1 /* 2 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com> 3 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org> 4 * (C) Copyright 2008 Armadeus Systems nc 5 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de> 6 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de> 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <dm.h> 13 #include <malloc.h> 14 #include <memalign.h> 15 #include <miiphy.h> 16 #include <net.h> 17 #include <netdev.h> 18 #include "fec_mxc.h" 19 20 #include <asm/io.h> 21 #include <linux/errno.h> 22 #include <linux/compiler.h> 23 24 #include <asm/arch/clock.h> 25 #include <asm/arch/imx-regs.h> 26 #include <asm/mach-imx/sys_proto.h> 27 28 DECLARE_GLOBAL_DATA_PTR; 29 30 /* 31 * Timeout the transfer after 5 mS. This is usually a bit more, since 32 * the code in the tightloops this timeout is used in adds some overhead. 33 */ 34 #define FEC_XFER_TIMEOUT 5000 35 36 /* 37 * The standard 32-byte DMA alignment does not work on mx6solox, which requires 38 * 64-byte alignment in the DMA RX FEC buffer. 39 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also 40 * satisfies the alignment on other SoCs (32-bytes) 41 */ 42 #define FEC_DMA_RX_MINALIGN 64 43 44 #ifndef CONFIG_MII 45 #error "CONFIG_MII has to be defined!" 46 #endif 47 48 #ifndef CONFIG_FEC_XCV_TYPE 49 #define CONFIG_FEC_XCV_TYPE MII100 50 #endif 51 52 /* 53 * The i.MX28 operates with packets in big endian. We need to swap them before 54 * sending and after receiving. 55 */ 56 #ifdef CONFIG_MX28 57 #define CONFIG_FEC_MXC_SWAP_PACKET 58 #endif 59 60 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) 61 62 /* Check various alignment issues at compile time */ 63 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) 64 #error "ARCH_DMA_MINALIGN must be multiple of 16!" 65 #endif 66 67 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ 68 (PKTALIGN % ARCH_DMA_MINALIGN != 0)) 69 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" 70 #endif 71 72 #undef DEBUG 73 74 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 75 static void swap_packet(uint32_t *packet, int length) 76 { 77 int i; 78 79 for (i = 0; i < DIV_ROUND_UP(length, 4); i++) 80 packet[i] = __swab32(packet[i]); 81 } 82 #endif 83 84 /* MII-interface related functions */ 85 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr, 86 uint8_t regaddr) 87 { 88 uint32_t reg; /* convenient holder for the PHY register */ 89 uint32_t phy; /* convenient holder for the PHY */ 90 uint32_t start; 91 int val; 92 93 /* 94 * reading from any PHY's register is done by properly 95 * programming the FEC's MII data register. 96 */ 97 writel(FEC_IEVENT_MII, ð->ievent); 98 reg = regaddr << FEC_MII_DATA_RA_SHIFT; 99 phy = phyaddr << FEC_MII_DATA_PA_SHIFT; 100 101 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | 102 phy | reg, ð->mii_data); 103 104 /* wait for the related interrupt */ 105 start = get_timer(0); 106 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 107 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 108 printf("Read MDIO failed...\n"); 109 return -1; 110 } 111 } 112 113 /* clear mii interrupt bit */ 114 writel(FEC_IEVENT_MII, ð->ievent); 115 116 /* it's now safe to read the PHY's register */ 117 val = (unsigned short)readl(ð->mii_data); 118 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, 119 regaddr, val); 120 return val; 121 } 122 123 static void fec_mii_setspeed(struct ethernet_regs *eth) 124 { 125 /* 126 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock 127 * and do not drop the Preamble. 128 * 129 * The i.MX28 and i.MX6 types have another field in the MSCR (aka 130 * MII_SPEED) register that defines the MDIO output hold time. Earlier 131 * versions are RAZ there, so just ignore the difference and write the 132 * register always. 133 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 134 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 135 * output. 136 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 137 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 138 * holdtime cannot result in a value greater than 3. 139 */ 140 u32 pclk = imx_get_fecclk(); 141 u32 speed = DIV_ROUND_UP(pclk, 5000000); 142 u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; 143 #ifdef FEC_QUIRK_ENET_MAC 144 speed--; 145 #endif 146 writel(speed << 1 | hold << 8, ð->mii_speed); 147 debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); 148 } 149 150 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr, 151 uint8_t regaddr, uint16_t data) 152 { 153 uint32_t reg; /* convenient holder for the PHY register */ 154 uint32_t phy; /* convenient holder for the PHY */ 155 uint32_t start; 156 157 reg = regaddr << FEC_MII_DATA_RA_SHIFT; 158 phy = phyaddr << FEC_MII_DATA_PA_SHIFT; 159 160 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | 161 FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); 162 163 /* wait for the MII interrupt */ 164 start = get_timer(0); 165 while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { 166 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { 167 printf("Write MDIO failed...