xref: /openbmc/u-boot/drivers/net/fm/fm.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * Copyright 2009-2011 Freescale Semiconductor, Inc.
3  *	Dave Liu <daveliu@freescale.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 #include <common.h>
8 #include <malloc.h>
9 #include <asm/io.h>
10 #include <asm/errno.h>
11 
12 #include "fm.h"
13 #include <fsl_qe.h>		/* For struct qe_firmware */
14 
15 #ifdef CONFIG_SYS_QE_FMAN_FW_IN_NAND
16 #include <nand.h>
17 #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
18 #include <spi_flash.h>
19 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
20 #include <mmc.h>
21 #endif
22 
23 struct fm_muram muram[CONFIG_SYS_NUM_FMAN];
24 
25 void *fm_muram_base(int fm_idx)
26 {
27 	return muram[fm_idx].base;
28 }
29 
30 void *fm_muram_alloc(int fm_idx, size_t size, ulong align)
31 {
32 	void *ret;
33 	ulong align_mask;
34 	size_t off;
35 	void *save;
36 
37 	align_mask = align - 1;
38 	save = muram[fm_idx].alloc;
39 
40 	off = (ulong)save & align_mask;
41 	if (off != 0)
42 		muram[fm_idx].alloc += (align - off);
43 	off = size & align_mask;
44 	if (off != 0)
45 		size += (align - off);
46 	if ((muram[fm_idx].alloc + size) >= muram[fm_idx].top) {
47 		muram[fm_idx].alloc = save;
48 		printf("%s: run out of ram.\n", __func__);
49 		return NULL;
50 	}
51 
52 	ret = muram[fm_idx].alloc;
53 	muram[fm_idx].alloc += size;
54 	memset((void *)ret, 0, size);
55 
56 	return ret;
57 }
58 
59 static void fm_init_muram(int fm_idx, void *reg)
60 {
61 	void *base = reg;
62 
63 	muram[fm_idx].base = base;
64 	muram[fm_idx].size = CONFIG_SYS_FM_MURAM_SIZE;
65 	muram[fm_idx].alloc = base + FM_MURAM_RES_SIZE;
66 	muram[fm_idx].top = base + CONFIG_SYS_FM_MURAM_SIZE;
67 }
68 
69 /*
70  * fm_upload_ucode - Fman microcode upload worker function
71  *
72  * This function does the actual uploading of an Fman microcode
73  * to an Fman.
74  */
75 static void fm_upload_ucode(int fm_idx, struct fm_imem *imem,
76 			    u32 *ucode, unsigned int size)
77 {
78 	unsigned int i;
79 	unsigned int timeout = 1000000;
80 
81 	/* enable address auto increase */
82 	out_be32(&imem->iadd, IRAM_IADD_AIE);
83 	/* write microcode to IRAM */
84 	for (i = 0; i < size / 4; i++)
85 		out_be32(&imem->idata, (be32_to_cpu(ucode[i])));
86 
87 	/* verify if the writing is over */
88 	out_be32(&imem->iadd, 0);
89 	while ((in_be32(&imem->idata) != be32_to_cpu(ucode[0])) && --timeout)
90 		;
91 	if (!timeout)
92 		printf("Fman%u: microcode upload timeout\n", fm_idx + 1);
93 
94 	/* enable microcode from IRAM */
95 	out_be32(&imem->iready, IRAM_READY);
96 }
97 
98 /*
99  * Upload an Fman firmware
100  *
101  * This function is similar to qe_upload_firmware(), exception that it uploads
102  * a microcode to the Fman instead of the QE.
103  *
104  * Because the process for uploading a microcode to the Fman is similar for
105  * that of the QE, the QE firmware binary format is used for Fman microcode.
106  * It should be possible to unify these two functions, but for now we keep them
107  * separate.
