xref: /openbmc/u-boot/drivers/net/fm/fm.c (revision 2cfcee82bd630bab21cb24909c964e5e09fcac76)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2009-2011 Freescale Semiconductor, Inc.
4  *	Dave Liu <daveliu@freescale.com>
5  */
6 #include <common.h>
7 #include <malloc.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 
11 #include "fm.h"
12 #include <fsl_qe.h>		/* For struct qe_firmware */
13 
14 #ifdef CONFIG_SYS_QE_FMAN_FW_IN_NAND
15 #include <nand.h>
16 #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
17 #include <spi_flash.h>
18 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
19 #include <mmc.h>
20 #endif
21 
22 struct fm_muram muram[CONFIG_SYS_NUM_FMAN];
23 
24 void *fm_muram_base(int fm_idx)
25 {
26 	return muram[fm_idx].base;
27 }
28 
29 void *fm_muram_alloc(int fm_idx, size_t size, ulong align)
30 {
31 	void *ret;
32 	ulong align_mask;
33 	size_t off;
34 	void *save;
35 
36 	align_mask = align - 1;
37 	save = muram[fm_idx].alloc;
38 
39 	off = (ulong)save & align_mask;
40 	if (off != 0)
41 		muram[fm_idx].alloc += (align - off);
42 	off = size & align_mask;
43 	if (off != 0)
44 		size += (align - off);
45 	if ((muram[fm_idx].alloc + size) >= muram[fm_idx].top) {
46 		muram[fm_idx].alloc = save;
47 		printf("%s: run out of ram.\n", __func__);
48 		return NULL;
49 	}
50 
51 	ret = muram[fm_idx].alloc;
52 	muram[fm_idx].alloc += size;
53 	memset((void *)ret, 0, size);
54 
55 	return ret;
56 }
57 
58 static void fm_init_muram(int fm_idx, void *reg)
59 {
60 	void *base = reg;
61 
62 	muram[fm_idx].base = base;
63 	muram[fm_idx].size = CONFIG_SYS_FM_MURAM_SIZE;
64 	muram[fm_idx].alloc = base + FM_MURAM_RES_SIZE;
65 	muram[fm_idx].top = base + CONFIG_SYS_FM_MURAM_SIZE;
66 }
67 
68 /*
69  * fm_upload_ucode - Fman microcode upload worker function
70  *
71  * This function does the actual uploading of an Fman microcode
72  * to an Fman.
73  */
74 static void fm_upload_ucode(int fm_idx, struct fm_imem *imem,
75 			    u32 *ucode, unsigned int size)
76 {
77 	unsigned int i;
78 	unsigned int timeout = 1000000;
79 
80 	/* enable address auto increase */
81 	out_be32(&imem->iadd, IRAM_IADD_AIE);
82 	/* write microcode to IRAM */
83 	for (i = 0; i < size / 4; i++)
84 		out_be32(&imem->idata, (be32_to_cpu(ucode[i])));
85 
86 	/* verify if the writing is over */
87 	out_be32(&imem->iadd, 0);
88 	while ((in_be32(&imem->idata) != be32_to_cpu(ucode[0])) && --timeout)
89 		;
90 	if (!timeout)
91 		printf("Fman%u: microcode upload timeout\n", fm_idx + 1);
92 
93 	/* enable microcode from IRAM */
94 	out_be32(&imem->iready, IRAM_READY);
95 }
96 
97 /*
98  * Upload an Fman firmware
99  *
100  * This function is similar to qe_upload_firmware(), exception that it uploads
101  * a microcode to the Fman instead of the QE.
102  *
103  * Because the process for uploading a microcode to the Fman is similar for
104  * that of the QE, the QE firmware binary format is used for Fman microcode.
105  * It should be possible to unify these two functions, but for now we keep them
106  * separate.