\n"); 168 return -1; 169 } 170 } 171 172 /* clear MII interrupt bit */ 173 writel(FEC_IEVENT_MII, ð->ievent); 174 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, 175 regaddr, data); 176 177 return 0; 178 } 179 180 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr, 181 int regaddr) 182 { 183 return fec_mdio_read(bus->priv, phyaddr, regaddr); 184 } 185 186 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr, 187 int regaddr, u16 data) 188 { 189 return fec_mdio_write(bus->priv, phyaddr, regaddr, data); 190 } 191 192 #ifndef CONFIG_PHYLIB 193 static int miiphy_restart_aneg(struct eth_device *dev) 194 { 195 int ret = 0; 196 #if !defined(CONFIG_FEC_MXC_NO_ANEG) 197 struct fec_priv *fec = (struct fec_priv *)dev->priv; 198 struct ethernet_regs *eth = fec->bus->priv; 199 200 /* 201 * Wake up from sleep if necessary 202 * Reset PHY, then delay 300ns 203 */ 204 #ifdef CONFIG_MX27 205 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); 206 #endif 207 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); 208 udelay(1000); 209 210 /* Set the auto-negotiation advertisement register bits */ 211 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, 212 LPA_100FULL | LPA_100HALF | LPA_10FULL | 213 LPA_10HALF | PHY_ANLPAR_PSB_802_3); 214 fec_mdio_write(eth, fec->phy_id, MII_BMCR, 215 BMCR_ANENABLE | BMCR_ANRESTART); 216 217 if (fec->mii_postcall) 218 ret = fec->mii_postcall(fec->phy_id); 219 220 #endif 221 return ret; 222 } 223 224 #ifndef CONFIG_FEC_FIXED_SPEED 225 static int miiphy_wait_aneg(struct eth_device *dev) 226 { 227 uint32_t start; 228 int status; 229 struct fec_priv *fec = (struct fec_priv *)dev->priv; 230 struct ethernet_regs *eth = fec->bus->priv; 231 232 /* Wait for AN completion */ 233 start = get_timer(0); 234 do { 235 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 236 printf("%s: Autonegotiation timeout\n", dev->name); 237 return -1; 238 } 239 240 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); 241 if (status < 0) { 242 printf("%s: Autonegotiation failed. status: %d\n", 243 dev->name, status); 244 return -1; 245 } 246 } while (!(status & BMSR_LSTATUS)); 247 248 return 0; 249 } 250 #endif /* CONFIG_FEC_FIXED_SPEED */ 251 #endif 252 253 static int fec_rx_task_enable(struct fec_priv *fec) 254 { 255 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); 256 return 0; 257 } 258 259 static int fec_rx_task_disable(struct fec_priv *fec) 260 { 261 return 0; 262 } 263 264 static int fec_tx_task_enable(struct fec_priv *fec) 265 { 266 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); 267 return 0; 268 } 269 270 static int fec_tx_task_disable(struct fec_priv *fec) 271 { 272 return 0; 273 } 274 275 /** 276 * Initialize receive task's buffer descriptors 277 * @param[in] fec all we know about the device yet 278 * @param[in] count receive buffer count to be allocated 279 * @param[in] dsize desired size of each receive buffer 280 * @return 0 on success 281 * 282 * Init all RX descriptors to default values. 283 */ 284 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) 285 { 286 uint32_t size; 287 uint8_t *data; 288 int i; 289 290 /* 291 * Reload the RX descriptors with default values and wipe 292 * the RX buffers. 293 */ 294 size = roundup(dsize, ARCH_DMA_MINALIGN); 295 for (i = 0; i < count; i++) { 296 data = (uint8_t *)fec->rbd_base[i].data_pointer; 297 memset(data, 0, dsize); 298 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 299 300 fec->rbd_base[i].status = FEC_RBD_EMPTY; 301 fec->rbd_base[i].data_length = 0; 302 } 303 304 /* Mark the last RBD to close the ring. */ 305 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 306 fec->rbd_index = 0; 307 308 flush_dcache_range((unsigned)fec->rbd_base, 309 (unsigned)fec->rbd_base + size); 310 } 311 312 /** 313 * Initialize transmit task's buffer descriptors 314 * @param[in] fec all we know about the device yet 315 * 316 * Transmit buffers are created externally. We only have to init the BDs here.\n 317 * Note: There is a race condition in the hardware. When only one BD is in 318 * use it must be marked with the WRAP bit to use it for every transmitt. 319 * This bit in combination with the READY bit results into double transmit 320 * of each data buffer. It seems the state machine checks READY earlier then 321 * resetting it after the first transfer. 322 * Using two BDs solves this issue. 