108  */
109 static int fman_upload_firmware(int fm_idx,
110 				struct fm_imem *fm_imem,
111 				const struct qe_firmware *firmware)
112 {
113 	unsigned int i;
114 	u32 crc;
115 	size_t calc_size = sizeof(struct qe_firmware);
116 	size_t length;
117 	const struct qe_header *hdr;
118 
119 	if (!firmware) {
120 		printf("Fman%u: Invalid address for firmware\n", fm_idx + 1);
121 		return -EINVAL;
122 	}
123 
124 	hdr = &firmware->header;
125 	length = be32_to_cpu(hdr->length);
126 
127 	/* Check the magic */
128 	if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
129 		(hdr->magic[2] != 'F')) {
130 		printf("Fman%u: Data at %p is not a firmware\n", fm_idx + 1,
131 		       firmware);
132 		return -EPERM;
133 	}
134 
135 	/* Check the version */
136 	if (hdr->version != 1) {
137 		printf("Fman%u: Unsupported firmware version %u\n", fm_idx + 1,
138 		       hdr->version);
139 		return -EPERM;
140 	}
141 
142 	/* Validate some of the fields */
143 	if ((firmware->count != 1)) {
144 		printf("Fman%u: Invalid data in firmware header\n", fm_idx + 1);
145 		return -EINVAL;
146 	}
147 
148 	/* Validate the length and check if there's a CRC */
149 	calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
150 
151 	for (i = 0; i < firmware->count; i++)
152 		/*
153 		 * For situations where the second RISC uses the same microcode
154 		 * as the first, the 'code_offset' and 'count' fields will be
155 		 * zero, so it's okay to add those.
156 		 */
157 		calc_size += sizeof(u32) *
158 			be32_to_cpu(firmware->microcode[i].count);
159 
160 	/* Validate the length */
161 	if (length != calc_size + sizeof(u32)) {
162 		printf("Fman%u: Invalid length in firmware header\n",
163 		       fm_idx + 1);
164 		return -EPERM;
165 	}
166 
167 	/*
168 	 * Validate the CRC.  We would normally call crc32_no_comp(), but that
169 	 * function isn't available unless you turn on JFFS support.
170 	 */
171 	crc = be32_to_cpu(*(u32 *)((void *)firmware + calc_size));
172 	if (crc != (crc32(-1, (const void *)firmware, calc_size) ^ -1)) {
173 		printf("Fman%u: Firmware CRC is invalid\n", fm_idx + 1);
174 		return -EIO;
175 	}
176 
177 	/* Loop through each microcode. */
178 	for (i = 0; i < firmware->count; i++) {
179 		const struct qe_microcode *ucode = &firmware->microcode[i];
180 
181 		/* Upload a microcode if it's present */
182 		if (be32_to_cpu(ucode->code_offset)) {
183 			u32 ucode_size;
184 			u32 *code;
185 			printf("Fman%u: Uploading microcode version %u.%u.%u\n",
186 			       fm_idx + 1, ucode->major, ucode->minor,
187 			       ucode->revision);
188 			code = (void *)firmware +
189 			       be32_to_cpu(ucode->code_offset);
190 			ucode_size = sizeof(u32) * be32_to_cpu(ucode->count);
191 			fm_upload_ucode(fm_idx, fm_imem, code, ucode_size);
192 		}
193 	}
194 
195 	return 0;
196 }
197 
198 static u32 fm_assign_risc(int port_id)
199 {
200 	u32 risc_sel, val;
201 	risc_sel = (port_id & 0x1) ? FMFPPRC_RISC2 : FMFPPRC_RISC1;
202 	val = (port_id << FMFPPRC_PORTID_SHIFT) & FMFPPRC_PORTID_MASK;
203 	val |= ((risc_sel << FMFPPRC_ORA_SHIFT) | risc_sel);
204 
205 	return val;
206 }
207 
208 static void fm_init_fpm(struct fm_fpm *fpm)
209 {
210 	int i, port_id;
211 	u32 val;
212 
213 	setbits_be32(&fpm->fmfpee, FMFPEE_EHM | FMFPEE_UEC |
214 				   FMFPEE_CER | FMFPEE_DER);
215 
216 	/* IM mode, each even port ID to RISC#1, each odd port ID to RISC#2 */
217 
218 	/* offline/parser port */
219 	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
220 		port_id = OH_PORT_ID_BASE + i;
