 	}
187 
188 	/* Loop through each microcode. */
189 	for (i = 0; i < firmware->count; i++) {
190 		const struct qe_microcode *ucode = &firmware->microcode[i];
191 
192 		/* Upload a microcode if it's present */
193 		if (ucode->code_offset) {
194 			u32 ucode_size;
195 			u32 *code;
196 			printf("Fman%u: Uploading microcode version %u.%u.%u\n",
197 			       fm_idx + 1, ucode->major, ucode->minor,
198 			       ucode->revision);
199 			code = (void *)firmware + ucode->code_offset;
200 			ucode_size = sizeof(u32) * ucode->count;
201 			fm_upload_ucode(fm_idx, fm_imem, code, ucode_size);
202 		}
203 	}
204 
205 	return 0;
206 }
207 
208 static u32 fm_assign_risc(int port_id)
209 {
210 	u32 risc_sel, val;
211 	risc_sel = (port_id & 0x1) ? FMFPPRC_RISC2 : FMFPPRC_RISC1;
212 	val = (port_id << FMFPPRC_PORTID_SHIFT) & FMFPPRC_PORTID_MASK;
213 	val |= ((risc_sel << FMFPPRC_ORA_SHIFT) | risc_sel);
214 
215 	return val;
216 }
217 
218 static void fm_init_fpm(struct fm_fpm *fpm)
219 {
220 	int i, port_id;
221 	u32 val;
222 
223 	setbits_be32(&fpm->fmfpee, FMFPEE_EHM | FMFPEE_UEC |
224 				   FMFPEE_CER | FMFPEE_DER);
225 
226 	/* IM mode, each even port ID to RISC#1, each odd port ID to RISC#2 */
227 
228 	/* offline/parser port */
229 	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
230 		port_id = OH_PORT_ID_BASE + i;
231 		val = fm_assign_risc(port_id);
232 		out_be32(&fpm->fpmprc, val);
233 	}
234 	/* Rx 1G port */
235 	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
236 		port_id = RX_PORT_1G_BASE + i;
237 		val = fm_assign_risc(port_id);
238 		out_be32(&fpm->fpmprc, val);
239 	}
240 	/* Tx 1G port */
241 	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
242 		port_id = TX_PORT_1G_BASE + i;
243 		val = fm_assign_risc(port_id);
244 		out_be32(&fpm->fpmprc, val);
245 	}
246 	/* Rx 10G port */
247 	port_id = RX_PORT_10G_BASE;
248 	val = fm_assign_risc(port_id);
249 	out_be32(&fpm->fpmprc, val);
250 	/* Tx 10G port */
251 	port_id = TX_PORT_10G_BASE;
252 	val = fm_assign_risc(port_id);
253 	out_be32(&fpm->fpmprc, val);
254 
255 	/* disable the dispatch limit in IM case */
256 	out_be32(&fpm->fpmflc, FMFP_FLC_DISP_LIM_NONE);
257 	/* clear events */
258 	out_be32(&fpm->fmfpee, FMFPEE_CLEAR_EVENT);
259 
260 	/* clear risc events */
261 	for (i = 0; i < 4; i++)
262 		out_be32(&fpm->fpmcev[i], 0xffffffff);
263 
264 	/* clear error */
265 	out_be32(&fpm->fpmrcr, FMFP_RCR_MDEC | FMFP_RCR_IDEC);
266 }
267 
268 static int fm_init_bmi(int fm_idx, struct fm_bmi_common *bmi)
269 {
270 	int blk, i, port_id;
271 	u32 val, offset, base;
272 
273 	/* alloc free buffer pool in MURAM */
274 	base = fm_muram_alloc(fm_idx, FM_FREE_POOL_SIZE, FM_FREE_POOL_ALIGN);
275 	if (!base) {
276 		printf("%s: no muram for free buffer pool\n", __func__);
277 		return -ENOMEM;
278 	}
279 	offset = base - fm_muram_base(fm_idx);
280 
281 	/* Need 128KB total free buffer pool size */
282 	val = offset / 256;
283 	blk = FM_FREE_POOL_SIZE / 256;
284 	/* in IM, we must not begin from offset 0 in MURAM */
285 	val |= ((blk - 1) << FMBM_CFG1_FBPS_SHIFT);
286 	out_be32(&bmi->fmbm_cfg1, val);
287 
288 	/* disable all BMI interrupt */
289 	out_be32(&bmi->fmbm_ier, FMBM_IER_DISABLE_ALL);
290 
291 	/* clear all events */
292 	out_be32(&bmi->fmbm_ievr, FMBM_IEVR_CLEAR_ALL);
293 
294 	/*
295 	 * set port parameters - FMBM_PP_x
296 	 * max tasks 10G Rx/Tx=12, 1G Rx/Tx 4, others is 1
297 	 * max dma 10G Rx/Tx=3, others is 1
298 	 * set port FIFO size - FMBM_PFS_x
299 	 * 4KB for all Rx and Tx ports
300 	 */
301 	/* offline/parser port */
302 	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
303 		port_id = OH_PORT_ID_BASE + i - 1;
304 		/* max tasks=1, max dma=1, no extra */
305 		out_be32(&bmi->fmbm_pp[port_id], 0);
306 		/* port FIFO size - 256 bytes, no extra */
307 		out_be32(&bmi->fmbm_pfs[port_id], 0);
308 	}
309 	/* Rx 1G port */
310 	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
311 		port_id = RX_PORT_1G_BASE + i - 1;
312 		/* max tasks=4, max dma=1, no extra */
313 		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
314 		/* FIFO size - 4KB, no extra */
315 		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
316 	}