323 */ 324 static void fec_tbd_init(struct fec_priv *fec) 325 { 326 unsigned addr = (unsigned)fec->tbd_base; 327 unsigned size = roundup(2 * sizeof(struct fec_bd), 328 ARCH_DMA_MINALIGN); 329 330 memset(fec->tbd_base, 0, size); 331 fec->tbd_base[0].status = 0; 332 fec->tbd_base[1].status = FEC_TBD_WRAP; 333 fec->tbd_index = 0; 334 flush_dcache_range(addr, addr + size); 335 } 336 337 /** 338 * Mark the given read buffer descriptor as free 339 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 340 * @param[in] prbd buffer descriptor to mark free again 341 */ 342 static void fec_rbd_clean(int last, struct fec_bd *prbd) 343 { 344 unsigned short flags = FEC_RBD_EMPTY; 345 if (last) 346 flags |= FEC_RBD_WRAP; 347 writew(flags, &prbd->status); 348 writew(0, &prbd->data_length); 349 } 350 351 static int fec_get_hwaddr(int dev_id, unsigned char *mac) 352 { 353 imx_get_mac_from_fuse(dev_id, mac); 354 return !is_valid_ethaddr(mac); 355 } 356 357 #ifdef CONFIG_DM_ETH 358 static int fecmxc_set_hwaddr(struct udevice *dev) 359 #else 360 static int fec_set_hwaddr(struct eth_device *dev) 361 #endif 362 { 363 #ifdef CONFIG_DM_ETH 364 struct fec_priv *fec = dev_get_priv(dev); 365 struct eth_pdata *pdata = dev_get_platdata(dev); 366 uchar *mac = pdata->enetaddr; 367 #else 368 uchar *mac = dev->enetaddr; 369 struct fec_priv *fec = (struct fec_priv *)dev->priv; 370 #endif 371 372 writel(0, &fec->eth->iaddr1); 373 writel(0, &fec->eth->iaddr2); 374 writel(0, &fec->eth->gaddr1); 375 writel(0, &fec->eth->gaddr2); 376 377 /* Set physical address */ 378 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], 379 &fec->eth->paddr1); 380 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); 381 382 return 0; 383 } 384 385 /* Do initial configuration of the FEC registers */ 386 static void fec_reg_setup(struct fec_priv *fec) 387 { 388 uint32_t rcntrl; 389 390 /* Set interrupt mask register */ 391 writel(0x00000000, &fec->eth->imask); 392 393 /* Clear FEC-Lite interrupt event register(IEVENT) */ 394 writel(0xffffffff, &fec->eth->ievent); 395 396 /* Set FEC-Lite receive control register(R_CNTRL): */ 397 398 /* Start with frame length = 1518, common for all modes. */ 399 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; 400 if (fec->xcv_type != SEVENWIRE) /* xMII modes */ 401 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; 402 if (fec->xcv_type == RGMII) 403 rcntrl |= FEC_RCNTRL_RGMII; 404 else if (fec->xcv_type == RMII) 405 rcntrl |= FEC_RCNTRL_RMII; 406 407 writel(rcntrl, &fec->eth->r_cntrl); 408 } 409 410 /** 411 * Start the FEC engine 412 * @param[in] dev Our device to handle 413 */ 414 #ifdef CONFIG_DM_ETH 415 static int fec_open(struct udevice *dev) 416 #else 417 static int fec_open(struct eth_device *edev) 418 #endif 419 { 420 #ifdef CONFIG_DM_ETH 421 struct fec_priv *fec = dev_get_priv(dev); 422 #else 423 struct fec_priv *fec = (struct fec_priv *)edev->priv; 424 #endif 425 int speed; 426 uint32_t addr, size; 427 int i; 428 429 debug("fec_open: fec_open(dev)\n"); 430 /* full-duplex, heartbeat disabled */ 431 writel(1 << 2, &fec->eth->x_cntrl); 432 fec->rbd_index = 0; 433 434 /* Invalidate all descriptors */ 435 for (i = 0; i < FEC_RBD_NUM - 1; i++) 436 fec_rbd_clean(0, &fec->rbd_base[i]); 437 fec_rbd_clean(1, &fec->rbd_base[i]); 438 439 /* Flush the descriptors into RAM */ 440 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), 441 ARCH_DMA_MINALIGN); 442 addr = (uint32_t)fec->rbd_base; 443 flush_dcache_range(addr, addr + size); 444 445 #ifdef FEC_QUIRK_ENET_MAC 446 /* Enable ENET HW endian SWAP */ 447 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, 448 &fec->eth->ecntrl); 449 /* Enable ENET store and forward mode */ 450 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, 451 &fec->eth->x_wmrk); 452 #endif 453 /* Enable FEC-Lite controller */ 454 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, 455 &fec->eth->ecntrl); 456 457 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) 458 udelay(100); 459 460 /* setup the MII gasket for RMII mode */ 461 /* disable the gasket */ 462 writew(0, &fec->eth->miigsk_enr); 463 464 /* wait for the gasket to be disabled */ 465 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) 466 udelay(2); 467 468 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ 469 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); 470 471 /* re-enable the gasket */ 472 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); 473 474 /* wait until MII gasket is ready */ 475 int max_loops = 10; 476 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { 477 if (--max_loops <= 0) { 478 printf("WAIT for MII Gasket ready timed out\n"); 479 break; 480 } 481 } 482 #endif 483 484 #ifdef CONFIG_PHYLIB 485 { 486 /* Start up the