221 		val = fm_assign_risc(port_id);
222 		out_be32(&fpm->fpmprc, val);
223 	}
224 	/* Rx 1G port */
225 	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
226 		port_id = RX_PORT_1G_BASE + i;
227 		val = fm_assign_risc(port_id);
228 		out_be32(&fpm->fpmprc, val);
229 	}
230 	/* Tx 1G port */
231 	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
232 		port_id = TX_PORT_1G_BASE + i;
233 		val = fm_assign_risc(port_id);
234 		out_be32(&fpm->fpmprc, val);
235 	}
236 	/* Rx 10G port */
237 	port_id = RX_PORT_10G_BASE;
238 	val = fm_assign_risc(port_id);
239 	out_be32(&fpm->fpmprc, val);
240 	/* Tx 10G port */
241 	port_id = TX_PORT_10G_BASE;
242 	val = fm_assign_risc(port_id);
243 	out_be32(&fpm->fpmprc, val);
244 
245 	/* disable the dispatch limit in IM case */
246 	out_be32(&fpm->fpmflc, FMFP_FLC_DISP_LIM_NONE);
247 	/* clear events */
248 	out_be32(&fpm->fmfpee, FMFPEE_CLEAR_EVENT);
249 
250 	/* clear risc events */
251 	for (i = 0; i < 4; i++)
252 		out_be32(&fpm->fpmcev[i], 0xffffffff);
253 
254 	/* clear error */
255 	out_be32(&fpm->fpmrcr, FMFP_RCR_MDEC | FMFP_RCR_IDEC);
256 }
257 
258 static int fm_init_bmi(int fm_idx, struct fm_bmi_common *bmi)
259 {
260 	int blk, i, port_id;
261 	u32 val;
262 	size_t offset;
263 	void *base;
264 
265 	/* alloc free buffer pool in MURAM */
266 	base = fm_muram_alloc(fm_idx, FM_FREE_POOL_SIZE, FM_FREE_POOL_ALIGN);
267 	if (!base) {
268 		printf("%s: no muram for free buffer pool\n", __func__);
269 		return -ENOMEM;
270 	}
271 	offset = base - fm_muram_base(fm_idx);
272 
273 	/* Need 128KB total free buffer pool size */
274 	val = offset / 256;
275 	blk = FM_FREE_POOL_SIZE / 256;
276 	/* in IM, we must not begin from offset 0 in MURAM */
277 	val |= ((blk - 1) << FMBM_CFG1_FBPS_SHIFT);
278 	out_be32(&bmi->fmbm_cfg1, val);
279 
280 	/* disable all BMI interrupt */
281 	out_be32(&bmi->fmbm_ier, FMBM_IER_DISABLE_ALL);
282 
283 	/* clear all events */
284 	out_be32(&bmi->fmbm_ievr, FMBM_IEVR_CLEAR_ALL);
285 
286 	/*
287 	 * set port parameters - FMBM_PP_x
288 	 * max tasks 10G Rx/Tx=12, 1G Rx/Tx 4, others is 1
289 	 * max dma 10G Rx/Tx=3, others is 1
290 	 * set port FIFO size - FMBM_PFS_x
291 	 * 4KB for all Rx and Tx ports
292 	 */
293 	/* offline/parser port */
294 	for (i = 0; i < MAX_NUM_OH_PORT; i++) {
295 		port_id = OH_PORT_ID_BASE + i - 1;
296 		/* max tasks=1, max dma=1, no extra */
297 		out_be32(&bmi->fmbm_pp[port_id], 0);
298 		/* port FIFO size - 256 bytes, no extra */
299 		out_be32(&bmi->fmbm_pfs[port_id], 0);
300 	}
301 	/* Rx 1G port */
302 	for (i = 0; i < MAX_NUM_RX_PORT_1G; i++) {
303 		port_id = RX_PORT_1G_BASE + i - 1;
304 		/* max tasks=4, max dma=1, no extra */
305 		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
306 		/* FIFO size - 4KB, no extra */
307 		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
308 	}
309 	/* Tx 1G port FIFO size - 4KB, no extra */
310 	for (i = 0; i < MAX_NUM_TX_PORT_1G; i++) {
311 		port_id = TX_PORT_1G_BASE + i - 1;
312 		/* max tasks=4, max dma=1, no extra */
313 		out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(4));
314 		/* FIFO size - 4KB, no extra */
315 		out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
316 	}
317 	/* Rx 10G port */
318 	port_id = RX_PORT_10G_BASE - 1;
319 	/* max tasks=12, max dma=3, no extra */
320 	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
321 	/* FIFO size - 4KB, no extra */
322 	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
323 
324 	/* Tx 10G port */
325 	port_id = TX_PORT_10G_BASE - 1;