107  */
108 static int fman_upload_firmware(int fm_idx,
109 				struct fm_imem *fm_imem,
110 				const struct qe_firmware *firmware)
111 {
112 	unsigned int i;
113 	u32 crc;
114 	size_t calc_size = sizeof(struct qe_firmware);
115 	size_t length;
116 	const struct qe_header *hdr;
117 
118 	if (!firmware) {
119 		printf("Fman%u: Invalid address for firmware\n", fm_idx + 1);
120 		return -EINVAL;
121 	}
122 
123 	hdr = &firmware->header;
124 	length = be32_to_cpu(hdr->length);
125 
126 	/* Check the magic */
127 	if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
128 		(hdr->magic[2] != 'F')) {
129 		printf("Fman%u: Data at %p is not a firmware\n", fm_idx + 1,
130 		       firmware);
131 		return -EPERM;
132 	}
133 
134 	/* Check the version */
135 	if (hdr->version != 1) {
136 		printf("Fman%u: Unsupported firmware version %u\n", fm_idx + 1,
137 		       hdr->version);
138 		return -EPERM;
139 	}
140 
141 	/* Validate some of the fields */
142 	if ((firmware->count != 1)) {
143 		printf("Fman%u: Invalid data in firmware header\n", fm_idx + 1);
144 		return -EINVAL;
145 	}
146 
147 	/* Validate the length and check if there's a CRC */
148 	calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
149 
150 	for (i = 0; i < firmware->count; i++)
151 		/*
152 		 * For situations where the second RISC uses the same microcode
153 		 * as the first, the 'code_offset' and 'count' fields will be
154 		 * zero, so it's okay to add those.
155 		 */
156 		calc_size += sizeof(u32) *
157 			be32_to_cpu(firmware->microcode[i].count);
158 
159 	/* Validate the length */
160 	if (length != calc_size + sizeof(u32)) {
161 		printf("Fman%u: Invalid length in firmware header\n",
162 		       fm_idx + 1);
163 		return -EPERM;
164 	}
165 
166 	/*
167 	 * Validate the CRC.  We would normally call crc32_no_comp(), but that
168 	 * function isn't available unless you turn on JFFS support.
169 	 */
170 	crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size));
171 	if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) {
172 		printf("Fman%u: Firmware CRC is invalid\n", fm_idx + 1);
173 		return -EIO;
174 	}
175 
176 	/* Loop through each microcode. */
177 	for (i = 0; i < firmware->count; i++) {
178 		const struct qe_microcode *ucode = &firmware->microcode[i];
179 
180 		/* Upload a microcode if it's present */
181 		if (be32_to_cpu(ucode->code_offset)) {
182 			u32 ucode_size;
183 			u32 *code;
184 			printf("Fman%u: Uploading microcode version %u.%u.%u\n",
185 			       fm_idx + 1, ucode->major, ucode->minor,
186 			       ucode->revision);
187 			code = (void *)firmware +
188 			       be32_to_cpu(ucode->code_offset);
189 			ucode_size = sizeof(u32) * be32_to_cpu(ucode->count);
190 			fm_upload_ucode(fm_idx, fm_imem, code, ucode_size);
191 		}
192 	}
193 
194 	return 0;
195 }
196 
197 static u32 fm_assign_risc(int port_id)
198 {
199 	u32 risc_sel, val;
200 	risc_sel = (port_id & 0x1) ? FMFPPRC_RISC2 : FMFPPRC_RISC1;
201 	val = (port_id << FMFPPRC_PORTID_SHIFT) & FMFPPRC_PORTID_MASK;
202 	val |= ((risc_sel << FMFPPRC_ORA_SHIFT) | risc_sel);
203 
204 	return val;
205 }
206 
207 static void fm_init_fpm(struct fm_fpm *fpm)
208 {
209 	int i, port_id;
210 	u32 val;
211 
212 	setbits_be32(&fpm->fmfpee, FMFPEE_EHM | FMFPEE_UEC |
213 				   FMFPEE_CER | FMFPEE_DER);
214 
215 	/* IM mode, each even port ID to RISC#1, each odd port ID to RISC#2 */
216 
217 	/* offline/parser port */
218 	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
219 		port_id = OH_PORT_ID_BASE + i;
220 		val = fm_assign_risc(port_id);
221 		out_be32(&fpm->fpmprc, val);