PHY */ 487 int ret = phy_startup(fec->phydev); 488 489 if (ret) { 490 printf("Could not initialize PHY %s\n", 491 fec->phydev->dev->name); 492 return ret; 493 } 494 speed = fec->phydev->speed; 495 } 496 #elif CONFIG_FEC_FIXED_SPEED 497 speed = CONFIG_FEC_FIXED_SPEED; 498 #else 499 miiphy_wait_aneg(edev); 500 speed = miiphy_speed(edev->name, fec->phy_id); 501 miiphy_duplex(edev->name, fec->phy_id); 502 #endif 503 504 #ifdef FEC_QUIRK_ENET_MAC 505 { 506 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; 507 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; 508 if (speed == _1000BASET) 509 ecr |= FEC_ECNTRL_SPEED; 510 else if (speed != _100BASET) 511 rcr |= FEC_RCNTRL_RMII_10T; 512 writel(ecr, &fec->eth->ecntrl); 513 writel(rcr, &fec->eth->r_cntrl); 514 } 515 #endif 516 debug("%s:Speed=%i\n", __func__, speed); 517 518 /* Enable SmartDMA receive task */ 519 fec_rx_task_enable(fec); 520 521 udelay(100000); 522 return 0; 523 } 524 525 #ifdef CONFIG_DM_ETH 526 static int fecmxc_init(struct udevice *dev) 527 #else 528 static int fec_init(struct eth_device *dev, bd_t *bd) 529 #endif 530 { 531 #ifdef CONFIG_DM_ETH 532 struct fec_priv *fec = dev_get_priv(dev); 533 #else 534 struct fec_priv *fec = (struct fec_priv *)dev->priv; 535 #endif 536 uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; 537 int i; 538 539 /* Initialize MAC address */ 540 #ifdef CONFIG_DM_ETH 541 fecmxc_set_hwaddr(dev); 542 #else 543 fec_set_hwaddr(dev); 544 #endif 545 546 /* Setup transmit descriptors, there are two in total. */ 547 fec_tbd_init(fec); 548 549 /* Setup receive descriptors. */ 550 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); 551 552 fec_reg_setup(fec); 553 554 if (fec->xcv_type != SEVENWIRE) 555 fec_mii_setspeed(fec->bus->priv); 556 557 /* Set Opcode/Pause Duration Register */ 558 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ 559 writel(0x2, &fec->eth->x_wmrk); 560 561 /* Set multicast address filter */ 562 writel(0x00000000, &fec->eth->gaddr1); 563 writel(0x00000000, &fec->eth->gaddr2); 564 565 /* Do not access reserved register for i.MX6UL */ 566 if (!is_mx6ul() && !is_mx6ull()) { 567 /* clear MIB RAM */ 568 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) 569 writel(0, i); 570 571 /* FIFO receive start register */ 572 writel(0x520, &fec->eth->r_fstart); 573 } 574 575 /* size and address of each buffer */ 576 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); 577 writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); 578 writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); 579 580 #ifndef CONFIG_PHYLIB 581 if (fec->xcv_type != SEVENWIRE) 582 miiphy_restart_aneg(dev); 583 #endif 584 fec_open(dev); 585 return 0; 586 } 587 588 /** 589 * Halt the FEC engine 590 * @param[in] dev Our device to handle 591 */ 592 #ifdef CONFIG_DM_ETH 593 static void fecmxc_halt(struct udevice *dev) 594 #else 595 static void fec_halt(struct eth_device *dev) 596 #endif 597 { 598 #ifdef CONFIG_DM_ETH 599 struct fec_priv *fec = dev_get_priv(dev); 600 #else 601 struct fec_priv *fec = (struct fec_priv *)dev->priv; 602 #endif 603 int counter = 0xffff; 604 605 /* issue graceful stop command to the FEC transmitter if necessary */ 606 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), 607 &fec->eth->x_cntrl); 608 609 debug("eth_halt: wait for stop regs\n"); 610 /* wait for graceful stop to register */ 611 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) 612 udelay(1); 613 614 /* Disable SmartDMA tasks */ 615 fec_tx_task_disable(fec); 616 fec_rx_task_disable(fec); 617 618 /* 619 * Disable the Ethernet Controller 620 * Note: this will also reset the BD index counter! 621 */ 622 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, 623 &fec->eth->ecntrl); 624 fec->rbd_index = 0; 625 fec->tbd_index = 0; 626 debug("eth_halt: done\n"); 627 } 628 629 /** 630 * Transmit one frame 631 * @param[in] dev Our ethernet device to handle 632 * @param[in] packet Pointer to the data to be transmitted 633 * @param[in] length Data count in bytes 634 * @return 0 on success 635 */ 636 #ifdef CONFIG_DM_ETH 637 static int fecmxc_send(struct udevice *dev, void *packet, int length) 638 #else 639 static int fec_send(struct eth_device *dev, void *packet, int length) 640 #endif 641 { 642 unsigned int status; 643 uint32_t size, end; 644 uint32_t addr; 645 int timeout = FEC_XFER_TIMEOUT; 646 int ret = 0; 647 648 /* 649 * This routine transmits one frame. This routine only accepts 650 * 6-byte Ethernet addresses. 