326 	/* max tasks=12, max dma=3, no extra */
327 	out_be32(&bmi->fmbm_pp[port_id], FMBM_PP_MXT(12) | FMBM_PP_MXD(3));
328 	/* FIFO size - 4KB, no extra */
329 	out_be32(&bmi->fmbm_pfs[port_id], FMBM_PFS_IFSZ(0xf));
330 
331 	/* initialize internal buffers data base (linked list) */
332 	out_be32(&bmi->fmbm_init, FMBM_INIT_START);
333 
334 	return 0;
335 }
336 
337 static void fm_init_qmi(struct fm_qmi_common *qmi)
338 {
339 	/* disable enqueue and dequeue of QMI */
340 	clrbits_be32(&qmi->fmqm_gc, FMQM_GC_ENQ_EN | FMQM_GC_DEQ_EN);
341 
342 	/* disable all error interrupts */
343 	out_be32(&qmi->fmqm_eien, FMQM_EIEN_DISABLE_ALL);
344 	/* clear all error events */
345 	out_be32(&qmi->fmqm_eie, FMQM_EIE_CLEAR_ALL);
346 
347 	/* disable all interrupts */
348 	out_be32(&qmi->fmqm_ien, FMQM_IEN_DISABLE_ALL);
349 	/* clear all interrupts */
350 	out_be32(&qmi->fmqm_ie, FMQM_IE_CLEAR_ALL);
351 }
352 
353 /* Init common part of FM, index is fm num# like fm as above */
354 int fm_init_common(int index, struct ccsr_fman *reg)
355 {
356 	int rc;
357 #if defined(CONFIG_SYS_QE_FMAN_FW_IN_NOR)
358 	void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR;
359 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_NAND)
360 	size_t fw_length = CONFIG_SYS_QE_FMAN_FW_LENGTH;
361 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
362 
363 	rc = nand_read(&nand_info[0], (loff_t)CONFIG_SYS_FMAN_FW_ADDR,
364 		       &fw_length, (u_char *)addr);
365 	if (rc == -EUCLEAN) {
366 		printf("NAND read of FMAN firmware at offset 0x%x failed %d\n",
367 			CONFIG_SYS_FMAN_FW_ADDR, rc);
368 	}
369 #elif defined(CONFIG_SYS_QE_FW_IN_SPIFLASH)
370 	struct spi_flash *ucode_flash;
371 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
372 	int ret = 0;
373 
374 	ucode_flash = spi_flash_probe(CONFIG_ENV_SPI_BUS, CONFIG_ENV_SPI_CS,
375 			CONFIG_ENV_SPI_MAX_HZ, CONFIG_ENV_SPI_MODE);
376 	if (!ucode_flash)
377 		printf("SF: probe for ucode failed\n");
378 	else {
379 		ret = spi_flash_read(ucode_flash, CONFIG_SYS_FMAN_FW_ADDR,
380 				CONFIG_SYS_QE_FMAN_FW_LENGTH, addr);
381 		if (ret)
382 			printf("SF: read for ucode failed\n");
383 		spi_flash_free(ucode_flash);
384 	}
385 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_MMC)
386 	int dev = CONFIG_SYS_MMC_ENV_DEV;
387 	void *addr = malloc(CONFIG_SYS_QE_FMAN_FW_LENGTH);
388 	u32 cnt = CONFIG_SYS_QE_FMAN_FW_LENGTH / 512;
389 	u32 blk = CONFIG_SYS_FMAN_FW_ADDR / 512;
390 	struct mmc *mmc = find_mmc_device(CONFIG_SYS_MMC_ENV_DEV);
391 
392 	if (!mmc)
393 		printf("\nMMC cannot find device for ucode\n");
394 	else {
395 		printf("\nMMC read: dev # %u, block # %u, count %u ...\n",
396 				dev, blk, cnt);
397 		mmc_init(mmc);
398 		(void)mmc->block_dev.block_read(&mmc->block_dev, blk, cnt,
399 						addr);
400 		/* flush cache after read */
401 		flush_cache((ulong)addr, cnt * 512);
402 	}
403 #elif defined(CONFIG_SYS_QE_FMAN_FW_IN_REMOTE)
404 	void *addr = (void *)CONFIG_SYS_FMAN_FW_ADDR;
405 #else
406 	void *addr = NULL;
407 #endif
408 
409 	/* Upload the Fman microcode if it's present */
410 	rc = fman_upload_firmware(index, &reg->fm_imem, addr);
411 	if (rc)
412 		return rc;
413 	setenv_addr("fman_ucode", addr);
414 
415 	fm_init_muram(index, &reg->muram);
416 	fm_init_qmi(&reg->fm_qmi_common);
417 	fm_init_fpm(&reg->fm_fpm);
418 
419 	/* clear DMA status */
420 	setbits_be32(&reg->fm_dma.fmdmsr, FMDMSR_CLEAR_ALL);
421 
422 	/* set DMA mode */
423 	setbits_be32(&reg->fm_dma.fmdmmr, FMDMMR_SBER);
424 
425 	return fm_init_bmi(index, &reg->fm_bmi_common);
426 }
427