222 	}
223 	/* Rx 1G port */
224 	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
225 		port_id = RX_PORT_1G_BASE + i;
226 		val = fm_assign_risc(port_id);
227 		out_be32(&fpm->fpmprc, val);
228 	}
229 	/* Tx 1G port */
230 	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
231 		port_id = TX_PORT_1G_BASE + i;
232 		val = fm_assign_risc(port_id);
233 		out_be32(&fpm->fpmprc, val);
234 	}
235 	/* Rx 10G port */
236 	port_id = RX_PORT_10G_BASE;
237 	val = fm_assign_risc(port_id);
238 	out_be32(&fpm->fpmprc, val);
239 	/* Tx 10G port */
240 	port_id = TX_PORT_10G_BASE;
241 	val = fm_assign_risc(port_id);
242 	out_be32(&fpm->fpmprc, val);
243 
244 	/* disable the dispatch limit in IM case */
245 	out_be32(&fpm->fpmflc, FMFP_FLC_DISP_LIM_NONE);
246 	/* clear events */
247 	out_be32(&fpm->fmfpee, FMFPEE_CLEAR_EVENT);
248 
249 	/* clear risc events */
250 	for (i = 0; i < 4; i++)
251 		out_be32(&fpm->fpmcev[i], 0xffffffff);
252 
253 	/* clear error */
254 	out_be32(&fpm->fpmrcr, FMFP_RCR_MDEC | FMFP_RCR_IDEC);
255 }
256 
257 static int fm_init_bmi(int fm_idx, struct fm_bmi_common *bmi)
258 {
259 	int blk, i, port_id;
260 	u32 val;
261 	size_t offset;
262 	void *base;
263 
264 	/* alloc free buffer pool in MURAM */
265 	base = fm_muram_alloc(fm_idx, FM_FREE_POOL_SIZE, FM_FREE_POOL_ALIGN);
266 	if (!base) {
267 		printf("%s: no muram for free buffer pool\n", __func__);
268 		return -ENOMEM;
269 	}
270 	offset = base - fm_muram_base(fm_idx);
271 
272 	/* Need 128KB total free buffer pool size */
273 	val = offset / 256;
274 	blk = FM_FREE_POOL_SIZE / 256;
275 	/* in IM, we must not begin from offset 0 in MURAM */
276 	val |= ((blk - 1) << FMBM_CFG1_FBPS_SHIFT);
277 	out_be32(&bmi->fmbm_cfg1, val);
278 
279 	/* disable all BMI interrupt */
280 	out_be32(&bmi->fmbm_ier, FMBM_IER_DISABLE_ALL);
281 
282 	/* clear all events */
283 	out_be32(&bmi->fmbm_ievr, FMBM_IEVR_CLEAR_ALL);
284 
285 	/*
286 	 * set port parameters - FMBM_PP_x
287 	 * max tasks 10G Rx/Tx=12, 1G Rx/Tx 4, others is 1
288 	 * max dma 10G Rx/Tx=3, others is 1
289 	 * set port FIFO size - FMBM_PFS_x
290 	 * 4KB for all Rx and Tx ports
291 	 */
292 	/* offline/parser port */
293 	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
294 		port_id = OH_PORT_ID_BASE + i - 1;
295 		/* max tasks=1, max dma=1, no extra */
296 		out_be32(&bmi->fmbm_pp[port_id], 0);
297 		/* port FIFO size - 256 bytes, no extra */
298 		out_be32(&bmi->fmbm_pfs[port_id], 0);
299 	}
300 	/* Rx 1G port */
301 	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
302 		port_id = RX_PORT_1G_BASE + i - 1;
303 		/* max tasks=4, max dma=1, no extra */
304 		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
305 		/* FIFO size - 4KB, no extra */
306 		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
307 	}
308 	/* Tx 1G port FIFO size - 4KB, no extra */
309 	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
310 		port_id = TX_PORT_1G_BASE + i - 1;
311 		/* max tasks=4, max dma=1, no extra */
312 		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
313 		/* FIFO size - 4KB, no extra */
314 		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
315 	}
316 	/* Rx 10G port */
317 	port_id = RX_PORT_10G_BASE - 1;
318 	/* max tasks=12, max dma=3, no extra */
319 	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
320 	/* FIFO size - 4KB, no extra */
321 	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
322 
323 	/* Tx 10G port */
324 	port_id = TX_PORT_10G_BASE - 1;
325 	/* max tasks=12, max dma=3, no extra */
326 	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