651 */ 652 #ifdef CONFIG_DM_ETH 653 struct fec_priv *fec = dev_get_priv(dev); 654 #else 655 struct fec_priv *fec = (struct fec_priv *)dev->priv; 656 #endif 657 658 /* 659 * Check for valid length of data. 660 */ 661 if ((length > 1500) || (length <= 0)) { 662 printf("Payload (%d) too large\n", length); 663 return -1; 664 } 665 666 /* 667 * Setup the transmit buffer. We are always using the first buffer for 668 * transmission, the second will be empty and only used to stop the DMA 669 * engine. We also flush the packet to RAM here to avoid cache trouble. 670 */ 671 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 672 swap_packet((uint32_t *)packet, length); 673 #endif 674 675 addr = (uint32_t)packet; 676 end = roundup(addr + length, ARCH_DMA_MINALIGN); 677 addr &= ~(ARCH_DMA_MINALIGN - 1); 678 flush_dcache_range(addr, end); 679 680 writew(length, &fec->tbd_base[fec->tbd_index].data_length); 681 writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); 682 683 /* 684 * update BD's status now 685 * This block: 686 * - is always the last in a chain (means no chain) 687 * - should transmitt the CRC 688 * - might be the last BD in the list, so the address counter should 689 * wrap (-> keep the WRAP flag) 690 */ 691 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; 692 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; 693 writew(status, &fec->tbd_base[fec->tbd_index].status); 694 695 /* 696 * Flush data cache. This code flushes both TX descriptors to RAM. 697 * After this code, the descriptors will be safely in RAM and we 698 * can start DMA. 699 */ 700 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 701 addr = (uint32_t)fec->tbd_base; 702 flush_dcache_range(addr, addr + size); 703 704 /* 705 * Below we read the DMA descriptor's last four bytes back from the 706 * DRAM. This is important in order to make sure that all WRITE 707 * operations on the bus that were triggered by previous cache FLUSH 708 * have completed. 709 * 710 * Otherwise, on MX28, it is possible to observe a corruption of the 711 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM 712 * for the bus structure of MX28. The scenario is as follows: 713 * 714 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going 715 * to DRAM due to flush_dcache_range() 716 * 2) ARM core writes the FEC registers via AHB_ARB2 717 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 718 * 719 * Note that 2) does sometimes finish before 1) due to reordering of 720 * WRITE accesses on the AHB bus, therefore triggering 3) before the 721 * DMA descriptor is fully written into DRAM. This results in occasional 722 * corruption of the DMA descriptor. 723 */ 724 readl(addr + size - 4); 725 726 /* Enable SmartDMA transmit task */ 727 fec_tx_task_enable(fec); 728 729 /* 730 * Wait until frame is sent. On each turn of the wait cycle, we must 731 * invalidate data cache to see what's really in RAM. Also, we need 732 * barrier here. 733 */ 734 while (--timeout) { 735 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) 736 break; 737 } 738 739 if (!timeout) { 740 ret = -EINVAL; 741 goto out; 742 } 743 744 /* 745 * The TDAR bit is cleared when the descriptors are all out from TX 746 * but on mx6solox we noticed that the READY bit is still not cleared 747 * right after TDAR. 748 * These are two distinct signals, and in IC simulation, we found that 749 * TDAR always gets cleared prior than the READY bit of last BD becomes 750 * cleared. 751 * In mx6solox, we use a later version of FEC IP. It looks like that 752 * this intrinsic behaviour of TDAR bit has changed in this newer FEC 753 * version. 754 * 755 * Fix this by polling the READY bit of BD after the TDAR polling, 756 * which covers the mx6solox case and does not harm the other SoCs. 757 */ 758 timeout = FEC_XFER_TIMEOUT; 759 while (--timeout) { 760 invalidate_dcache_range(addr, addr + size); 761 if (!(readw(&fec->tbd_base[fec->tbd_index].status) & 762 FEC_TBD_READY)) 763 break; 764 } 765 766 if (!timeout) 767 ret = -EINVAL; 768 769 out: 770 debug("fec_send: status 0x%x index %d ret %i\n", 771 readw(&fec->tbd_base[fec->tbd_index].status), 772 fec->tbd_index, ret); 773 /* for next transmission use the other buffer */ 774 if (fec->tbd_index) 775 fec->tbd_index = 0; 776 else 777 fec->tbd_index = 1; 778 779 return ret; 780 } 781 782 /** 783 * Pull one frame from the card 784 * @param[in] dev Our ethernet device to handle 785 * @return Length of packet read 786 */ 787 #ifdef CONFIG_DM_ETH 788 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp) 789 #else 790 static int fec_recv(struct eth_device *dev) 791 #endif 792 { 793 #ifdef CONFIG_DM_ETH 794 struct fec_priv *fec = dev_get_priv(dev); 795 #else 796 struct fec_priv *fec = (struct fec_priv *)dev->priv; 797 #endif 798 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; 799 unsigned long ievent; 800 int frame_length, len = 0; 801 uint16_t bd_status; 802 uint32_t addr, size, end; 803 int i; 804 