317 	/* Tx 1G port FIFO size - 4KB, no extra */
318 	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
319 		port_id = TX_PORT_1G_BASE + i - 1;
320 		/* max tasks=4, max dma=1, no extra */
321 		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
322 		/* FIFO size - 4KB, no extra */
323 		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
324 	}
325 	/* Rx 10G port */
326 	port_id = RX_PORT_10G_BASE - 1;
327 	/* max tasks=12, max dma=3, no extra */
328 	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
329 	/* FIFO size - 4KB, no extra */
330 	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
331 
332 	/* Tx 10G port */
333 	port_id = TX_PORT_10G_BASE - 1;
334 	/* max tasks=12, max dma=3, no extra */
335 	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
336 	/* FIFO size - 4KB, no extra */
337 	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
338 
339 	/* initialize internal buffers data base (linked list) */
340 	out_be32(&bmi->fmbm_init, FMBM_INIT_START);
341 
342 	return 0;
343 }
344 
345 static void fm_init_qmi(struct fm_qmi_common *qmi)
346 {
347 	/* disable enqueue and dequeue of QMI */
348 	clrbits_be32(&qmi->fmqm_gc, FMQM_GC_ENQ_EN | FMQM_GC_DEQ_EN);
349 
350 	/* disable all error interrupts */
351 	out_be32(&qmi->fmqm_eien, FMQM_EIEN_DISABLE_ALL);
352 	/* clear all error events */
353 	out_be32(&qmi->fmqm_eie, FMQM_EIE_CLEAR_ALL);
354 
355 	/* disable all interrupts */
356 	out_be32(&qmi->fmqm_ien, FMQM_IEN_DISABLE_ALL);
357 	/* clear all interrupts */
358 	out_be32(&qmi->fmqm_ie, FMQM_IE_CLEAR_ALL);
359 }
360 
361 /* Init common part of FM, index is fm num# like fm as above */
362 int fm_init_common(int index, struct ccsr_fman *reg)
363 {
364 	int rc;
365 #if defined(CONFIG_SYS_QE_FMAN_FW_IN_NOR)
366 	void *addr = (void *)CONFIG_SYS_QE_FMAN_FW_ADDR;
367 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_NAND)
368 	size_t fw_length = CONFIG_SYS_QE_FMAN_FW_LENGTH;
369 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
370 
371 	rc = nand_read(&nand_info[0], (loff_t)CONFIG_SYS_QE_FMAN_FW_ADDR,
372 		       &fw_length, (u_char *)addr);
373 	if (rc == -EUCLEAN) {
374 		printf("NAND read of FMAN firmware at offset 0x%x failed %d\n",
375 			CONFIG_SYS_QE_FMAN_FW_ADDR, rc);
376 	}
377 #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
378 	struct spi_flash *ucode_flash;
379 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
380 	int ret = 0;
381 
382 	ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
383 			CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE);
384 	if (!ucode_flash)
385 		printf("SF: probe for ucode failed\n");
386 	else {
387 		ret = spi_flash_read(ucode_flash, CONFIG_SYS_QE_FMAN_FW_ADDR,
388 				CONFIG_SYS_QE_FMAN_FW_LENGTH, addr);
389 		if (ret)
390 			printf("SF: read for ucode failed\n");
391 		spi_flash_free(ucode_flash);
392 	}
393 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
394 	int dev = CONFIG_SYS_MMC_ENV_DEV;
395 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
396 	u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512;
397 	u32 blk = CONFIG_SYS_QE_FMAN_FW_ADDR / 512;
398 	struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV);
399 
400 	if (!mmc)
401 		printf("\nMMC cannot find device for ucode\n");
402 	else {
403 		printf("\nMMC read: dev # %u, block # %u, count %u ...\n",
404 				dev, blk, cnt);
405 		mmc_init(mmc);
406 		(void)mmc->block_dev.block_read(dev, blk, cnt, addr);
407 		/* flush cache after read */
408 		flush_cache((ulong)addr, cnt * 512);
409 	}
410 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_REMOTE)
411 	void *addr = (void *)CONFIG_SYS_QE_FMAN_FW_ADDR;
412 #endif
413 
414 	/* Upload the Fman microcode if it's present */
415 	rc = fman_upload_firmware(index, &reg->fm_imem, addr);
416 	if (rc)
417 		return rc;
418 	setenv_addr("fman_ucode", addr);
419 
420 	fm_init_muram(index, &reg->muram);
421 	fm_init_qmi(&reg->fm_qmi_common);
422 	fm_init_fpm(&reg->fm_fpm);
423 
424 	/* clear DMA status */
425 	setbits_be32(&reg->fm_dma.fmdmsr, FMDMSR_CLEAR_ALL);
426 
427 	/* set DMA mode */
428 	setbits_be32(&reg->fm_dma.fmdmmr, FMDMMR_SBER);
429 
430 	return fm_init_bmi(index, &reg->fm_bmi_common);
431 }
432