327 	/* FIFO size - 4KB, no extra */
328 	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
329 
330 	/* initialize internal buffers data base (linked list) */
331 	out_be32(&bmi->fmbm_init, FMBM_INIT_START);
332 
333 	return 0;
334 }
335 
336 static void fm_init_qmi(struct fm_qmi_common *qmi)
337 {
338 	/* disable all error interrupts */
339 	out_be32(&qmi->fmqm_eien, FMQM_EIEN_DISABLE_ALL);
340 	/* clear all error events */
341 	out_be32(&qmi->fmqm_eie, FMQM_EIE_CLEAR_ALL);
342 
343 	/* disable all interrupts */
344 	out_be32(&qmi->fmqm_ien, FMQM_IEN_DISABLE_ALL);
345 	/* clear all interrupts */
346 	out_be32(&qmi->fmqm_ie, FMQM_IE_CLEAR_ALL);
347 }
348 
349 /* Init common part of FM, index is fm num# like fm as above */
350 int fm_init_common(int index, struct ccsr_fman *reg)
351 {
352 	int rc;
353 #if defined(CONFIG_SYS_QE_FMAN_FW_IN_NOR)
354 	void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR;
355 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_NAND)
356 	size_t fw_length = CONFIG_SYS_QE_FMAN_FW_LENGTH;
357 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
358 
359 	rc = nand_read(get_nand_dev_by_index(0),
360 		       (loff_t)CONFIG_SYS_FMAN_FW_ADDR,
361 		       &fw_length, (u_char *)addr);
362 	if (rc == -EUCLEAN) {
363 		printf("NAND read of FMAN firmware at offset 0x%x failed %d\n",
364 			CONFIG_SYS_FMAN_FW_ADDR, rc);
365 	}
366 #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
367 	struct spi_flash *ucode_flash;
368 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
369 	int ret = 0;
370 
371 #ifdef CONFIG_DM_SPI_FLASH
372 	struct udevice *new;
373 
374 	/* speed and mode will be read from DT */
375 	ret = spi_flash_probe_bus_cs(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
376 				     0, 0, &new);
377 
378 	ucode_flash = dev_get_uclass_priv(new);
379 #else
380 	ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
381 			CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE);
382 #endif
383 	if (!ucode_flash)
384 		printf("SF: probe for ucode failed\n");
385 	else {
386 		ret = spi_flash_read(ucode_flash, CONFIG_SYS_FMAN_FW_ADDR,
387 				CONFIG_SYS_QE_FMAN_FW_LENGTH, addr);
388 		if (ret)
389 			printf("SF: read for ucode failed\n");
390 		spi_flash_free(ucode_flash);
391 	}
392 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
393 	int dev = CONFIG_SYS_MMC_ENV_DEV;
394 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
395 	u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512;
396 	u32 blk = CONFIG_SYS_FMAN_FW_ADDR / 512;
397 	struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV);
398 
399 	if (!mmc)
400 		printf("\nMMC cannot find device for ucode\n");
401 	else {
402 		printf("\nMMC read: dev # %u, block # %u, count %u ...\n",
403 				dev, blk, cnt);
404 		mmc_init(mmc);
405 		(void)blk_dread(mmc_get_blk_desc(mmc), blk, cnt,
406 						addr);
407 	}
408 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_REMOTE)
409 	void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR;
410 #else
411 	void *addr = NULL;
412 #endif
413 
414 	/* Upload the Fman microcode if it's present */
415 	rc = fman_upload_firmware(index, &reg->fm_imem, addr);
416 	if (rc)
417 		return rc;
418 	env_set_addr("fman_ucode", addr);
419 
420 	fm_init_muram(index, &reg->muram);
421 	fm_init_qmi(&reg->fm_qmi_common);
422 	fm_init_fpm(&reg->fm_fpm);
423 
424 	/* clear DMA status */
425 	setbits_be32(&reg->fm_dma.fmdmsr, FMDMSR_CLEAR_ALL);
426 
427 	/* set DMA mode */
428 	setbits_be32(&reg->fm_dma.fmdmmr, FMDMMR_SBER);
429 
430 	return fm_init_bmi(index, &reg->fm_bmi_common);
431 }
432