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); 805 806 /* Check if any critical events have happened */ 807 ievent = readl(&fec->eth->ievent); 808 writel(ievent, &fec->eth->ievent); 809 debug("fec_recv: ievent 0x%lx\n", ievent); 810 if (ievent & FEC_IEVENT_BABR) { 811 #ifdef CONFIG_DM_ETH 812 fecmxc_halt(dev); 813 fecmxc_init(dev); 814 #else 815 fec_halt(dev); 816 fec_init(dev, fec->bd); 817 #endif 818 printf("some error: 0x%08lx\n", ievent); 819 return 0; 820 } 821 if (ievent & FEC_IEVENT_HBERR) { 822 /* Heartbeat error */ 823 writel(0x00000001 | readl(&fec->eth->x_cntrl), 824 &fec->eth->x_cntrl); 825 } 826 if (ievent & FEC_IEVENT_GRA) { 827 /* Graceful stop complete */ 828 if (readl(&fec->eth->x_cntrl) & 0x00000001) { 829 #ifdef CONFIG_DM_ETH 830 fecmxc_halt(dev); 831 #else 832 fec_halt(dev); 833 #endif 834 writel(~0x00000001 & readl(&fec->eth->x_cntrl), 835 &fec->eth->x_cntrl); 836 #ifdef CONFIG_DM_ETH 837 fecmxc_init(dev); 838 #else 839 fec_init(dev, fec->bd); 840 #endif 841 } 842 } 843 844 /* 845 * Read the buffer status. Before the status can be read, the data cache 846 * must be invalidated, because the data in RAM might have been changed 847 * by DMA. The descriptors are properly aligned to cachelines so there's 848 * no need to worry they'd overlap. 849 * 850 * WARNING: By invalidating the descriptor here, we also invalidate 851 * the descriptors surrounding this one. Therefore we can NOT change the 852 * contents of this descriptor nor the surrounding ones. The problem is 853 * that in order to mark the descriptor as processed, we need to change 854 * the descriptor. The solution is to mark the whole cache line when all 855 * descriptors in the cache line are processed. 856 */ 857 addr = (uint32_t)rbd; 858 addr &= ~(ARCH_DMA_MINALIGN - 1); 859 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 860 invalidate_dcache_range(addr, addr + size); 861 862 bd_status = readw(&rbd->status); 863 debug("fec_recv: status 0x%x\n", bd_status); 864 865 if (!(bd_status & FEC_RBD_EMPTY)) { 866 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && 867 ((readw(&rbd->data_length) - 4) > 14)) { 868 /* Get buffer address and size */ 869 addr = readl(&rbd->data_pointer); 870 frame_length = readw(&rbd->data_length) - 4; 871 /* Invalidate data cache over the buffer */ 872 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); 873 addr &= ~(ARCH_DMA_MINALIGN - 1); 874 invalidate_dcache_range(addr, end); 875 876 /* Fill the buffer and pass it to upper layers */ 877 #ifdef CONFIG_FEC_MXC_SWAP_PACKET 878 swap_packet((uint32_t *)addr, frame_length); 879 #endif 880 memcpy(buff, (char *)addr, frame_length); 881 net_process_received_packet(buff, frame_length); 882 len = frame_length; 883 } else { 884 if (bd_status & FEC_RBD_ERR) 885 printf("error frame: 0x%08x 0x%08x\n", 886 addr, bd_status); 887 } 888 889 /* 890 * Free the current buffer, restart the engine and move forward 891 * to the next buffer. Here we check if the whole cacheline of 892 * descriptors was already processed and if so, we mark it free 893 * as whole. 894 */ 895 size = RXDESC_PER_CACHELINE - 1; 896 if ((fec->rbd_index & size) == size) { 897 i = fec->rbd_index - size; 898 addr = (uint32_t)&fec->rbd_base[i]; 899 for (; i <= fec->rbd_index ; i++) { 900 fec_rbd_clean(i == (FEC_RBD_NUM - 1), 901 &fec->rbd_base[i]); 902 } 903 flush_dcache_range(addr, 904 addr + ARCH_DMA_MINALIGN); 905 } 906 907 fec_rx_task_enable(fec); 908 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; 909 } 910 debug("fec_recv: stop\n"); 911 912 return len; 913 } 914 915 static void fec_set_dev_name(char *dest, int dev_id) 916 { 917 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); 918 } 919 920 static int fec_alloc_descs(struct fec_priv *fec) 921 { 922 unsigned int size; 923 int i; 924 uint8_t *data; 925 926 /* Allocate TX descriptors. */ 927 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 928 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); 929 if (!fec->tbd_base) 930 goto err_tx; 931 932 /* Allocate RX descriptors. */ 933 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); 934 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); 935 if (!fec->rbd_base) 936 goto err_rx; 937 938 memset(fec->rbd_base, 0, size); 939 940 /* Allocate RX buffers. */ 941 942 /* Maximum RX buffer size. */ 943 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); 944 for (i = 0; i < FEC_RBD_NUM; i++) { 945 data = memalign(FEC_DMA_RX_MINALIGN, size); 946 if (!data) { 947 printf("%s: error allocating rxbuf %d\n", __func__, i); 948 goto err_ring; 949 } 950 951 memset(data, 0, size); 952 953 fec->rbd_base[i].data_pointer = (uint32_t)data; 954 fec->rbd_base[i].status = FEC_RBD_EMPTY; 955 fec->rbd_base[i].data_length = 0; 956 /* Flush the buffer to memory. */ 957 flush_dcache_range((uint32_t)data, (uint32_t)data + size); 958 } 959 960 /* Mark the last RBD to close the ring. */ 961 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; 962 963 fec->rbd_index = 0; 964 fec->tbd_index = 0; 965 966 return 0; 967 968 err_ring: 969 for (; i >= 0; i--) 970 free((void *)fec->rbd_base[i].data_pointer); 971 free(fec->rbd_base); 972 err_rx: 973 free(fec->tbd_base); 974 err_tx: 975 return -ENOMEM; 976 } 977 978 static void fec_free_descs(struct fec_priv *fec) 979 { 980 int i; 981 982 for (i = 0; i < FEC_RBD_NUM; i++) 983 free((void *)fec->rbd_base[i].data_pointer); 984 free(fec->rbd_base); 985 free(fec->tbd_base); 986 } 987 988 #ifdef CONFIG_DM_ETH 989 struct mii_dev *fec_get_miibus(struct udevice *dev, int dev_id) 990 #else 991 struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) 992 #endif 993 { 994 #ifdef CONFIG_DM_ETH 995 struct fec_priv *priv = dev_get_priv(dev); 996 struct ethernet_regs *eth = priv->eth; 997 #else 998 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; 999 #endif 1000 struct mii_dev *bus; 1001 int ret; 1002 1003 bus = mdio_alloc(); 1004 if (!bus) { 1005 printf("mdio_alloc failed\n"); 1006 return NULL; 1007 } 1008 bus->read = fec_phy_read; 1009 bus->write = fec_phy_write; 1010 bus->priv = eth; 1011 fec_set_dev_name(bus->name, dev_id); 1012 1013 ret = mdio_register(bus); 1014 if (ret) { 1015 printf("mdio_register failed\n"); 1016 free(bus); 1017 return NULL; 1018 } 1019 fec_mii_setspeed(eth); 1020 return bus; 1021 } 1022 1023 #ifndef CONFIG_DM_ETH 1024 #ifdef CONFIG_PHYLIB 1025 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 1026 struct mii_dev *bus, struct phy_device *phydev) 1027 #else 1028 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, 1029 struct mii_dev *bus, int phy_id) 1030 #endif 1031 { 1032 struct eth_device *edev; 1033 struct fec_priv *fec; 1034 unsigned char ethaddr[6]; 1035 char mac[16]; 1036 uint32_t start; 1037 int ret = 0; 1038 1039 /* create and fill edev struct */ 1040 edev = (struct eth_device *)malloc(sizeof(struct eth_device)); 1041 if (!edev) { 1042 puts("fec_mxc: not enough malloc memory for eth_device\n"); 1043 ret = -ENOMEM; 1044 goto err1; 1045 } 1046 1047 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); 1048 if (!fec) { 1049 puts("fec_mxc: not enough malloc memory for fec_priv\n"); 1050 ret = -ENOMEM; 1051 goto err2; 1052 } 1053 1054 memset(edev, 0, sizeof(*edev)); 1055 memset(fec, 0, sizeof(*fec)); 1056 1057 ret = fec_alloc_descs(fec); 1058 if (ret) 1059 goto err3; 1060 1061 edev->priv = fec; 1062 edev->init = fec_init; 1063 edev->send = fec_send; 1064 edev->recv = fec_recv; 1065 edev->halt = fec_halt; 1066 edev->write_hwaddr = fec_set_hwaddr; 1067 1068 fec->eth = (struct ethernet_regs *)base_addr; 1069 fec->bd = bd; 1070 1071 fec->xcv_type = CONFIG_FEC_XCV_TYPE; 1072 1073 /* Reset chip. */ 1074 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); 1075 start = get_timer(0); 1076 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { 1077 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1078 printf("FEC MXC: Timeout resetting chip\n"); 1079 goto err4; 1080 } 1081 udelay(10); 1082 } 1083 1084 fec_reg_setup(fec); 1085 fec_set_dev_name(edev->name, dev_id); 1086 fec->dev_id = (dev_id == -1) ? 0 : dev_id; 1087 fec->bus = bus; 1088 fec_mii_setspeed(bus->priv); 1089 #ifdef CONFIG_PHYLIB 1090 fec->phydev = phydev; 1091 phy_connect_dev(phydev, edev); 1092 /* Configure phy */ 1093 phy_config(phydev); 1094 #else 1095 fec->phy_id = phy_id; 1096 #endif 1097 eth_register(edev); 1098 /* only support one eth device, the index number pointed by dev_id */ 1099 edev->index = fec->dev_id; 1100 1101 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) { 1102 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr); 1103 memcpy(edev->enetaddr, ethaddr, 6); 1104 if (fec->dev_id) 1105 sprintf(mac, "eth%daddr", fec->dev_id); 1106 else 1107 strcpy(mac, "ethaddr"); 1108 if (!env_get(mac)) 1109 eth_env_set_enetaddr(mac, ethaddr); 1110 } 1111 return ret; 1112 err4: 1113 fec_free_descs(fec); 1114 err3: 1115 free(fec); 1116 err2: 1117 free(edev); 1118 err1: 1119 return ret; 1120 } 1121 1122 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) 1123 { 1124 uint32_t base_mii; 1125 struct mii_dev *bus = NULL; 1126 #ifdef CONFIG_PHYLIB 1127 struct phy_device *phydev = NULL; 1128 #endif 1129 int ret; 1130 1131 #ifdef CONFIG_MX28 1132 /* 1133 * The i.MX28 has two ethernet interfaces, but they are not equal. 1134 * Only the first one can access the MDIO bus. 1135 */ 1136 base_mii = MXS_ENET0_BASE; 1137 #else 1138 base_mii = addr; 1139 #endif 1140 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); 1141 bus = fec_get_miibus(base_mii, dev_id); 1142 if (!bus) 1143 return -ENOMEM; 1144 #ifdef CONFIG_PHYLIB 1145 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); 1146 if (!phydev) { 1147 mdio_unregister(bus); 1148 free(bus); 1149 return -ENOMEM; 1150 } 1151 ret = fec_probe(bd, dev_id, addr, bus, phydev); 1152 #else 1153 ret = fec_probe(bd, dev_id, addr, bus, phy_id); 1154 #endif 1155 if (ret) { 1156 #ifdef CONFIG_PHYLIB 1157 free(phydev); 1158 #endif 1159 mdio_unregister(bus); 1160 free(bus); 1161 } 1162 return ret; 1163 } 1164 1165 #ifdef CONFIG_FEC_MXC_PHYADDR 1166 int fecmxc_initialize(bd_t *bd) 1167 { 1168 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, 1169 IMX_FEC_BASE); 1170 } 1171 #endif 1172 1173 #ifndef CONFIG_PHYLIB 1174 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) 1175 { 1176 struct fec_priv *fec = (struct fec_priv *)dev->priv; 1177 fec->mii_postcall = cb; 1178 return 0; 1179 } 1180 #endif 1181 1182 #else 1183 1184 static int fecmxc_read_rom_hwaddr(struct udevice *dev) 1185 { 1186 struct fec_priv *priv = dev_get_priv(dev); 1187 struct eth_pdata *pdata = dev_get_platdata(dev); 1188 1189 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr); 1190 } 1191 1192 static const struct eth_ops fecmxc_ops = { 1193 .start = fecmxc_init, 1194 .send = fecmxc_send, 1195 .recv = fecmxc_recv, 1196 .stop = fecmxc_halt, 1197 .write_hwaddr = fecmxc_set_hwaddr, 1198 .read_rom_hwaddr = fecmxc_read_rom_hwaddr, 1199 }; 1200 1201 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev) 1202 { 1203 struct phy_device *phydev; 1204 int mask = 0xffffffff; 1205 1206 #ifdef CONFIG_PHYLIB 1207 mask = 1 << CONFIG_FEC_MXC_PHYADDR; 1208 #endif 1209 1210 phydev = phy_find_by_mask(priv->bus, mask, priv->interface); 1211 if (!phydev) 1212 return -ENODEV; 1213 1214 phy_connect_dev(phydev, dev); 1215 1216 priv->phydev = phydev; 1217 phy_config(phydev); 1218 1219 return 0; 1220 } 1221 1222 static int fecmxc_probe(struct udevice *dev) 1223 { 1224 struct eth_pdata *pdata = dev_get_platdata(dev); 1225 struct fec_priv *priv = dev_get_priv(dev); 1226 struct mii_dev *bus = NULL; 1227 int dev_id = -1; 1228 uint32_t start; 1229 int ret; 1230 1231 ret = fec_alloc_descs(priv); 1232 if (ret) 1233 return ret; 1234 1235 /* Reset chip. */ 1236 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET, 1237 &priv->eth->ecntrl); 1238 start = get_timer(0); 1239 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) { 1240 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { 1241 printf("FEC MXC: Timeout reseting chip\n"); 1242 goto err_timeout; 1243 } 1244 udelay(10); 1245 } 1246 1247 fec_reg_setup(priv); 1248 priv->dev_id = (dev_id == -1) ? 0 : dev_id; 1249 1250 bus = fec_get_miibus(dev, dev_id); 1251 if (!bus) { 1252 ret = -ENOMEM; 1253 goto err_mii; 1254 } 1255 1256 priv->bus = bus; 1257 priv->xcv_type = CONFIG_FEC_XCV_TYPE; 1258 priv->interface = pdata->phy_interface; 1259 ret = fec_phy_init(priv, dev); 1260 if (ret) 1261 goto err_phy; 1262 1263 return 0; 1264 1265 err_timeout: 1266 free(priv->phydev); 1267 err_phy: 1268 mdio_unregister(bus); 1269 free(bus); 1270 err_mii: 1271 fec_free_descs(priv); 1272 return ret; 1273 } 1274 1275 static int fecmxc_remove(struct udevice *dev) 1276 { 1277 struct fec_priv *priv = dev_get_priv(dev); 1278 1279 free(priv->phydev); 1280 fec_free_descs(priv); 1281 mdio_unregister(priv->bus); 1282 mdio_free(priv->bus); 1283 1284 return 0; 1285 } 1286 1287 static int fecmxc_ofdata_to_platdata(struct udevice *dev) 1288 { 1289 struct eth_pdata *pdata = dev_get_platdata(dev); 1290 struct fec_priv *priv = dev_get_priv(dev); 1291 const char *phy_mode; 1292 1293 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev); 1294 priv->eth = (struct ethernet_regs *)pdata->iobase; 1295 1296 pdata->phy_interface = -1; 1297 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", 1298 NULL); 1299 if (phy_mode) 1300 pdata->phy_interface = phy_get_interface_by_name(phy_mode); 1301 if (pdata->phy_interface == -1) { 1302 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); 1303 return -EINVAL; 1304 } 1305 1306 /* TODO 1307 * Need to get the reset-gpio and related properties from DT 1308 * and implemet the enet reset code on .probe call 1309 */ 1310 1311 return 0; 1312 } 1313 1314 static const struct udevice_id fecmxc_ids[] = { 1315 { .compatible = "fsl,imx6q-fec" }, 1316 { } 1317 }; 1318 1319 U_BOOT_DRIVER(fecmxc_gem) = { 1320 .name = "fecmxc", 1321 .id = UCLASS_ETH, 1322 .of_match = fecmxc_ids, 1323 .ofdata_to_platdata = fecmxc_ofdata_to_platdata, 1324 .probe = fecmxc_probe, 1325 .remove = fecmxc_remove, 1326 .ops = &fecmxc_ops, 1327 .priv_auto_alloc_size = sizeof(struct fec_priv), 1328 .platdata_auto_alloc_size = sizeof(struct eth_pdata), 1329 }; 1330 #endif 1331